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A B S T R A C T   

The host response to SARS-CoV-2, the virus that causes COVID-19, is highly heterogeneous, ranging from mild/ 
asymptomatic to severe. The moderate to severe forms of COVID-19 often require hospitalization, are associated 
with a high rate of mortality, and appear to be caused by an inappropriately exaggerated inflammatory response 
to the virus. Emerging data confirm the involvement of both innate and adaptive immune pathways both in 
protection from SARS-CoV-2, and in driving the pathology of severe COVID-19. In particular, innate immune 
cells including neutrophils appear to be key players in the inflammation that causes the vicious cycle of damage 
and inflammation that underlies the symptomatology of severe COVID-19. Several recent studies support a link 
between damage and inflammation, with damage-associated molecular patterns (DAMPs) playing a key role in 
the pathology of severe COVID-19. In this review, we put into perspective the role of DAMPs and of components 
of the DAMP-signaling cascade, including Siglecs and their cognate ligands CD24 and CD52, in COVID-19. 
Further, we review clinical data on proposed therapeutics targeting DAMP pathways to treat SARS-CoV-2 
infection and the regulation of these signaling cascades in COVID-19. We also discuss the potential impact of 
DAMP-mediated inflammation in other indications related to COVID-19, such as ARDS, endothelial dysfunction, 
hypercoagulation, and sepsis.   

1. Introduction 

The ongoing COVID-19 pandemic has had immeasurable impact on 
human lives globally since the disease was first described in December 
2019, in Wuhan, China. As of September 2021, over 200 million docu-
mented cases of COVID-19 and over 4 million fatalities have been re-
ported around the world [1]. COVID-19 is caused by a novel 
coronavirus, SARS-CoV-2, belonging to the genus Betacoronavirus, 
which also includes the common cold viruses HKU1, NL63, OC43, as 
well as the more pathogenic viruses SARS-CoV and MERS-CoV. The 
disease has highly heterogeneous effects on patients, ranging from 
asymptomatic infection to severe multi-organ damage leading to death. 
Patients at risk of developing severe disease include the elderly, and 

patients with chronic health conditions like obesity and cardiovascular 
disease [2]. Beyond the acute effects of SARS-CoV-2 infection, long- 
lasting symptoms are common in convalescent patients that survive 
the initial infection, a syndrome known as “long COVID” or post-acute 
sequelae of COVID-19 (PASC) [3-5]. 

The disruptive impact of the COVID-19 pandemic has triggered an 
unprecedented global wave of scientific innovation that has resulted in 
the rapid discovery and development of multiple vaccines and thera-
peutics to prevent and treat COVID-19. The first vaccine for the pre-
vention of COVID-19, Gam-COVID-Vac, was approved for emergency 
use by the Russian Ministry of Health in August 2020, just 5 months after 
the disease was declared a pandemic. The mRNA-based vaccine from 
Pfizer, tozinameran, earned the first emergency use approval for a 

Abbreviations: ARDS, Acute respiratory distress syndrome; COVID-19, Coronavirus disease of 2019; CLR, C-type lectin like receptor; DAMP, Damage-associated 
molecular pattern; DG, Degranulation; EC, Endothelial cell; ITIM, Immunoreceptor tyrosine-based inhibitory motifs; MAPK, Mitogen-activated protein kinase; NET, 
Neutrophil extracellular trap; NLR, NOD-like receptor; PAMP, Pathogen-associated molecular pattern; PRR, Pattern recognition receptor; RAGE, Receptor for 
advanced glycation end products; RB, Respiratory burst; RLR, RIG-I-like receptor; ROS, Reactive oxygen species; TAK, Transforming growth factor-β activated ki-
nases; TLR, Toll-like receptor. 

* Corresponding author at: 320 Bent St, Cambridge, MA 02141, United states. 
E-mail address: alex_therien@merck.com (A.G. Therien).  

Contents lists available at ScienceDirect 

Biochemical Pharmacology 

journal homepage: www.elsevier.com/locate/biochempharm 

https://doi.org/10.1016/j.bcp.2021.114847 
Received 1 October 2021; Received in revised form 15 November 2021; Accepted 16 November 2021   

mailto:alex_therien@merck.com
www.sciencedirect.com/science/journal/00062952
https://www.elsevier.com/locate/biochempharm
https://doi.org/10.1016/j.bcp.2021.114847
https://doi.org/10.1016/j.bcp.2021.114847
https://doi.org/10.1016/j.bcp.2021.114847
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bcp.2021.114847&domain=pdf


Biochemical Pharmacology 195 (2022) 114847

2

COVID-19 vaccine in the west, specifically in the UK, in December 2020. 
Since then, over a dozen different vaccines have been approved for 
clinical use in almost 200 countries [6-8]. In addition to vaccines, a 
handful of therapeutics have been approved, fully or for emergency use, 
for treatment of COVID-19 in different jurisdictions: the broad anti- 
inflammatory dexamethasone; the antivirals remdesivir and favipir-
avir; the anti-SARS-CoV-2 antibodies bamlanivimab/etesevimab, casir-
ivimab/imdevimab, sotrovimab, and regdanvimab; the anti-IL-6 
antibody tocilizumab; and convalescent plasma [9,10]. Dozens of 
additional vaccines and therapies are in late-stage clinical development, 
promising to add to the armamentarium of available remedies for this 
devastating disease. 

In addition to driving the development of new vaccines and thera-
peutics, the ongoing scientific surge has enabled a deep, if still incom-
plete, understanding of SARS-CoV-2 infection and COVID-19 pathology. 
Within weeks of the discovery of SARS-CoV-2, it was demonstrated that 
the key host receptor for the virus is ACE2 and that the virus binds to this 
protein on the surface of human cells via its spike glycoprotein [11]. 
Viral attachment to host cells leads to internalization of the virus, viral 
replication, cell death, and release of nascent virions that can infect 
neighboring cells, perpetuating the replication cycle. While other po-
tential receptors have been described for SARS-CoV-2, ACE2 appears to 
be the primary receptor, and cells that do not express ACE2 are generally 
resistant to infection [12]. This is consistent with the observation that 
the virus primarily infects epithelial cells of the lung and gut which 
express ACE2, although it has also been suggested that SARS-CoV-2 can 
infect other cell types within the body, including cardiomyocytes, neu-
rons, endothelial cells, and some leukocytes [13-19]. 

In most patients, infection with SARS-CoV-2 is associated with a 
rapid, often pre-symptomatic, increase in viral load, triggering an im-
mune response that effectively clears the virus within days and is asso-
ciated with relatively mild symptoms that resemble the flu – mild 
respiratory distress, fever, and body aches. In other patients, in partic-
ular those with underlying risk factors like age and comorbidities, the 
disease can progress to more severe symptoms including respiratory 
failure, and in some cases death [20,21]. Severe COVID-19 is thought to 
result from a harmful self-perpetuating cycle of hyperinflammation and 
tissue/cellular damage due to an inappropriately extreme immune 
response, sometimes associated with cytokine storm and/or ARDS. 
Much of the work seeking to characterize COVID-19 pathology has 
focused on the adaptive immune response which is undoubtedly 
important in pathogen clearance and in establishing immune memory, 
as demonstrated by the high level of efficacy achieved with COVID-19 
vaccines. However, the innate immune response also plays an impor-
tant role in perpetuating the hyper-inflamed state that contributes to 
severe forms of COVID-19. Recent data have implicated monocytes, 
neutrophils, and other myeloid cells, in COVID-19 pathology. In this 
review, we discuss this expanding appreciation for the role played by the 
innate immune system in moderate to severe forms of COVID-19, and 
highlight evidence to support that damage-associated molecular pat-
terns (DAMPs) may be key players in the cycle of damage and inflam-
mation that underlies severe forms of the disease. Furthermore, we 
suggest that our evolving understanding of COVID-19 pathology will 
inform future treatment options not only for COVID-19 but also for other 
diseases, infectious or not, which exhibit similar mechanisms of disease. 

2. Immune mechanisms in COVID-19 

SARS-CoV-2 is a respiratory virus whose human-to-human trans-
mission is predominantly mediated through droplets and aerosols that 
are formed during speaking, coughing, and sneezing. Thus, mucosal 
tissues of the mouth and respiratory tract are among the first to come 
into contact with the virus. These tissues are also the most vulnerable for 
viral infection owing to their high expression of ACE2. Infection of the 
host cells leads to viral replication and release of viral particles associ-
ated with cell and tissue damage and release of DAMPs. In severe 

disease, it is thought that these molecules trigger an inflammatory im-
mune cascade characterized by a vicious cycle of immune cell activation 
and further loss of tissue integrity. 

Patients with severe COVID-19 present with inflammatory foci in the 
lungs that are detectable macroscopically by X-ray. In these patients, 
SARS-CoV-2 has typically infected the ACE2-expressing epithelial cells 
in the lower airway, triggering an immune response that ultimately 
leads to hospitalization, and possibly to the need for intensive care and 
intubation [22]. In addition to respiratory symptoms, COVID-19 pa-
tients can also develop thrombotic complications, pulmonary embolism 
and problems associated with increased coagulation, reminiscent of 
disseminated intravascular coagulation observed in sepsis patients. Pa-
tients exhibit elevated D-dimer levels and widespread alveolar capillary 
microthrombi [23-25], altered platelet-immune cell interactions 
[26,27] and the presence of megakaryocytes in affected lungs. The 
clinical course of COVID-19 is driven by the host immune response, 
which can range from appropriate and protective, to uncontrolled and 
highly dysfunctional, and everywhere in between. 

The normal and protective host response to SARS-CoV-2 begins with 
recognition of pathogen-associated molecular patterns (PAMPs), such as 
viral single-stranded RNA, by innate immune cells through pattern 
recognition receptors (PRRs) including toll-like receptors (TLRs), C-type 
lectin receptors (CLRs), NOD-like receptors (NLRs), RIG-I-like receptors 
(RLRs) and melanoma differentiation-associated protein 5 (MDA-5). 
This leads to activation of immune cells, secretion of pro-inflammatory 
cytokines and establishment of a chemokine gradient to recruit addi-
tional innate and adaptive immune cells to the site of inflammation [28]. 
Similarly, activation of resident myeloid cells leads to their mobilization 
and migration to the draining lymph node where they present viral 
antigens to T and B cells, orchestrating the protective adaptive immune 
response, including the establishment of immune memory. If the im-
mune response is successful, patients typically recover within 7 to 14 
days post-infection. The protective nature of an appropriate immune 
response to SARS-CoV-2 is exemplified in vaccinated individuals who 
have circulating neutralizing antibodies and memory lymphocytes spe-
cific for the viral capsid protein which can fend off infection, or at least 
lessen the severity and duration of disease. 

In a subset of patients, however, the adaptive immune response fails 
to clear the virus and eventually peters out due to T cells exhaustion and 
an inadequate B cells/antibody (humoral) response [29]. Persistence of 
the viral infection leads to continued activation of the innate immune 
system and production of pro-inflammatory cytokines [30], which can 
lead to systemic vascular inflammation and aberrant coagulation, 
among other non-pulmonary symptoms. A reduced type I interferon 
(IFN-I) response may contribute to the inability of the host to clear the 
virus, leading to the uncontrolled inflammatory response that drives 
severe COVID-19 [31,32], consistent with the higher levels of autoim-
mune antibodies specific for type I IFNs observed in these patients 
[33,34]. However, the role of type I interferon (IFN-I) response in severe 
COVID-19 patients still remains unclear since some reports show a 
robust IFN-I response in severe COVID-19 [35-37]. 

3. Innate immunity in COVID-19 

Much of the available data on the role of the adaptive and innate 
immune responses in COVID-19 has been gleaned from patient cohort 
studies utilizing state-of-the-art multi-omics approaches [30,38-43]. 
Initial immunophenotyping studies indicated lymphopenia and 
increased abundance of neutrophils in severe COVID-19 [44-46]. Deeper 
bulk and single-cell transcriptomics approaches identified increased 
expansion of plasmablasts, megakaryocytes and increased erythropoi-
esis [39]; basophil depletion, alterations in non-neutrophil myeloid cells 
including monocytes, macrophages, dendritic cells (DCs), and B/T cell 
phenotypes [38,41]; and increase in inflammatory macrophages and 
altered epithelial-immune cell interactions [43] in severe patients. 
Overall, these data paint a picture wherein the adaptive immune 
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response driven by CD4+/CD8+ T cells and antibody production is 
crucial in controlling SARS-CoV-2 infection, whereas severe disease 
seems to result in part from an altered/dysfunctional and insufficient 
adaptive response. In such cases, the innate immune response, normally 
the first line of defense in infection, plays an outsized role, perhaps as a 
compensatory mechanism for an inadequate adaptive response. 

In line with this, early studies into the pathology of COVID-19 
showed a systemic increase of a variety of pro-inflammatory cytokines 
and chemokines (including IL-6, IL-7, IL-10, TNF-α, and IP10) [47]. 
Furthermore, mononuclear phagocytes are elevated in bronchoalveolar 
fluid (BALF) of severe COVID-19 patients, pointing to activation and 
dysregulation of monocytes and macrophages in COVID-19-associated 
hyperinflammation [48,49]. Peripheral blood is enriched in pro- 
inflammatory CD14highCD16high monocytes, and has abnormally low 
levels of non-classical CD14lowCD16high monocytes, in COVID-19 pa-
tients confined to intensive care [30,50–52]. In addition to this in-
flammatory dysfunction, altered host metabolic processes are observed 
in severe COVID-19. Specifically, a recent study has shown that 
increasing disease severity in COVID-19 correlates with differential 
abundance and metabolic programming of hyperactive T cell sub-
populations and two metabolically distinct monocyte subsets. In addi-
tion, results from this study have identified acetoacetate and 
α-ketobutyrate as markers for predicting disease outcome in individuals 
diagnosed with COVID-19 [53]. Further, the products of purine meta-
bolism, nicotinate and nicotinamide metabolism, tryptophan meta-
bolism, TCA cycle, and arginine metabolism are all also associated with 
higher disease severity [54–57]. 

Beyond the studies outlined above, most early assessments of the 
immune response to SARS-CoV-2 largely overlooked innate immune 
cells - in particular neutrophils - possibly due to technical challenges (for 
instance, the study of neutrophils requires freshly drawn blood) as well 
as to the justified race to study the adaptive immune response with the 
goal of developing vaccines and identifying neutralizing antibodies as 
potential treatments for patients. However, evidence from recent studies 
has begun to implicate neutrophils and neutrophil extracellular trap 
(NET) formation (NETosis) in the pathophysiology of inflammation, 
coagulopathy, organ damage, and immunothrombosis associated with 
severe COVID-19 [58–62]. Indeed, activated neutrophils - rather than 
platelets - appear to be the drivers of coagulation, through a mechanism 
mediated by NETs and reminiscent of sepsis [63,64]. As the primary 
innate immune effectors, it is not surprising that neutrophils also play a 
critical role in ARDS, characteristic of COVID-19. Neutrophils are armed 
with an arsenal of microbicidal effectors, including cell damaging 
reactive oxygen species (ROS) generated by the Rac2/NADPH oxidase 
complex [65,66]. Additionally, they possess a wealth of anti-microbial 
enzymes (e.g. neutrophil elastase, cathepsin-G, myeloid peroxidase, 
matrix metallopeptidases, and peptides (e.g. LL-37, bactericidal 
permeability increasing protein (BPI)) stored in cytoplasmic granules 
[65,66]. While these are normally deployed through local degranulation 
(DG) and respiratory burst (RB) within phagosomes to destroy an 
internalized pathogen, the excessive DG/RB that occurs the context of 
inflammatory diseases leads to release of these mediators into the 
extracellular space, where they can cause collateral damage to host 
tissues, including the lungs, blood vessels, and others [67–76]. 

In addition to their more classical functionalities, neutrophils can 
also cause damage through NETosis, a recently described alternative 
effector modality in these cells. NETosis involves the progressive re- 
organization and extrusion of nuclear material, leading to the forma-
tion of NETs made of DNA fibers that ensnare pathogens [77–81]. While 
NETosis likely evolved as a protective mechanism, NETs have also been 
associated with several pathological conditions ranging from infectious 
diseases to inflammatory disorders including systemic lupus erythema-
tosus, rheumatoid arthritis, small vessel vasculitis, gout, and cardio-
vascular disease. For instance, a randomized clinical trial identified an 
association between markers of NETs and poor outcome in community- 
acquired pneumonia [82]. Overall, it is thought that NETs are involved 

in mediating the crosstalk between cells of the innate and adaptive 
immune systems and can induce localized tissue damage independent of 
the infecting organism, thus perpetuating a vicious circle of damage and 
inflammation. Furthermore, NETs are a driver of coagulation in bacte-
rial sepsis, endocarditis, and pneumonia [83], owing to their ability to 
facilitate thrombus formation by activated platelets. 

Recent data show that NETs may play a role in the pathology of 
COVID-19. Indeed, treatment of healthy neutrophils with serum from 
COVID-19 patients triggered the release of NETs, and SARS-CoV-2 has 
been shown to stimulate neutrophils to release NETs via interactions 
with ACE2 [58,59]. Different constituents of NETs along with other 
factors such as oxidative stress, excessive immune signaling, and 
increased alveolar epithelial cell necrosis contribute to release of 
endogenous DAMPs, severe hypoxia, and eventually ARDS, in patients 
with severe COVID-19 [84–89]. While DAMPs normally act as key 
bridging molecules between immune and non-immune cells during the 
cycle of tissue injury and immune resolution, under pathological con-
ditions, including in COVID-19, they can amplify the innate and adap-
tive immune responses by directly activating various cell subsets, 
leading to further inflammation and tissue/cell damage. 

4. DAMP signaling in COVID-19 

Similar to PAMPs, DAMPs act through various cell-surface and 
intracellular PRRs such as membrane-bound TLRs and CLRs; cyto-
plasmic NLRs, RLRs, MDA5, cyclic GMP–AMP synthase (cGAS), absent 
in melanoma 2 (AIM2), or through non-classical transmembrane pro-
teins such as receptor for advanced glycation end products (RAGE), 
triggering receptors expressed on myeloid cells (TREMs), G-protein- 
coupled receptors (GPCRs), transient receptor potential (TRP) and P2X7 
receptor (P2X7R) channels [28]. DAMP-PRR signaling triggers the 
activation of canonical myeloid differentiation primary response gene 
88 (MyD88) cascade proteins including IL-1 receptor-associated kinases 
(IRAKs), transforming growth factor-β activated kinases (TAK), TAK 
binding proteins (TABs), mitogen-activated protein kinases (MAPKs), 
and IκB kinase (IKK) isoforms. This results in translocation of NF-κB to 
the nucleus, transcription of various pro-inflammatory mediators, and 
regulation of several cellular processes including apoptosis, prolifera-
tion, adhesion, and angiogenesis [90,91]. PRR-mediated activation of 
NF-κB signaling also leads to transcriptional upregulation of intracel-
lular inflammasome genes; DAMPs can bind to and activate NLRP3, 
leading to caspase-1 autoproteolysis and activation, and cleavage of pro- 
IL-1β and pro-IL-18 to their active forms, IL-1β and IL-18. Pro-inflam-
matory signaling by NLRP3 inflammasome results either in cellular 
death by pyroptosis or activation of downstream processes such as 
recruitment of immune cell populations, immune surveillance, and cell 
proliferation [92]. In this way, DAMP-mediated localized inflammatory 
cell death and signaling can further extend to the vasculature, leading to 
barrier disintegration and leakage of inflammatory mediators, thus 
triggering a cycle of cell injury, amplified inflammation, and dysregu-
lation of cellular processes. 

Recent plasma proteomic studies have revealed increases in DAMPs 
including circulating mitochondrial DNA, HMGB1 and S100 proteins in 
moderate to severe COVID-19 patients [[40,42,47,90,93–96]]. Based on 
their known pro-inflammatory effects, summarized above, high levels of 
circulating DAMPs are likely to play an exacerbative role in COVID-19. 
Indeed, it can be surmised that DAMPs play a critical role in driving the 
uncontrolled immune response associated with COVID-19, as demon-
strated in part by the protective effects of Paquinimod, a specific in-
hibitor of S100A8/A9 which can reduce pathological inflammatory 
signaling by neutrophils and re-establish an optimal anti-viral response 
against COVID-19 [97]. In addition, increased HMGB1 in severe COVID- 
19 patients has been shown to promote ACE2 expression via the RAGE 
receptor in alveolar epithelial cells, thereby facilitating viral entry into 
cells [93]. In some instances, DAMPs may play a protective role in dis-
ease, such as in the case of elevated levels of alarmins such as S100A8 

U. Parthasarathy et al.                                                                                                                                                                                                                        



Biochemical Pharmacology 195 (2022) 114847

4

and S100A9 that are correlated with an anti-viral immune responses 
[97,98]. Nevertheless, the totality of the data point toward a harmful 
role of DAMPs in COVID-19. This is further supported by studies 
implicating other components of DAMP-mediated signaling, including 
DAMP receptors, and associated signaling components, as discussed 
below. 

5. Siglec signaling in COVID-19 

The innate immune machinery has evolved to modulate PAMP/ 
DAMP-PRR signaling pathways at transcriptional, post-transcriptional 
and post-translational levels [99,100]. For instance, phosphatases 
SHP-1 and SHP-2 mediate inhibition of PRR signaling by selectively 
dephosphorylating different components of NF-κB and MAPK pathways 
[101,102]. The sialic acid–binding immunoglobulin-like lectins 
(Siglecs) are one group of proteins that utilize SHP-1 to act as a check-
point on the innate immune system. Indeed, the majority of Siglecs are 
primarily expressed on innate immune cells, and contain immunor-
eceptor tyrosine-based inhibitory motifs (ITIMs) or ITIM-like regions in 
their intracellular domains, through which they suppress DAMP- 
mediated NF-κB signaling [103] . 

Results from recent studies highlight the potential significance of 
Siglecs in COVID-19 (Fig. 1). For instance, sialylated secreted glyco-
proteins from SARS-CoV-2 can bind to and activate host Siglecs thus 
downregulating the antiviral response [104]. Furthermore, SARS-CoV-2 
viral spike proteins contain α2,6 and α2,3 linked sialic acids that enable 
their interaction with Siglec-1, Siglec-3, Siglec-9, and Siglec-10, 

facilitating their entry into host immune cells [19,105], a phenomenon 
which can be blocked with an anti-Siglec-1 monoclonal antibody [19] 
(Fig. 1A). On the other hand, Siglecs appear to play a protective role in 
the context of severe COVID-19 by tamping down the uncontrolled 
inflammation that drives pathology. For example, Siglec-9 has been 
shown to suppress neutrophil innate immune responses, and tran-
scriptomic studies have identified upregulation of Siglec-9 in neutro-
phils of severe COVID-19 patients [30,106,107]. Additionally, a Siglec-9 
agonist was found to be effective in inhibiting cellular activation and 
excessive NETosis in neutrophils from patients with COVID-19 [108] 
(Fig. 1B). This suggests an interplay between biological regulation of 
Siglecs and the cycle of injury perpetuated by aberrant NETosis and 
increased DAMPs such as HMGB1 and S100 proteins in severe COVID- 
19. 

6. Regulation of DAMP-PRR-Siglec signaling cascade in COVID- 
19 

Under homeostatic conditions, endogenous DAMPs signal via PRRs 
and non-PRRs to trigger downstream innate immune responses and 
production of pro-inflammatory cytokines through activation of either 
the NF-κB or NLRP3 inflammasome cascades [28]. Therefore, modu-
lating the activity of DAMP ligands, receptors, and/or NF-κB/NLRP3 
inflammasome signaling components, may be beneficial in various dis-
ease states, including severe COVID-19. One possible approach involves 
activation of the Siglecs, either directly, or through their cognate ligands 
CD24 and CD52. CD24 and CD52 are related proteins with similar 

Fig. 1. Therapeutic targeting of Siglecs in COVID-19. (A) Viral capture and uptake by Siglec-1 on myeloid antigen presenting cells (APCs) leads to cytokine storm 
and viral propagation. Anti-Siglec-1 monoclonal antibodies (mAbs) can block uptake of SARS-CoV-2 and inhibit trans-infection of target cells expressing ACE2/ 
TMPRSS2 [19]. (B) SARS-CoV-2 pathogen/damage-associated molecular pattern (PAMP and DAMP)-mediated pattern recognition receptor (PRR) stimulation leads 
to production of pro-inflammatory neutrophil extracellular traps (NETosis), that propagate the hyperinflammatory cascade in COVID-19. Synthetic Siglec-9 agonists 
can trigger clustering of Siglec-9 receptors on neutrophils and suppress NETosis and associated inflammation in COVID-19 [108]. (C) Association of CD24 or CD52 
with Siglec-10 inhibits PAMP/DAMP-PRR-mediated inflammatory responses. CD24Fc and CD24 exosomes may act through Siglec stimulation to protect against 
severe COVID-19 [118,119]. Treatment with anti-human CD52 antibody is associated with mild COVID-19 symptoms and may also act through Siglec stimulation 
[116]. (D) Increased levels of neuraminidase 1 (Neu1) enzyme in severe COVID-19 may prevent protective Siglec activation through cleavage of sialic acid (SA) 
residues on CD24/CD52. Treatment with Neu inhibitors Oseltamivir or Zanamivir reduces SA shedding and neutrophil overactivation in COVID-19 patients [128]. 
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genomic organization, structures, and functionalities. For example, 
CD24 has been shown to associate with Siglec-10 and downregulate 
HMGB1-mediated NF-κB inhibition, while soluble CD52 binding to 
Siglec-10 inhibits T cell receptor-associated kinase phosphorylation and 
T cell activation [109,110]. Interestingly, recent clinical data support a 
potential role for CD24 and CD52 in COVID-19 (Fig. 1C). 

Alemtuzumab, an anti-human CD52 antibody, was designed to 
deplete CD52+ lymphocytes in lymphocyte-mediated diseases such as 
multiple sclerosis (MS) and graft-versus-host disease [111,112]. While 
patients treated with alemtuzumab have varying levels of immunode-
ficiency and an increased risk of infection, case reports indicate that 
alemtuzumab-treated multiple sclerosis (MS) patients developed mild 
COVID-19 disease [113–117]. It has not been determined whether 
milder symptoms are due to CD52 depletion-induced immunosuppres-
sion or to Siglec-dependent down-regulation of inflammation. Given its 
role in inhibition of DAMP signaling and the increased levels of DAMPs 
in COVID-19, a targeted increase in CD52 signaling, perhaps through 
dosing of CD52 itself in some form, could be beneficial in the context of 
severe COVID-19. Indeed, such an approach was used recently with the 
related protein CD24. Results from an interim analysis of a Phase III 
clinical trial with CD24Fc, a protein consisting of two molecules of CD24 
attached to a single human IgG1 Fc, showed a decreased risk of respi-
ratory failure and death compared with the placebo group, in moderate 
to severe COVID-19 patients [118]. Another clinical study from the Tel- 
Aviv Sourasky Medical Center evaluated the efficacy of inhaled CD24- 
containing exosomes in patients with moderate/severe COVID-19 dis-
ease. The results showed that 29 out of 30 patients treated with this 
therapy fully recovered from disease within three to five days, although 
no placebo control arm was included in this study [119]. While both 
CD24 and CD52 drive inhibition of DAMP-mediated inflammation, 
existing literature suggests that these two proteins could be acting on 
different immune subsets - CD24 on myeloid populations [120–122] and 
CD52 on lymphocyte populations [110,123–125]. Overall, available 
clinical data are consistent with a protective effect of CD24 and CD52 in 
COVID-19, though additional studies are required to confirm these 
beneficial effects, and to better understand the mechanism of protection. 
Given the multiple known biological effects of CD24 and CD52 – 
including, but not limited to, activation of Siglecs - any beneficial effects 
of increasing CD24/CD52-mediated signaling in severe COVID-19 must 
be weighed against the potential harmful effects of targeting this com-
plex biology. 

The role of sialic acid residues in Siglec binding and activation could 
also be harnessed as a potential therapeutic approach in COVID-19 
[126,127]. Neuraminidase (Neu) enzymes, which are expressed at 
higher levels in the respiratory tract of severe COVID-19 patients [43], 
cleave sialic acid residues which enhances ROS production and NETosis 
by inflammatory neutrophils in COVID-19, and these effects can be 
blocked by the Neu inhibitors oseltamivir or zanamivir (Fig. 1D) [128]. 
Similarly, the Neu inhibitor peramivir, in combination with an anti- 
HMGB1 antibody, attenuated immune signaling and improved sur-
vival in an influenza-induced pneumonia mouse model [129]. 

In addition to targeting Siglec biology, blocking the TLRs, which act 
as receptors for both PAMPs and DAMPs, is being studied as a way of 
tamping down inflammation in several diseases including COVID-19 
[130–132]. Additionally, cytokine blockers - for example the anti-IL- 
6R antibodies tocilizumab (Actemra) and sarilumab (Kevzara) and the 
anti-IL-6 antibody siltuximab (Sylvant) - are also being tested for effi-
cacy COVID-19 patients. Results from these studies are mixed and 
indicate that while anti-IL6 drugs/TLR therapeutics may have a mar-
ginal effect on mortality in severe cases of COVID-19, the timing of 
treatment relative to infection onset appears to be critical for efficacy 
[133–135]. Furthermore, IL-6 is only one of several proinflammatory 
mediators released in response to DAMP-mediated inflammation, 
highlighting the need to identify targets that are higher up in the 
inflammation cascade, including, perhaps, the DAMPs themselves. 

In summary, available data suggest that therapeutic targeting of the 

pro-inflammatory DAMP-PRR and anti-inflammatory Siglec pathways is 
promising for the treatment of severe COVID-19, although additional 
studies are required to validate this approach, to identify therapeutic 
targets within these pathways that will appropriately balance benefit 
and risk, and to inform about patient stratification and timing of 
therapy. 

7. Impact of DAMP signaling on other dysregulated processes in 
COVID-19 and in related disorders 

Severe COVID-19 is associated not only with pulmonary symptoms/ 
ARDS, but also with systemic complications including endothelial 
dysfunction and hypercoagulability [136–138]. Vascular endothelial 
cells (ECs) express ACE2, making them direct targets for SARS-CoV-2 
infection [139–141]. In addition, excessive inflammation associated 
with COVID-19 ARDS leads to increased pro-inflammatory cytokine 
signaling and NETosis which results in activation of ECs, and ultimately, 
endothelial dysfunction. Activated ECs, in turn, increase NET formation, 
leading to a positive feedback loop that further propagates EC 
dysfunction [142,143]. This damage to the vascular endothelium causes 
platelet aggregation, resulting in a prothrombotic phenotype and 
increased coagulation. In addition, breakdown of the endothelium due 
to NETosis in the intravascular and perivascular space destabilizes the 
EC barrier leading to vascular leakage [80,81,143–150]. The mechanism 
of endothelial damage and vascular leakage in COVID-19 can be in part 
surmised from studies in sepsis, which show many of the same hallmarks 
as severe COVID-19. For instance, in sepsis, circulating neutrophils un-
dergo ‘intravascular priming’ coupled to microvascular sequestration, 
and this increased prevalence of primed neutrophils, as well as neutro-
phil clustering, correlates with leak and severity of disease 
[67,151–158]. Vascular damage-induced tissue hypoxia and 
thrombosis-induced ischemic injury/ROS production also leads to the 
release of DAMPs, thus fueling the cycle of inflammatory, coagulative, 
and dysregulated cellular responses. This constant source of DAMPs can 
impact immunothrombosis and thrombus formation in multiple ways; 
while DAMPs act on neutrophils to induce formation of NETs, they also 
act on monocytes to induce expression of tissue factor (TF) [159]. 
Moreover, different DAMPs can have different effects on immune and 
non-immune cell subsets, including endothelial cells. For instance, 
HMGB1 has been shown to induce RAGE-dependent cytokine produc-
tion in endothelial cells as well as platelets, leading to barrier dysfunc-
tion and increased coagulation [160–162], while another DAMP, 
S100A9, drives thrombus formation and vascular injury, in mouse 
models [163]. 

Taken together, existing data highlight the impact of DAMPs on 
multiple pathophysiological aspects of SARS-CoV-2 infection and 
emphasize the potential benefits of inhibiting DAMP signaling in severe 
COVID-19 and related disorders (Fig. 2). 

8. Future perspectives 

Impaired immune cell function leading to prolonged uncontrolled 
inflammation is the hallmark of severe COVID-19 pathology. For lack of 
better options, one common strategy used to control ongoing inflam-
mation is administration of broad-spectrum corticosteroids. Although 
these drugs ameliorate clinical symptoms in critically ill patients if 
administered in a timely manner, the resulting immunosuppression can 
lead to an increased risk of infections. These complications necessitate a 
careful weighing of the risk–benefit-ratio and optimization of dose, 
timing, and duration when it comes to administration of steroids. 
Therefore, further research including additional clinical trials will be 
crucial to evaluate the safety and efficacy of broad interventional ther-
apies targeting inflammation in severe COVID-19. 

Like other pathogens, SARS-CoV-2 drives innate immune responses 
not only through generation of PAMPs that activate PRRs, but also 
through the generation of endogenous DAMPs. While DAMPs can have a 
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beneficial effect by contributing to anti-viral inflammatory responses, 
their continuous release perpetuates overaction of innate/adaptive im-
mune cells and cytokine storm, leading to several adverse complications 
such as ARDS, endothelial barrier dysfunction, and increased coagula-
tion. Thus, targeted modulation of DAMP signaling, and associated 
pathway proteins may be an effective tool in modulating the complex 
immunological networks and inflammation associated with severe 
COVID-19. A handful of therapeutics targeting DAMP-mediated 
signaling have been clinically evaluated in COVID-19 patients, with 
promising preliminary outcomes. While their development will require 
additional investigation, targeting DAMPs in COVID-19 and related 
disorders could address the issues associated with broader anti- 
inflammatory approaches. 
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