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Abstract

Objectives: To develop and validate a deep learning algorithm to automatically detect and 

segment an orbital abscess depicted on computed tomography (CT).

Methods: We retrospectively collected orbital CT scans acquired on 67 pediatric subjects 

with a confirmed orbital abscess in the setting of infectious orbital cellulitis. A context-aware 

convolutional neural network (CA-CNN) was developed and trained to automatically segment 

orbital abscess. To reduce the requirement for a large dataset, transfer learning was used by 

leveraging a pre-trained model for CT-based lung segmentation. An ophthalmologist manually 

delineated orbital abscesses depicted on the CT images. The classical U-Net and the CA-CNN 

models with and without transfer learning were trained and tested on the collected dataset using 

the 10-fold cross-validation method. Dice coefficient, Jaccard index, and Hausdorff distance were 

used as performance metrics to assess the agreement between the computerized and manual 

segmentations.

Results: The context-aware U-Net with transfer learning achieved an average Dice coefficient 

and Jaccard index of 0.78±0.12 and 0.65±0.13, which were consistently higher than the classical 

U-Net or the context-aware U-Net without transfer learning (p < 0.01). The average differences of 

the abscess between the computerized results and the experts in terms of volume and Hausdorff 

distance were 0.10±0.11 mL and 1.94±1.21 mm, respectively. The context-aware U-Net detected 

all orbital abscess without false positives.

Conclusions: The deep learning solution demonstrated promising performance in detecting and 

segmenting orbital abscesses on CT images in strong agreement with a human observer.
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I. INTRODUCTION

Pediatric orbital cellulitis is the most common sequela of acute sinusitis [1]. The public 

health impact of orbital cellulitis continues to be substantial. In 2009, orbital complications, 

such as the development of an orbital abscess (OA), accounted for 18,293 inpatient hospital 

stays, $10 million in hospital charges, and a shifting trend toward a higher proportion of 

children undergoing surgical treatment [2]. Its complications can be devastating, with the 

risk of blindness from orbital compartment pressure and central nervous system spread, 

including cavernous sinus thrombosis, meningitis, and intracranial abscess formation [3-7]. 

Examination of a pediatric patient with orbital cellulitis is limited by their age, acute illness, 

and neurological status; therefore, there is a heavy reliance on computed tomography (CT) 

scans to determine the site and extent of infection [8, 9]. Subperiosteal orbital abscess 

(SPOA), a collection of purulence between the periorbita and bone of the adjacent orbit, 

when presenting with visual impairment secondary to elevation in orbital pressure is an 

indication for emergent surgical drainage.

Currently, in clinical practice, there does not appear to be a uniform approach to assess the 

severity and treatment of orbital abscesses in pediatric patients [10, 11]. Clinicians typically 

assess the presence and severity of an orbital abscess by visual inspection and manual 

measurement, which is a subjective process that can lead to different treatment decisions 

between clinicians. An orbital abscess appears as a very low-density region depicting fluid 

and often surrounded by a hyperdense peripheral ring enhancement (Fig. 1), making it 

challenging to visually perceive and differentiate it from surrounding tissues or structures. 

Most retrospective studies unsurprising reported that medically treated patients had smaller 

orbital abscesses compared to surgically treated patients [9, 12-19]. However, size was not 

uniformly quantified across these studies and subjectively or objectively quantified based on 

a clinician’s impression [20], linear dimensions [9, 13, 15, 16], volume using a bounding 

box approach [12, 15, 16, 18], or volume assuming an ellipsoid [13, 14, 17, 19]. The lack 

of a standardized approach to quantify abscess size hinders the scientific evaluation of the 

impact of abscess size on the treatment approach.

The use of artificial intelligence (AI) in the assessment and management of orbital abscesses 

would be a significant step to standardizing abscess assessment. To our knowledge, no one 

has investigated the application of AI to assess abscess severity or for deciding the treatment 

approach. An automated AI approach to detect and quantify an orbital abscess would 

facilitate and perhaps decrease the variability of diagnosing and treating pediatric patients 

with orbital abscesses. As compared with the manual delineation, the use of computerized 

schemes may enable a more accurate, objective, and efficient quantification of an orbital 

abscess and ultimately improve pediatric care. As demonstrated by other investigations 

[21-24], a computer approach may potentially reduce the inter- and intra-reader variability in 

assessing and quantifying diseases.

We developed and validated an artificial intelligence (AI) approach, namely context-aware 

convolutional neural network (CA-CNN), to automate the process of segmenting and 

quantifying orbital abscess features. The underlying idea is motivated by the fact that an 
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orbital abscess typically occurs in the regions between the periorbita and bone of the 

adjacent orbit. To leverage this knowledge, we combined two sets of image patches with 

different resolutions to identify an orbital abscess. One with a lower image resolution but 

a wider field-of-view was used to emphasize and learn the context regions of the orbital 

abscess. The other one with a higher image resolution but a smaller field-of-view was used 

to characterize the details of the orbital abscess. In addition, a pre-trained CNN model for 

lung segmentation was used for transfer learning to alleviate the large data requirement 

of the deep learning technology. The feasibility and performance of this scheme were 

evaluated on a dataset of orbital CT scans acquired on 67 pediatric subjects using the 10-fold 

cross-validation method.

II. MATERIALS AND METHODS

A. The dataset

The dataset included 67 pediatric subjects who were diagnosed with an orbital abscess, 

underwent CT examinations, and treated at the Children’s Hospital of the University of 

Pittsburgh Medical Center (UPMC) from 2005 to 2016 (Table 1). None of the subjects had 

bilateral orbital abscesses. Four had facial trauma or fractures. This study was approved 

by the University of Pittsburgh Institutional Review Board (STUDY20030023). Written 

informed consent was waived because all data were de-identified by an honest broker prior 

to dissemination to the investigators.

The orbital CT examinations were acquired on a CT scanner (LightSpeed VCT, GE 

Healthcare, Waukesha, WI, USA) with the use of radiopaque contrast. Scans were acquired 

using a helical technique at the following parameters: 32×0.625 mm detector configuration, 

0.531 pitch, 120 kVp tube energy, and 105~140 mA tube current. Images were reconstructed 

to encompass the orbit field in a 512×512 pixel matrix. The slice thickness ranged from 

0.625 to 1.25 mm, and the in-plane pixel dimensions ranged from 0.292 to 0.323 mm.

A board-certified, experienced ophthalmologist specializing in orbital surgery reviewed the 

CT scans and manually outlined the orbital abscesses depicted on the CT images in the 

cohort. The ophthalmologist viewed and outlined the entire abscesses on a standard personal 

computer and monitor. The user was able to adjust the magnification and window/level 

settings as necessary. After outlining the abscess on CT images, the outlines were saved 

using in-house software. The user was blind to any information related to the subject (e.g., 

medical intervention or surgical outcome).

B. context-aware convolutional neural network (CA-CNN)

On the basis of the classical U-Net [25, 26], a four-stage context-aware deep learning 

architecture was developed for image segmentation (Fig. 2). This architecture is formed 

by two encoder pathways with progressive down-samplings and one decoder pathway with 

progressive up-sampling. The first encoder pathway accepts a three-dimensional (3-D) sub­

volume image patch with a higher resolution but smaller field-of-view (FOV). The second 

encoder pathway accepts a sub-volume image patch with a lower resolution but larger FOV 

to leverage the knowledge that an orbital abscess typically occurs in the regions between the 
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periorbita and bone of the adjacent orbit. Each stage of the encoder path was composed of 

two consecutive 3×3×3 convolution operations with batch normalization and rectified linear 

unit (ReLu) activation. The neighboring stages were connected by a 2×2×2 down-sampling 

operation. Each stage of the decoder path was composed of two consecutive convolutions 

on the output of the bottleneck layers, and the neighboring stages were connected by 2×2×2 

up-sampling. The initial number of the convolutional filters was set at 32 and increased by 

two times progressively in the following stages. The output layer was activated by a sigmoid 

function to obtain the final predictions of the ROI and its background. Adam optimizer was 

used to update network weights during the training. The soft Dice coefficient was used as 

the loss function (Eq. (1)).

D(p, q) =
2 × ∑i

N pigi

∑i
N pi2 + ∑i

N gi2
(1)

where N is the total number of voxels, pi is the predicted probability of a voxel to be part 

of the regions-of-interest, and gi is the binary value of a voxel that belongs to the manual 

segmentation. The soft Dice coefficient was originally proposed by Milletari et al. [27] to 

establish the balance between foreground and background voxels.

The developed multi-scale architecture enables the network to learn the features at different 

scales and utilize the contextual information to improve the segmentation. However, this 

dual-pathway architecture requires a high computational cost in both memory and efficiency. 

To alleviate this problem, bottleneck layers were used to reduce the number of feature 

parameters.

The training and internal validation subgroups were used to train the CNN architecture by 

performing the following procedures:

(1) An entire CT scan cannot be processed by the GPU for deep learning due to the memory 

limit of the graphical processing unit (GPU). As a solution, the volumetric CT scans were 

subdivided into a number of three-dimensional (3D) patches (e.g., 96×96×96 voxels). The 

CT images were made isotropic with each voxel having a uniform dimension of 0.5 mm3. 

In the implementation, we randomly sampled the 3D patches on the CT images. The patches 

with low and high resolutions were centered on the same locations. Since the patches are 

randomly sampled from the 3D CT images, the patches with low resolution do not always 

fully enclose the regions between the periorbita and bone of the adjacent orbit. This typically 

happens when the patches with high resolution are located around the abscess.

(2) A pre-trained model for CT-based lung segmentation was used for transfer learning. This 

pre-trained model was based on the developed context-aware U-Net and trained on a dataset 

consisting of more than 100 chest CT scans acquired using different image protocols [28]. 

Transfer learning can improve the learning efficiency and reduce the requirement for a large 

and diverse dataset [29-31].

(3) The orbital CT images were augmented on the fly by randomly performing various 

affine transformation and image filtering operations alone and in combination. The affine 
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transformations included rotation, translation, flip, and scaling. The image filtering included 

image smoothing, Gaussian noise addition, and intensity shifts. These image augmentations 

increased the diversity of the images by generating a large number of variations of the 

original images. The usage of the data augmentation can not only avoid overfitting but also 

improve the robustness of the trained models [32, 33]. The on-the-fly data augmentation 

will automatically assure the training performance. If the performance of a network can be 

improved further via data augmentation, this improvement will be reflected in a decreasing 

validation loss in the following epochs. A detailed description and its impact on the 

performance of the trained models can be found in a survey [34].

(4) During the training, 64 volumetric patches were randomly from the foreground and the 

background of each CT scan in one training step. The initial learning rate was set at 0.001. 

If the validation performance did not increase in two epochs, the learning rate would be 

reduced by a factor of 0.5. The training would stop if the validation performance of the 

current epoch did not improve compared to the previous 10 epochs.

C. Performance evaluation

The 10-fold cross-validation method was used to train and evaluate the performance of 

the developed models. We firstly shuffled the dataset (n=67) and then split them into 10 

folds, among which eight folds had seven cases, one fold had six cases, and one fold had 5 

cases. When training the models, we chose eight folds for training, one fold for the interval 

validation, and one fold for the independent test. We repeated this procedure ten times so 

that each sample was observed in the training and testing.

The performance of the CNN models to identify orbital abscesses was compared to the 

manually outlined regions using the independent test set. A threshold of 0.5 was used to 

binarize the computerized results. The regular Dice coefficient (Eq. 2), Jaccard index (JI) 

(Eq. 3), and the Hausdorff distance (Eq. 4) were computed as the performance metrics to 

assess the agreement between the computer and the human observer.

D(A, B) = 2 ∣ A ∣ ⋅ ∣ B ∣
∣ A ∣ + ∣ B ∣ (2)

J(A, B) = ∣ A ∩ B ∣
∣ A ∪ B ∣ (3)

H(A, B) = mina ∈ A{minb ∈ B{d(a, b)}} (4)

where A and B are two different regions (i.e., the outlines by the computer and the human 

observer).

We evaluated the impact of transfer learning by training the context-aware U-Net 

architecture with and without the pre-trained model and comparing their performance on 

the same test sets. The segmentation performance of the context-aware U-Net architecture 

was also compared to the classical U-Net architecture. For a fair comparison, we trained the 

three models using the same set of parameters (e.g., learning rate and optimizer). A paired­
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samples t-test was performed to assess the performance of the segmentation approaches. A 

p-value of less than 0.05 was considered statistically significant. IBM SPSS v14 was used 

for the statistical analyses.

III. RESULTS

The agreement for orbital abscesses segmentation between manual segmentation and the 

computer methods was significantly stronger for the context-aware U-Net with transfer 

learning compared to the context-aware without transfer learning or the classical U-Net 

(Table 2 and Fig. 3). Several examples were randomly selected and presented in Fig.3 

and Fig. 4 to visually demonstrate the segmentation performance of the developed CNN 

models. Visual inspection revealed a reasonable agreement between the computer and 

manual segmentation (Figs. 3-4). The average Dice coefficient, Jaccard index, and Hausdorff 

distance were 0.78±0.12, 0.65±0.13, and 1.94±1.21 mm, respectively, for comparing the 

context-aware U-Net algorithm segmentation to the manual segmentation. Among the 

three models, the context-aware U-Net with the transfer learning demonstrated the best 

performance (p<0.001), while the performance of the context-aware U-Net without transfer 

learning was better than the classical U-Net (p=0.036) (Table 2). The context-aware U-Net 

detected all orbital abscesses regardless of the utilization of transfer learning or not. In 

contrast, the classical U-Net missed the detection of a small orbital abscess (Fig. 5).

The average orbital abscess volumes computed from the manual outlines were 0.65±0.49 

mL with a range from 0.05 mL to 1.4 mL. The average orbital abscess volume computed 

by the context-aware U-Net with context-aware learning was 0.59±0.51 mL with a range 

from 0.05 mL to 2.25 mL, as compared with 0.61±0.52 mL with a range from 0.01 mL 

to 2.2 mL for the CA-CNN without transfer learning and 0.52±0.47 mL with a range from 

0.01 mL to 2.2 mL for the classical U-Net. The absolute volume differences between the 

manual outlines and the CA-CNN algorithm were 0.10±0.11 mL. These differences were 

smaller than the CA-CNN without transfer learning (0.15±0.15 mL), and the classical U-Net 

(0.17±0.18 mL).

The training time when transfer learning was implemented was reduced from ~15 hours 

to ~9 hours compared to without transfer learning on our workstation (Intel Xeon CPU 

3.60GHz, Nvidia Titan Xp 12GB). It took less than 30 seconds to process an orbital CT scan 

and identify the orbital abscesses.

IV. DISCUSSION

Pediatric patients presenting with signs and symptoms of orbital cellulitis need an immediate 

and thorough evaluation. Once a diagnosis of an orbital abscess is confirmed, the decision to 

treat the patient with a medical or surgical approach is critical and extremely time-sensitive. 

These patients often require continuous monitoring, especially if medical treatment is 

initiated. To improve and possibly expedite the treatment decision, investigators have 

recommended including abscess size in the decision-making process. However, there are 

challenges and variations related to timely abscess measurement. Manually outlining the 

abscess on all the images depicting the abscess can be extremely time-consuming and 
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variable across clinicians. To our knowledge, no investigative effort has been made to 

automate this process.

Our AI approach to automatically segment and quantify an orbital abscess in pediatric 

patients demonstrated very promising results. The results suggested that deep learning 

technology can be utilized to address the challenging problem. The unique characteristic 

of our approach is the utilization of contextual information and transfer learning. The 

former explores the contextual information to improve the segmentation, and the latter 

significantly reduces the requirement of a large dataset and improves training efficiency. 

This AI approach makes it relatively straightforward to quantify the features (e.g., volume 

and density) of an orbital abscess. To our knowledge, this is the first investigation that used 

AI to automate the segmentation and quantification of an orbital abscess depicted on CT 

images.

In our cohort (n=67), the orbital abscess volumes measured by the manual outline ranged 

from 0.045 mL to 2.69 mL with an average 0.64±0.63 mL. In the independent test set, 

the difference between the manual outline and the best performing model was 0.10±0.11 

mL. The average Dice coefficient, Jaccard index, and Hausdorff distance were 0.78±0.12, 

0.65±0.13, and 1.94±1.21 mm, respectively. As demonstrated by the average Hausdorff 

distance, which measures how far two outlines are from each other, there was a reasonable 

agreement between the computerized outlines and the manual outlines. Notably, the 

relatively small dimension of an orbital abscess could result in lower than expected Dice 

coefficients and Jaccard indices, because a small difference between the computer and 

manual segmentations may lead to obviously low values in the Dice coefficient and the 

Jaccard index. Given the fuzzy appearance and small size of an orbital abscess, we believe 

that the underlying differences between the manual and automated segmentation are limited 

and most likely will not significantly affect the clinical implementation of the developed 

algorithm.

The models based on the context-aware U-Net successfully identified all of the orbital 

abscesses without any false positive detection. In contrast, the classical U-Net failed to 

detect a small orbital abscess, which appeared as a region with relatively low contrast 

on the CT images (Fig. 5). Hence, the context-aware architecture can somewhat improve 

the performance of the CNN-based segmentation. As our experiments demonstrated, the 

utilization of the transfer learning technology significantly improved the performance of the 

context-aware U-Net, especially when the size of the dataset for machine learning is limited. 

Notably, the utilization of transfer learning cannot guarantee the best performance of a CNN 

model. Since CNN-based deep learning is data-hungry, we believe that the segmentation 

performance can be further improved when additional data is available.

In transfer learning, a pre-trained model from a different task is used as the starting point 

of the training for the problem under investigation. Typically, the more related the tasks, 

the easier it is to transfer or cross-utilize the knowledge. If the network architecture of 

a pre-trained model is the same as the network architecture of the current problem, the 

pre-trained model can be directly applied as the starting point of the training on the new 

dataset. Otherwise, we may need to extract the first layers in the pre-trained model and 
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keep the trained weight and then add additional layers specific to the new CNN model. 

If the network architectures for two tasks are completely different, it is unreasonable to 

use transfer. Since the weights of many layers in the pre-trained model are learned from a 

previous task and already available, the training performance, including the accuracy and 

efficiency, can be improved significantly even when the target task has limited data for 

machine learning. In our implementation, we trained the developed context-aware U-Net 

using a dataset from a different task described in [28]. The pre-trained model was used 

directly as the starting point of the training for segmenting abscess.

We are aware of the limitations with this study. First, the orbital CT scans were 

retrospectively collected from a single institution and acquired using similar CT protocols. 

The extensive image augmentation implemented during the training process may have 

addressed some of the differences in image acquisition protocols. Second, the dataset was 

small for both training and validation. At this moment, it is difficult to collect a large dataset 

for this specific problem. Hence, we used transfer learning to improve the performance 

and the 10-fold cross-validation method to evaluate and compare the performance of the 

trained models. We believe that our preliminary results demonstrate the potential of deep 

learning technology to assess important clinical features of an orbital abscess. Third, it is 

always desirable to develop novel CNN architectures to maximize the performance with a 

limited dataset. Since no investigative effort has been made to automatically identify the 

orbital abscess depicted on CT images, it is prudent to first demonstrate the feasibility in 

this regard, especially given the very fuzzy appearance of an orbital abscess. Finally, we did 

not assess the clinical impact of the difference in orbital abscess measurements between the 

manual and computer segmentation. At this time, we did not evaluate intra- and inter-reader 

agreement because we are in the development stage and trained on the output of a single 

reader. Our primary focus in this study was to develop and validate the potential of the deep 

learning algorithm for automated segmentation of orbital abscesses in a small dataset.

V. CONCLUSION

We presented an artificial intelligence approach to automate the segmentation and 

quantification of orbital abscess in pediatric patients depicted on CT images. We used 

a pre-trained lung segmentation model to implement transfer learning in the CNN 

architecture. Our abscess segmentation results demonstrated the feasibility and advantages 

of the proposed CNN architecture for providing a clinically useful assessment of patients 

presenting with an orbital abscess.
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Fig 1. 
An example illustrating the fuzzy appearance of an orbital abscess depicted on CT images. 

Red arrows indicate the orbital abscess. Green and yellow arrows indicate regions that 

have a similar appearance but are not orbital abscesses. (A) and (B) showed the images at 

different window/level values.
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Fig. 2: 
The architecture of the developed context-aware U-Net.
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Fig. 3. 
Some examples with various sizes of orbital abscesses showing good agreement between the 

manual outlines and the results obtained by the context-aware U-Net model with transfer 

learning. (a) the original CT images, (b) the manual outlines by the ophthalmologist, (c) 

the segmentations by the classical U-Net model, (d) the segmentations by the context-aware 

U-Net model without transfer learning, and (e) the segmentations by the context-aware 

U-Net model with transfer learning.
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Fig. 4. 
Some examples with moderate (row: 1-3) and poor (row: 4-5) agreement between the 

manual outlines and the results by the context-aware U-Net model with transfer learning. (a) 

the original CT image, (b) the manual outlines by the ophthalmologist, (c) the segmentations 

by the classical U-Net model, (d) the segmentations by the context-aware U-Net model 

without transfer learning, and (e) the segmentations by the context-aware U-Net model with 

transfer learning.
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Fig. 5. 
The case with a small orbital abscess missed by the classical U-Net model but well 

segmented by the context-aware U-Net. (a) the original CT image, (b) the manual outline 

by the ophthalmologist, (c) the segmentation (no result) by the classical U-Net model, 

(d) the segmentation by context-aware U-Net model without transfer learning, and (e) the 

segmentation by the context-aware U-Net model with transfer learning.
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Table 1:

Subject demographics and subgroups (n=67)

Age, year (SD) 6.0±3.98

Male, n (%) 54 (80.6)

Laterality

   Right, n (%) 32 (47.8)

   Left, n (%) 35 (52.2)

   Bilateral, n (%) 0 (0)

Abscess location (AL medial) (%) 63 (94.0)

Facial trauma / fractures, n (%) 4 (6.0)

Hospitalization, days 4.0±1.44

Abbreviations: SD – standard deviation
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Table 2.

The performance of the CNN models in identifying orbital abscess depicted on CT images based on the 

10-fold cross-validation method.

Case Dice Coefficient Jaccard Index Hausdorff distance Volume difference

M-1 0.78±0.12 0.65±0.13 1.94±1.21 mm 0.10±0.11 mL

M-2 0.63±0.19 0.47±0.18 3.11±1.40 mm 0.15±0.15 mL

M-3 0.61±0.21 0.48±0.19 3.21±1.66 mm 0.17±0.18 mL

M-1: the context-aware U-Net with transfer learning

M-2: the context-aware U-Net without transfer learning

M-3: the classical U-Net. (The missed orbital abscess was not included in the computations)

Med Phys. Author manuscript; available in PMC 2021 November 18.


	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	The dataset
	context-aware convolutional neural network (CA-CNN)
	Performance evaluation

	RESULTS
	DISCUSSION
	CONCLUSION
	References
	Fig 1.
	Fig. 2:
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Table 1:
	Table 2.

