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Abstract

Many implantable electrode arrays exist for the purpose of stimulating or recording electrical 

activity in brain, spinal, or peripheral nerve tissue, however most of these devices are constructed 

from materials that are mechanically rigid. A growing body of evidence suggests that the chronic 

presence of these rigid probes in the neural tissue causes a significant immune response and 

glial encapsulation of the probes, which in turn leads to gradual increase in distance between 

the electrodes and surrounding neurons. In recording electrodes, the consequence is the loss of 

signal quality and, therefore, the inability to collect electrophysiological recordings long term. 

In stimulation electrodes, higher current injection is required to achieve a comparable response 

which can lead to tissue and electrode damage. To minimize the impact of the immune response, 

flexible neural probes constructed with softer materials have been developed. These flexible 

probes, however, are often not strong enough to be inserted on their own into the tissue, and 

instead fail via mechanical buckling of the shank under the force of insertion. Several strategies 

have been developed to allow the insertion of flexible probes while minimizing tissue damage. It is 

critical to keep these strategies in mind during probe design in order to ensure successful surgical 

placement. In this review, existing insertion strategies will be presented and evaluated with respect 

to surgical difficulty, immune response, ability to reach the target tissue, and overall limitations of 

the technique. Overall, the majority of these insertion techniques have only been evaluated for the 

insertion of a single probe and do not quantify the accuracy of probe placement. More work needs 

to be performed to evaluate and optimize insertion methods for accurate placement of devices and 

for devices with multiple probes.
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1. Introduction

Over the past several decades, brain–machine interfaces (BMIs), which communicate with 

the brain via electrical activity, have been integral in advancing knowledge of the brain’s 

functions. A variety of BMIs have been developed to interface with the brain in different 
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ways (see figure 1). As surgical technique has advanced, BMIs have been able to interface 

more closely with brain tissue to provide greater clinical benefits and to answer more 

complex research questions.

The earliest reports of electrical activity in the brain date back to the 1870s when several 

groups noted responses during electrical stimulation of exposed brain tissue in various 

animal models. This research inspired the work of Hans Berger who coined the term 

electroencephalogram (EEG) in 1929 after recording electrical activity in the human brain 

through the scalp and skull. Ten years later, Wilder Penfield and Herbert Jasper performed 

the first ‘invasive EEG’ by placing electrodes directly on the brain surface, which would 

later be termed electrocorticography (ECoG). In 1949, Robert Hayne and Russel Meyers 

implanted a plastic rod with ring-shaped electrodes around the circumference into the 

brain tissue, which lead to the development of stereo-electroencephalography (SEEG) and 

deep brain stimulation (DBS) electrodes—the most commonly used types of penetrating 

electrodes today [1–3]. Shortly after the development of modern SEEG and DBS electrodes, 

the first reports of spinal cord stimulation and peripheral nerve stimulation (via electrodes 

placed on the surface of the tissue) were published in 1967 [4].

In parallel to the development of clinical electrode arrays, researchers employed electrodes 

in various animal models for electrophysiological recording and stimulation. However, due 

to the relatively small size of common animal models in nervous system research (see figure 

2 for brain sizes of common animal models), separate probes were concurrently developed 

for clinical human use (such as SEEG and DBS probes, with diameters ranging from 0.86 

to 1.27 mm and electrodes along a 10–20 mm length of the probe [5, 6]) and for animal 

research use (such as microwires, with diameters ranging from 25 to 80 μm and a single 

electrode site at the tip [7–11]).

Beginning in the 1950s, researchers began using metallic microwires (micron-scale insulated 

wires with an exposed tip) for single unit recording (recording from a single neuron). 

In order to record from multiple sites at once in the same region, arrays of closely­

spaced microwires were assembled and implanted together. This need for higher density 

recording led to the invention of multisite silicon arrays (planar, silicon arrays with multiple 

thin film electrodes patterned along the length of each probe) in 1985 and the Utah 

array (a microfabricated array of needle-like electrodes) in 1991 [18, 19]. Today, many 

penetrating arrays are available commercially for use in the brain, spinal cord, and peripheral 

nerves. The most sophisticated of these are silicon-based probe assemblies that integrate 

microelectronics, such as the Utah [20] and Neuronexus [21] array assemblies.

The body’s immune response (discussed later in this review) poses challenges for implanted 

electrode design and their ability to achieve long term recording. After any foreign body is 

inserted into tissue, a sheath of scar tissue forms around the foreign material over the course 

of several weeks. The scar tissue increases the distance between the electrode sites and the 

neural tissue, making it more difficult to effectively record or efficiently stimulate. Recently, 

to mitigate the effect of this immune response and enable a more stable electrode-tissue 

interface and distance over longer periods of time, the focus has turned to microfabricated 

multisite arrays fabricated from softer, more flexible supporting materials, such as polymers, 
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with mechanical properties more closely matching that of neural tissue. Several groups 

have reviewed the evolution of intracortical [18, 22, 23], subdural [24] and penetrating [25] 

spinal, and intrafascicular [26, 27] probes over time and emphasized the advantages of using 

flexible materials [18, 22, 23].

The implementation of flexible electrodes, however, faces a more pronounced challenge 

during the surgical insertion procedure. Flexibility may be gained by using small diameter 

fibers, thinning the supporting silicon in a multisite array, or using a soft polymer material 

to construct a probe. In particular, flexible polymer probes tend to lack the axial strength 

to resist mechanical buckling during insertion into tissue, making it difficult to reliably 

implant them to the intended target. This has prompted the development of many insertion 

techniques and strategies. The most commonly used insertion methods for flexible probes 

are discussed in this review. An overview of rigid clinical and research probes is also 

provided in the following section as a reference to compare the difficulty of inserting 

flexible probes and to provide examples of potential clinical and research applications.

2. Current penetrating clinical and research probes

To place the insertion challenges associated with flexible probes into context, methods to 

surgically place rigid penetrating probes are first presented. Although the major focus of this 

article is on flexible devices used for research purposes, rigid clinical and research probes 

are included in this section to provide historical context and for comparison. A summary of 

rigid clinical and research probes is provided in table 1. This section includes rigid probes 

with larger electrodes (millimeter scale and larger) and microelectrodes (micron scale and 

smaller). This brief background provides a foundation for the discussion of flexible probes 

later in this review.

2.1. Stereoelectroencephalography and deep brain stimulation probes

SEEG and DBS probes (figure 3) are long, cylindrical tubes with an outer diameter of 

approximately 0.86–1.27 mm [5, 6]. The leads typically have 4–10 ring-shaped electrodes 

wrapping around the outer diameter of the lead with a height of 1.3–2.5 mm [6, 29, 

32]. Some SEEG probes also contain microelectrodes either on the tip of the probe or 

radially spaced around the body of the probe to allow for more accurate spatial mapping 

of electrophysiological signals [29]. Most SEEG and DBS probes are made of platinum or 

platinum/iridium wires surrounded by a non-conductive polymeric insulation [29, 64, 65]. 

Several SEEG and DBS devices are clinically approved for the diagnosis and treatment of 

epilepsy (the neuropace system for epilepsy treatment is shown in figure 4) and various 

movement disorders such as Parkinson’s disease and essential tremor [5, 29, 32, 33, 66, 67]. 

SEEG/DBS probes are also regularly used in research settings for diagnosis and treatment 

of other neurological conditions [64, 65, 68]. Because of their relatively large size, these 

devices are generally only used in humans, however a scaled down version of the device has 

been tested in non-human primates (NHP) [33]. The large size also causes the displacement 

of a large amount of tissue which has been found to cause irreversible damage to the brain 

tissue [64].
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To insert SEEG or DBS leads, the patient’s head is mounted in a stereotactic frame and 

aligned with the pre-operative magnetic resonance imaging (MRI) and/or computerized 

tomography (CT) scans (if available). A burr hole is drilled above the implantation site, 

and the dura is incised [5, 66, 67]. The lead is then aligned using the frame and inserted 

into the tissue manually [5, 6, 33, 64, 68]. In DBS surgeries, basic wire electrodes (with 

a diameter of 0.5–1 mm and a single electrode at the tip) are sometimes inserted prior to 

inserting the DBS probe to determine the best possible implant location [70, 71]. Recently, 

frameless insertion techniques have been evaluated, however these are not as commonly 

used in clinical settings [5, 67]. The overall size of the probe and stiffness of the wires 

makes the probe rigid enough to directly penetrate the tissue without buckling, however the 

polymeric insulation does allow the probe to flex when sufficient force is applied. Rigid 

materials can be inserted with the probe to ensure straight insertion and placement at the 

desired location. One such method is when a rigid cannula is inserted up to (but not through) 

the target region and the probe is advanced through the cannula. Once the probe reaches 

its target, the cannula is removed [66]. Alternately, the probe can contain a hollow center 

inside which a rigid stylet is placed during insertion. The stylet is then removed once the 

probe is in place [65]. Another common method is to insert a rigid stylet up to the target 

region (creating a ‘track’ from the insertion site to the target), remove it, then insert the 

SEEG or DBS probe along the same track [5]. These insertion techniques are able to achieve 

a location accuracy (distance between the implanted location and planned location) between 

1.6 and 5.0 mm (mean values, with full range of 0.9–6.9 mm) [5, 66, 67].

2.2. Microwires

Microwires (figures 5 and 6) are long cylindrical wires, but with a much smaller outer 

diameter (as compared to SEEG and DBS probes) ranging from 25 to 80 μm [7–11]. Each 

microwire is a single, insulated wire (only one electrode per wire) with an exposed tip 

for stimulation or recording. Arrays of microwires can be assembled for higher density 

recording (figure 7) [8]. Most commonly, the wires are made of tungsten [7, 46], platinum 

[9], or platinum/iridium [8, 46] with an insulating coating of polyimide [7] or parylene C 

[8, 9]. The small exposed tip is sized for recording single unit signals [19]. These devices 

(single microwires and arrays of microwires) can be used in larger mammals, NHP, and 

in rodents because of their small size [7, 8, 34]. Currently, no commercial microwires are 

approved for human use, however there are larger wire electrodes (which have a similar 

architecture to microwires with a larger diameter of 0.5–1 mm) that are approved and often 

used in DBS surgeries to determine the optimal location for DBS probes [70, 71]. As 

compared to SEEG/DBS probes, the smaller size of microwires displaces a smaller amount 

of tissue, reducing the accompanying immune response [46].

Early researchers inserted microwires in the same way as SEEG/DBS leads (manual 

insertion with or without a stereotactic frame) [8]. Today, this method is still in use, 

however they are also often inserted with a motorized insertion tool mounted to a frame 

[7]. Alternately, insertion tools or other methods used for flexible arrays (discussed later in 

this review) can be used with finer, more flexible microwires [9, 35]. In some cases, the dura 

is incised or removed prior to inserting the microwire [7, 8, 35], however some groups have 

had success inserting microwires through the intact dura [7, 9].
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2.3. Carbon fibers

Carbon fibers (figures 8 and 9) are very similar in shape, construction, and function to 

microwires. They are small, cylindrical, fibers with an exposed tip ranging from 3.5 to 40 

μm in diameter, usually coated in glass, parylene C, or another insulating polymer. Each 

fiber contains only a single electrode sized for recording single units [35–40, 72]. As with 

microwires, arrays of carbon fibers can be used for high density recording (figure 10) [35, 

72]. Carbon fibers are primarily used in rodents due to their size.

As with microwires, carbon fibers can be inserted manually or with a motorized drive via a 

stereotactic frame, or by using other insertion methods commonly used for flexible probes 

[35, 38, 40]. Due to the smaller size of carbon fibers, the dura is generally incised or 

removed prior to insertion to prevent buckling [35, 39].

2.4. Utah arrays

Utah arrays (figures 11 and 12) are arrays of up to 256 needle-like silicon electrodes on a 

single rigid platform [20]. Each electrode shank is approximately 80 μm in diameter at the 

base, tapered down to a point with a single electrode at its tip. The overall platform for the 

most commonly used array (100 electrodes) is 4.2 × 4.2 mm [43, 44]. The electrodes are 

sized for single unit recording. Utah arrays are most commonly used in large mammals and 

NHP [20, 43], although a scaled down version of the device (with fewer electrodes) can be 

used in rodents [45]. A fully packaged device consisting of a Utah array, cable (figure 13), 

and skull-mounted connector called the Neuroport array is approved for human use by the 

FDA as an investigational device [20, 73]. Although each electrode shank is relatively small 

(as compared to other clinical devices), the shanks are closely grouped together, so the initial 

immune response is increased compared to single wires (as evidenced by steep impedance 

spikes in the first few days following implantation and a slow impedance rise starting 1 week 

post-implant). Although the impedance is higher for Utah arrays as compared to microwires 

(indicating a higher degree of glial encapsulation), the signal to noise ratio of recordings for 

the two types of probes is comparable over time [10].

Unlike the other commonly used clinical arrays, the Utah array has a pneumatic insertion 

tool which inserts the device into the tissue at a high speed (8–10 m s−1 [10, 76], as 

compared to 50–400 μm s−1 for microwires [7, 9], 50–100 μm s−1 for carbon fibers [35], and 

<10 μm s−1 for multisite silicon probes [47]) after removing the dura above the implantation 

site. This has been shown to reduce tissue damage (as compared to slow insertion) in 

Utah arrays because each electrode can slice through the tissue, rather than dimpling and 

compressing it [43, 44].

2.5. Multisite silicon arrays

Multisite silicon arrays (figure 14) are planar probes built on a silicon backbone. Probe 

designs can vary widely, however, commonly reported features are multiple electrodes 

per shank ranging from 10 to 30 μm in diameter and an overall cross-sectional size of 

approximately 120–200 μm wide by 15–50 μm thick [10, 19, 21, 46–49] with either 

rectangular or ovular cross sections. At this thickness, the silicon probes can become 

slightly flexible, but are generally stiff enough to be directly inserted without buckling. The 
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electrodes are usually sized for recording single unit signals [19]. Multisite silicon probes 

have been used in rodents, large mammals, and NHP, with no devices currently approved for 

human use [48, 49, 77]. The probes are slightly larger than microwires and can have several 

sharp edges, leading to a slightly increased immune response [46]. In addition, if arrays of 

probes are inserted together (as is often done to achieve high density recording—see figures 

15 and 16), the immune response is greater due to the close proximity of multiple probes, 

but the signal to noise ratio remains relatively constant over time [10].

Multisite silicon devices can be inserted using a stereotactic stage with manual insertion. 

Alternately, devices can be manually inserted using forceps for less accurate placement. In 

most cases, the dura is incised or removed prior to insertion of the probe [49].

2.6. Neural dust

Neural dust is a recent development in the field of neural recording which consists of 

three parts: free-floating wireless sensor ‘motes’ which are implanted into and record from 

tissue, a subdural transceiver which communicates with the sensor motes, and a wireless 

receiver which receives data from the transceiver (see figure 17). The theoretical size of the 

sensor motes should be approximately 10–100 μm cubes [51, 52], however all published 

experimental devices are larger (0.8 × 1 × 3 mm, for example—see figure 18), with 

electrodes sized for single unit recording [53]. Because these devices are relatively new, they 

have only been implanted in the peripheral nerves of rodents thus far by incising the skin 

and manually placing the dust mote in contact with the nerve [53]. The planned insertion 

technique for the smaller, theoretical neural dust is via microsurgical techniques, such as 

injection through a needle [51].

3. Tissue response

3.1. Acute response

As a probe is inserted into brain tissue, it causes damage to tissue along and adjacent to 

the insertion path, including capillaries, extracellular matrix, glial cells, and neurons, which 

triggers the body’s wound healing response. Erythrocytes, platelets, and clotting factors 

are released and the complement cascade is activated. This leads to the recruitment of 

macrophages to remove any excess fluid or debris and aims to rebuild the damaged tissue. 

At the same time, cytokines and neurotoxic free radicals are released in an attempt to 

degrade the probe. This collective immune activity creates a region of increased pressure and 

fluid build-up around the implant which persists for 6–8 d [23, 78]. The magnitude of this 

response is impacted by several aspects of the probe design, such as the size, shape, and 

whether or not it is tethered to the skull. In devices with larger probes, sharper edges (as are 

present in some planar silicon probes), and/or a rigid connection to the skull, the immune 

response is more severe [46, 79]. In addition, the immune response is generally more severe 

if inserting a probe into a region with large blood vessels (>5 μm diameter) as compared to a 

region without large vessels [80].

The overall magnitude of this acute immune response in turn impacts the magnitude of the 

chronic response [23]. As such, a smaller, less invasive insertion technique should lead to 
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reduced acute and chronic inflammation. Additionally, studies have shown that, when probes 

are inserted and quickly removed (a stab wound), brain tissue will heal in the absence of a 

foreign body and the probe tracks are not visible via histology [23]. This suggests that the 

continued presence of an implant within the tissue has a significant impact on the resulting 

tissue response.

3.2. Chronic response

After the initial 6–8 d acute tissue response, chronic effects begin to take place. These are 

in part attributed to the large difference in mechanical properties between the probe and 

the brain tissue during normal brain movement (such as occurs during breathing, blood 

pumping, or walking) with an increased effect when the device is tethered to the skull [23, 

49, 78]. The Young’s modulus (which describes the mechanical stiffness) of brain tissue and 

most probe materials differ by many orders of magnitude (see figure 19). The presence of 

a foreign body activates the body’s immune response, and the stiffness mismatch amplifies 

it, although the foreign body response can be mediated by using a probe with a small 

cross-section, which produces a more flexible probe (see equation (2)). Initially, activated 

microglia, which modulate the immune response, and astrocytes, which later form a glial 

scar, travel to the probe. When macrophages cannot degrade the probe (during the acute 

response), the astrocytes are recruited to wall off the implant and a glial scar forms around 

the probe. This glial sheath forms around 6–10 weeks after insertion and has a typical 

thickness of 50–100 μm. The formation of the glial sheath increases the distance between the 

probe and the target tissue, thus increasing the impedance of the electrode-tissue interface 

and leading to signal degradation [23, 78]. As is the case with the acute response, the 

chronic response is less severe when using a probe with a small cross-section or a small 

Young’s modulus (both producing a more flexible probe), a probe that is not rigidly attached 

to the skull, and/or a probe with soft (non-sharp) edges [46].

In addition to the these acute and chronic responses, micromotion of the probe relative to 

the brain (millimeter-scale motion in the brain caused by things such as walking, breathing, 

and pulsing of blood in vessels) continuously aggravates the device-tissue interface, causing 

repeated injuries to the tissue and leading to a continuous immune response that may 

result in a thicker glial scar [100, 101]. The thickness of the glial scar resulting from this 

micromotion is directly related to the mass of the implant (larger mass yields a thicker scar) 

because heavier implants experience greater inertial forces during motion [102]. In addition, 

the glial scar is more severe when using materials that are much harder than brain tissue 

(materials with a higher Young’s modulus) [100, 101]. These studies indicate that a lighter, 

softer, and more flexible implant which more closely matches the mechanical properties of 

the tissue is preferable for mitigating the immune response and enabling long term use.

3.3. Evaluation of immune response

The foreign body response is primarily evaluated using in vivo implantation and subsequent 

histology. After fixation, the tissues are sliced and stained using standard histology dyes to 

observe cell morphology, population, types, and location with respect to the implant track. In 

some cases, immunohistochemistry is used as a type-specific cell staining technique to help 

observe the reaction to the foreign body [23]. One of the main limitations of histological 
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evaluation is that often removal of the device, especially if it is constructed of stiff materials 

that cannot be sectioned, is required prior to slicing the tissue. This can lead to some shifting 

of the tissue and inaccurate information about the tissue response around the probe.

Other methods have been used to evaluate tissue response, such as two-photon microscopy 

which can image the cellular activity around an implanted probe in vivo and provide a better 

description of how the immune response progresses over time [63, 79, 80, 103]. In addition, 

two-photon microscopy can be used to plan probe insertions to avoid blood vessels and 

lessen the immune response during and after insertion [23, 80]. Confocal microscopy has 

been used to image both the cell volume around the probe during insertion [104, 105] and 

prepared histology samples [10, 79, 106–108] to provide information on the 3D cellular 

response around the inserted probe. A tissue processing method called CLARITY has been 

used to produce optically transparent tissue and allow for more detailed imaging, however 

this method causes expansion of the tissue, making it impossible to preserve the device/

tissue interface [109].

4. Materials and form factor of flexible arrays

The rigid penetrating probes discussed thus far in this review are made of materials having 

Young’s moduli above approximately 50 GPa (e.g. silicon, platinum, carbon fiber, glass—

see table 2 and figure 19). This is significantly higher than the modulus of human brain 

tissue (0.6–15.2 kPa for brain, 31.5–61.5 MPa for dura), which can contribute to the overall 

immune response [84–87, 102].

In order to reduce the severity and size of the glial encapsulation and allow for long 

term recording, flexible probe materials (with moduli below approximately 10 GPa) are 

used. These flexible probes are realized using thin film fabrication techniques which allows 

for complex patterning of thin metal films on flexible substrates, resulting in a flexible 

device in the shape of a beam (length > width > thickness) that can support lateral and 

vertical bending as well as some torsional bending. The most commonly used substrate 

materials are parylene C (poly (chloro-p-xylylene)), polyimide, and polydimethylsiloxane 

(see table 2 and figure 19). Other flexible materials such as liquid crystal polymer (LCP), 

SU-8 photoresist, benzocyclobutene (BCB), and parylene HT (poly[(2,3,5,6-tetrafluoro-1,4­

phenylene) (1,1,2,2-tetrafluoro-1,2-ethanediyl)]) have also been used, but remain less 

common.

The majority of flexible and rigid penetrating probes share a similar overall form factor of 

a rectangular cross section (1–30 μm thick by 10–554 μm wide) with a pointed tip on one 

end (for insertion into tissue) and an interface with recording or stimulation electronics on 

the other end. Probe lengths range from 0.7 to 15 mm, and electrode sizes range from 10 

to 55 μm in diameter [54, 55, 57–63]. Typical dimensions of flexible probes compared to 

rigid clinical and research probes is summarized in table 1. There are some alternate probe 

geometries which are used less frequently, such as neural threads and meshes. These devices 

generally have a smaller cross section (such as 0.5 μm thick by 5–20 μm wide [110, 111]) 

and are constructed in single threads or cross-hatched meshes.
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5. Implantation of flexible probes

Similar to most other probe types, the implantation of flexible probes begins with the 

removal of the skull above the insertion site (by creating a burr hole or a craniotomy). In 

most cases, the dura is incised or removed prior to inserting the probe [8, 35, 44, 49, 54, 57, 

59, 106, 112–122], however some insertion techniques allow insertion of a probe through the 

dura [9, 60, 79, 123–126]. Some probes also require the removal of the pia if the buckling 

force of the probe is sufficiently small [55, 79, 112, 127–129], especially in larger animal 

models (which generally have thicker and stiffer pia than smaller animals) [130]. Most 

polymer probes cannot be inserted without additional mechanical reinforcement of some 

kind because they are too flexible and will buckle before they penetrate the brain tissue. 

Once the probe is inserted within the brain, it must travel to the targeted region. Accurate 

insertion of longer, thinner, and narrower probes can be challenging. The majority of flexible 

probes have been developed for use in small animal models and the insertion depth rarely 

exceeds 5 mm. Longer flexible probes suitable for accessing deeper brain regions or for 

use in larger animals can only be successful if they are accompanied by methods or tools 

to achieve accurate implantation. The mechanics governing insertion are examined below, 

followed by a discussion of different methods to achieve implantation of flexible probes.

The success of the initial insertion of the probe into the brain is governed by the buckling 

equation (1) which captures the axial stiffness of the probe and the geometric shape to 

calculate the required force to insert the probe into the tissue. As a probe is inserted, the 

insertion force must be greater than the puncture force of the brain tissue (or the dura, if 

it is not incised or removed) in order for the probe to puncture the tissue (figure 20(A)). If 

the insertion force is less than the buckling force, the probe will successfully insert (figure 

20(B)). Conversely, if the insertion force is greater than the buckling force, the probe will 

buckle and will not insert into the tissue (figure 20(C))

Fbuckling = π2EI
KL 2 (1)

where E = Young’s modulus, I = second moment of area, L = unsupported length, K = 

length factor.

Each component of the buckling equation can be altered by changing the insertion method or 

probe properties.

The Young’s modulus, E, can be increased by choosing a stiffer probe material (see 

table 2 for the moduli of commonly used materials). In practice, this can be achieved by 

laminating a stiffer shuttle to the probe or coating the probe in a stiffer material for surgical 

implantation.

The second moment of area, I, depends on the cross-sectional area and shape of the probe. 

As described in equation (2), the second moment of area is a measure of the distance (r) 
between each portion of the cross section (dA) and a reference axis (in this case, the axis 

about which the probe bends). This value can be increased by increasing the cross-sectional 

area of the probe (increasing the value of A in equation (2)) or by changing the shape of the 
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cross section to move material farther away from the bending axis (increasing the value of r 
in equation (2)). This can also be increased by laminating a removable shuttle to the probe or 

coating the probe in a dissolvable material

I = ∬ r2dA . (2)

The length factor, K, depends on the support at the proximal and distal ends of the probe. 

Each end can either be ‘fixed’ (unable to translate laterally or rotate), ‘hinged’ (cannot 

translate laterally, but can rotate about a single point), or ‘free’ (able to translate laterally 

and rotate). For probe insertions, the proximal end is always fixed because it is being held 

by the insertion equipment. For the distal end, fixed, hinged, and free states correspond to 

K values of 0.5, 0.707, and 2.0 respectively. In most cases, the proximal tip is assumed to 

be hinged (able to rotate, but unable to move laterally) [9, 59, 112, 122, 130, 131], however 

some studies assume the tip is able to puncture the tissue and become fixed (unable to rotate 

or move laterally) [121].

The length, L, corresponds to the unsupported length of the probe, which can be decreased 

by adding supports along the length of the probe during insertion.

The force necessary to puncture and pass through the brain tissue (depicted as Fpuncture in 

figure 20) is dependent on the properties of the tissue, the cross-sectional area of the probe 

(larger probes must displace more tissue, requiring a larger force; see equation (3)), and the 

sharpness of the probe (sharper probes can cut through tissue more easily than dull probes). 

The required force per area (or stress) is studied in two different phases: puncture stress and 

end stress

Force = stress × corss sectional area . (3)

Puncture stress describes the amount of force per area required to penetrate the surface 

of the tissue. In many cases, the tips of probes will be pointed or sharpened in order to 

decrease the cross-sectional area at the tip and thus decrease the puncture force. End stress 

describes the amount of force per area required to overcome frictional drag while the probe 

inserts deeper into the tissue, breaking through new tissue in the process. Tip sharpness has 

been shown to decrease the puncture force of the probe through the pia mater, but has no 

effect on the end force [132]. The puncture stress of brain tissue ranges from 20 to 120 kPa 

and maximum end stress ranges from 40 to 200 kPa in mouse and rat models [113, 119, 

127]. These values vary with insertion speed (lower speeds tend to have lower end stresses), 

however many studies have some results which do not follow this general trend, indicating 

that there is a large variation between individual animals and species [119, 127].

Flexible probe solutions must balance the competing requirements of the need for flexible 

materials and small footprint to reduce immune response and buckling and insertion physics 

for accurate placement without probe failure.
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6. Insertion techniques

Several insertion techniques have been developed for implanting flexible probes. The most 

commonly cited techniques are discussed in this section. Each of these techniques begins 

with the removal of the skull (via burr hole or craniotomy) and, unless otherwise specified, 

the incision/removal of the dura above the insertion site.

Most of the techniques discussed in this section have been optimized for the insertion of 

a single probe. However, when larger brain regions are studied, probe arrays are necessary 

to collect data throughout a larger volume of brain tissue. Limited data is available on the 

buckling and insertion success of arrays having closely spaced probes. This section focuses 

on insertion of single probe arrays, but some discussion of scalability to multiple probes is 

included.

6.1. Unaided insertion

The simplest insertion method is to insert the array as is (figure 21). This is either done 

by hand, using a pneumatic inserter, or using a stereotactic stage. This method works well 

for short probes, thick/wide probes, or probes made of stiffer materials. Referring back to 

the buckling equation, these properties correspond to smaller L, larger I, and larger E. This 

method generally requires the removal or incision of the dura prior to inserting the probe, 

however the dura can remain intact prior to insertion if using a sufficiently stiff or large 

probe [7, 125]. This is the method widely used for rigid probes, such as microwires [7, 8], 

large cross section or very short (<1 mm long) flexible probes [125, 133–136], and arrays 

of probes as long as each probe is sufficiently large, short, and/or rigid to prevent buckling. 

As a result, this method can only be used with flexible probes when inserting into shallow 

brain areas (several mm into the cortex), and may have poor targeting accuracy due to the 

lack of support on the probe as it is inserted. As smaller, longer, and more flexible devices 

are developed, other techniques are required to prevent buckling.

6.2. Shuttle

A rigid insertion shuttle can be temporarily attached to the back side of the probe which 

increases probe dimensions and stiffness to enable insertion. Insertion can be accomplished 

with or without the incision/removal of the dura, depending on the dimensions of the 

shuttle. After insertion, the shuttle is removed, leaving the probe in place (figure 22). Most 

commonly, these shuttles are made of micromachined silicon, although metal microwires are 

also widely used. The use of an insertion shuttle effectively increases the stiffness and the 

cross-sectional area of the probe during insertion. These properties correspond to increased 

E and I in the buckling equation. Numerous groups have evaluated the use of silicon shuttles 

[118, 120, 130, 137–139] and metal rods as insertion shuttles [55, 100, 140–143], and many 

groups default to this technique for implantation of neural probes because it is relatively 

simple to implement and is well known to be successful. This method is often the preferred 

insertion technique for deep brain probe insertion because of the increased stiffness when 

using longer probes, the relatively small cross section of the shuttle/probe assembly (as 

compared to using a dissolvable stiffener), and the potential for greater targeting accuracy 

(as compared to insertion methods which do not support the probe as it passes through 
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the tissue). In addition, the shuttle technique can easily be scaled up to allow insertion of 

multiple probes simultaneously [120, 138–140]. When inserting one or multiple probes, 

however, care must be taken to reliably separate the probe from the shuttle after implantation 

to prevent retraction of the probe as the shuttle is removed.

6.3. Dissolvable stiffener

A dissolvable material can be used to coat one or all sides of the entire length of the probe 

or to fill a channel within the probe. Once the probe is in place, the stiffening material is 

dissolved and resorbed into the brain tissue, leaving the flexible probe behind (figure 23). 

Although not all stiffeners have a higher modulus than the probe material (see table 3), the 

stiff coating or filled channel increases the cross section, corresponding to a larger I value in 

the buckling equation. Many groups have tried different combinations of stiffeners and probe 

materials, with the most common stiffeners being polyethylene glycol (PEG) [58, 121, 144–

146], silk [62, 112, 121, 147, 148], and various sugars [60, 61, 149–151]. Other materials 

have been used when unique properties are required, such as carboxymethylcellulose (CMC) 

[79, 126] and tyrosine-derived polymer [59, 106] which quickly soften to gels, then resorb 

after prolonged implantation in the body. This method is generally used for probes less than 

6 or 7 mm in length [121]. At this length, the probe can be sufficiently stiffened to reach 

its target without a prohibitively thick coating that causes damage to surrounding tissue. 

The dissolvable stiffener method can be used to implant multiple probes simultaneously, 

however, if a coating is added to all sides of the probe, the individual probe shanks must 

be sufficiently far apart from each other to allow individual coating of each probe with the 

stiffener [58, 79, 126, 146] or the probe design must account for the clumping of individual 

probes during coating and insertion [126, 145, 152].

6.4. Surface guide

A rigid guide can be placed on the surface of the brain to support the probe from all 

sides during insertion and is removed after implantation (figure 24). The placement of this 

support at the tip of the probe in the region directly adjacent to the brain acts to support 

the probe’s distal end and shortens its effective length (the free length is prone to buckling), 

corresponding to smaller K and L values in the buckling equation. This method has not 

been widely studied, however a few groups have reported successful implantations using 

a guide in combination with actuation of the probe, with and without the removal/incision 

of the dura [9, 124]. This method is effective in limiting buckling while maintaining the 

original cross-sectional area of the probe, however the method may not scale well for use 

in placement of arrays of probes because of the large size of the guide on the brain surface. 

In addition, this method suffers from relatively poor targeting accuracy due to lack of probe 

support as the probe passes through the tissue.

6.5. Dissolvable brace

To support the probe during insertion, a dissolvable brace, most commonly made of silk 

[155] or PEG [34, 35, 54], can be molded around the probe, leaving only the tips exposed. 

The brace holds the proximal end of the probe in place as the probe tip inserts into the 

tissue, then the brace can be melted away from the distal end, exposing more of the probe 

length for insertion (figure 25). This method shortens the effective length of the probe 

Thielen and Meng Page 12

J Neural Eng. Author manuscript; available in PMC 2022 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to the exposed (non-braced) length, effectively decreasing the value of L in the buckling 

equation. This method is somewhat rare in the literature, but has been successfully used 

for in vivo implantation of carbon fiber [35] and parylene [54, 156] probes. This method 

prevents buckling and maintains the original probe cross-sectional area, but has relatively 

poor targeting accuracy because the probe is unsupported as it travels through the tissue. 

In addition, the method requires additional steps to add the brace during fabrication and to 

dissolve it during implantation.

6.6. Stiff tipped

Rather than using a flexible polymer for the full length of the probe, a rigid tip (usually 

made of silicon) can be added to the end of the probe. The stiff tip makes it easier for 

the probe to penetrate into the tissue and decreases the length of the flexible cable, which 

is more susceptible to buckling (figure 26). This is effectively modeled as two beams in 

series, one of which has a larger E, and both of which have a smaller L in the buckling 

equation. Unlike other methods, these probes feature hybrid construction and contain a 

permanently stiff region that is chronically implanted in the tissue [157]. As with unaided 

insertion, the stiff-tipped insertion can easily be scaled to allow insertion of multiple probes 

simultaneously as long as the probes are sufficiently large, short, or stiff, and as such it can 

only be used when inserting probes into shallow brain areas (several mm into the cortex), 

and may have poor targeting accuracy.

6.7. Stiffness changing coating or backbone

The stiffness of the probe can be temporarily increased to aid with insertion by using a 

stiffness-changing structure or material as a part of or as the entire probe backbone. This can 

be done in several ways: by adding a microfluidic channel to a polymer probe and filling the 

channel with a stiffness-changing material, such as pressurized and frozen gallium [158] or 

pressurized water [159], by coating a polymer probe with a stiffness-changing material, such 

as a shape memory polymer (see figure 27) [115, 160–163], or by building the probe itself 

out of a stiffness-changing material such as poly(vinyl acetate) nanocomposite (PVAc) [129, 

131, 164, 165] or off-stoichiometry thiol-ene-epoxy (OSTE+) [166]. In each of these cases, 

the material is in a stiff state prior to and during implantation, then changes to a flexible 

state after warming up to body temperature or saturating with saline/water (see table 4 for 

the Young’s modulus of common materials and their mechanism of softening). Each of these 

scenarios correspond to a larger E and, in some cases, larger I in the buckling equation. 

This method can easily be scaled to allow insertion of multiple probes simultaneously. It is 

important to note, however, that the Young’s modulus of commonly used stiffness changing 

materials in the stiff state is still relatively low (comparable to other flexible materials used 

for probe construction—see table 2), so buckling is primarily prevented by increasing the 

cross-sectional area. As such, this method has similar targeting accuracy to probes inserted 

without an aid or with a dissolvable stiffener, and is only applicable to relatively short (less 

than 9 or 10 mm) probes.

6.8. Engineered cross section

The shape of the probe cross section can be modified such that the probe cannot buckle 

as easily as it is being inserted. The modification of the cross section increases the second 
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moment of area (I) in the buckling equation. This can be accomplished in several ways, 

including rolling the polymer probe into an arc shape [114, 167] or by adding polymer 

‘struts’ perpendicular to the plane of the probe (figure 28) [128]. In some cases, the modified 

cross section reduces the flexibility of the probe. This method can be scaled to insert 

multiple probes simultaneously, however this would require very accurate alignment of the 

probes to prevent any twisting motion (which can lead to buckling). This method has not yet 

been widely studied, so it is difficult to discern the targeting accuracy as compared to other 

insertion methods and it is not used regularly for any particular type of probe or study.

6.9. Magnetically guided

A probe can be steered into place using an external magnetic field if a small piece of 

magnetic material is attached to the tip of the shank (figure 29). In this system, the probe 

is no longer governed by the buckling equation because the force from the magnetic field 

is acting on the tip of the probe. In the in vivo applications of this method, the magnetic 

tip is fully encapsulated with a biocompatible material (such as parylene or polyimide) to 

prevent an immune reaction to the magnetic material (usually iron—which is toxic to the 

body) [123, 168, 169]. In recent studies, this has achieved good targeting accuracy of less 

than 1 mm [169]. Although this method is not currently widely used, it has great potential 

for applications in which accurate targeting is required. However, as is the case with the 

stiff-tipped method, magnetically guided probe tips contain a permanently stiff region at the 

tip that is chronically implanted in the tissue. This method can be scaled to implant multiple 

probes simultaneously if a sufficiently large magnetic field is used [168].

6.10. Injection

The probe can be inserted into a needle or cannula (suspended in saline), then injected 

into the relevant part of the brain. After the needle is inserted, the saline and probe are 

injected while the needle is withdrawn so that the device stays stationary in the target 

area (figure 30). The use of a needle means the device itself is no longer governed by 

the buckling equation, but rather the needle must be sufficiently strong to not buckle. This 

is accomplished either using stainless steel or glass needles ranging in size from 22 to 

27 gauge (0.4–0.7 mm outer diameter). Because this method utilizes standard stereotaxic 

guidance, it can achieve similar targeting accuracy to SEEG or DBS probes (1.6–5.0 mm on 

average [5, 66, 67]). This method is used by a few groups, primarily for delicate, thread-like 

devices [170] or mesh devices [110, 111, 171, 172] which would not work well with other 

insertion methods.

7. Comparison of insertion methods

It is difficult to compare different insertion techniques from the current literature because of 

the wide variation in probe materials and geometries. In addition, evaluation methodologies 

differ greatly and specific materials in use are sourced from different suppliers and have 

widely varying properties. Each technique is typically reported by distinct groups of 

researchers and very limited comparison between methods has been reported. As a result, a 

comprehensive quantitative comparison between different insertion methods is not currently 

possible. Instead, qualitative comparisons are drawn between each of the methods relative 
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to the insertion and buckling forces, surgical implantation difficulty, accuracy of probe 

targeting, the immune response of the tissue, and overall limitations (summarized in table 7). 

Where data are available, quantitative evaluations of each insertion method are given.

7.1. Insertion medium

Insertion methods have been tested in various media. The most reliable insertion medium 

is live brain tissue, however other materials are commonly used to mimic the mechanical 

properties of the brain (otherwise known as brain phantom) so that live animals are not 

needed. The most common material used is 0.5%–0.6% agarose gel (because of its historical 

use and relatively low price), however other gels and emulsions have been evaluated more 

recently, some of which are better approximations of brain tissue [173, 174].

Thus far, no brain phantom is able to perfectly model brain tissue under all conditions. 

One major difference is the absence of the dura and pia in brain phantom; materials have 

been optimized to mimic certain properties of brain tissue, but the dura and pia are not 

included in most cases. Another major difference is the performance of brain tissue and 

phantom at varying insertion speeds. For example, in brain tissue, the maximum force 

during insertion tends to increase as insertion speed increases. In 0.6% agarose hydrogel, 

there is no significant change in maximum insertion force as insertion speed increases [119]. 

Some groups have reported better insertion rate dependence for two composite hydrogels 

(6% polyvinyl alcohol/0.85% phytagel in water, and 3% gelatin/1% agarose in water) and an 

oil-based emulsion (containing flax oil and soybean lecithin emulsified with water, gelatin, 

and borax) [174].

7.2. Insertion and buckling force

The insertion force and/or buckling force of the probe are straightforward to determine [57, 

60, 62, 80, 85, 87, 101, 111, 113, 125, 148, 158]. These are measured by attaching the probe 

to a load cell and measuring the force as the probe is advanced downward into the brain 

tissue or phantom or into a hard surface until the probe buckles, respectively. The resulting 

force curve shows several properties, such as the force required to penetrate the tissue and 

the maximum force during insertion, or the maximum force on the probe prior to buckling. 

These provide information on the mechanical properties of the probe and an early indication 

of whether successful insertion into brain tissue can be achieved with a particular design.

In some studies, the repeatability of the insertion method is reported via the insertion success 

rate (number of successful insertions/number of attempted insertions) [46, 58, 122, 126], 

however this metric is rare in the published literature—most studies do not discuss failed 

insertions.

The wide variety of probe materials and geometries prohibits meaningful direct comparison 

of insertion methods used in different studies. When possible, some studies will compare the 

buckling or insertion force for a given insertion method to the force for unaided insertion, 

allowing some comparison between methods. A summary of several characteristic studies 

is shown in table 5. The data presented is the increase in buckling force between aided 

insertion (using an insertion technique) and unaided insertion (using a bare probe).
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Although direct comparisons between the discussed insertion methods are not widely 

available, the comparison to unaided insertion provides some insight into the success of 

each insertion method on increasing the buckling force. Examples of force increases for each 

insertion method (where available) are given below and summarized in table 5.

Dissolvable stiffeners have potential to increase the buckling force dramatically. When 

coating a polyimide probe with silk, the buckling force has been shown to increase from 

0.042 to 104.9 mN (a 2498-fold increase), however this required a very thick coating which 

yielded a total coating thickness of 123.7 μm (per side, not including the thickness of the 

probe). A more modest silk coating on the same probe, with a thickness of 21.4 μm, had a 

buckling force of 2.7 mN (a 64-fold increase over uncoated probes) [112]. Another common 

coating material, PEG, has been shown to increase buckling force on a parylene probe from 

2.6 to 47 mN (an 18-fold increase) with a coating thickness of 236 μm. When using the 

same probe and coating dimensions with a silk coating, the force increases to 300 mN (a 

115-fold increase) [121]. Although silk appears to be a more robust coating option on the 

basis of the force increase, it also requires a much longer dissolution time in the body. 

Depending on the preparation of silk, it can take a few days and up to 2 weeks for the 

silk coating to dissolve. In contrast, PEG coatings can dissolve in several minutes, allowing 

for immediate recording or stimulation on the electrodes and decreasing the severity of the 

immune response [121]. Force requirements, dissolution time, and cross-sectional area must 

all be balanced depending on the application of the probe.

Surface guides provide a more modest buckling force increase. When using a polyethylene 

probe with lengths ranging from 5 to 13 mm and a 1.6 mm guide, the buckling force 

increased from approximately 0.045 to 0.17 N (a 3.8-fold increase) [124]. This method is 

highly dependent on the supported length of the probe, with a higher buckling force increase 

as a larger portion of the probe is supported. In the same study, when the probe length was 

decreased to a maximum of 8 mm, the force increase rose to 4.5-fold over unsupported 

insertion [124].

Dissolvable braces provide a similar buckling force increase because they also rely on the 

principle of decreasing the effective length of the probe. When using a parylene probe, one 

study reported a buckling force increase from 0.13 mN for an unsupported probe to 0.45 mN 

for a braced probe (an increase of 3.5-fold) [54].

Devices using vertical struts (engineered cross section) also show a similar buckling force 

increase, depending on the number of struts used. In one study, parylene devices with 

no struts yielded a buckling force of 0.19 mN, while devices with one and four struts 

yielded buckling forces of 0.47 mN (a 2.5-fold increase) and 1.3 mN (a 6.8-fold increase) 

respectively [128].

Data is not available for stiff tipped insertion or stiffness changing material insertion because 

these methods require modification of the probe itself, so there is no equivalent unaided 

probe for comparison. Studies which use shuttles or injection for insertion rarely measure 

buckling force, likely because buckling is rare when using these methods. Magnetically 

guided insertion is not included because it is not governed by the buckling equation.
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7.3. Accuracy of probe targeting

In addition to tests which describe the success of the insertion, some studies evaluate the 

accuracy of the probe placement. The alignment and targeting of the probe (whether it 

traveled in a straight path and reached the desired target in the brain) can be evaluated 

visually in a translucent gel, using fluorescent imaging, using MRI or CT imaging, using 

histology, or by comparing electrical recordings and physiological response. While each of 

these methods can be successful in determining the location of the probe, they each have 

inherent issues that prevent accurate evaluation of probe placement.

When probes are inserted into translucent gels (such as agarose), the path and final location 

of the probe can be easily observed with a standard camera [59, 79, 101, 120, 138, 148]. 

In addition, the retraction of the probe after insertion (due to retraction of the insertion 

shuttle or removal of the device from the insertion tool or equipment, such as the stereotactic 

stage), can be evaluated quantitatively via visual observation in a gel (see figure 31) [55, 

118, 138, 139, 171]. When removing a shuttle, the probe generally retracts less than 300 μm 

when probes are able to successfully separate from the shuttle [55, 118, 138, 139]. When 

using the injection method, the retraction has been shown to be 20 μm [171], however only 

a single source is available for this method. Evaluation of insertion in a translucent gel 

allows for clear imaging of the resulting position of the probe, however the gels are a poor 

representation of the brain because they lack any inhomogeneities present in live tissue (such 

as blood vessels) which can deviate the path of the probe, thus it is unclear if these data are 

representative of in vivo use.

Fluorescent imaging has been used in rare cases by coating the probes in a fluorescent dye, 

inserting the probes into live tissue, sacrificing the animal, then slicing and imaging the 

tissue parallel to the path of insertion [125]. This method shows promise for locating the 

probe in tissue, however the resolution is often too low to visualize a probe. In addition, 

probe location over time cannot be evaluated because the fluorescent dye is absorbed by the 

body if the tissue is not fixed shortly after insertion.

MRI and CT have been used to image the location of larger probes (such as SEEG or DBS 

probes, with average targeting accuracy of 1.6–5.0 mm), however they have not been widely 

used to locate flexible probes [5, 9, 66, 67]. When imaging probes, the MRI and CT detect 

the metal traces and electrodes in the probe, not the polymer backbone. Because there is 

such a small amount of metal in the devices and the resolution of the machines are not high 

enough, most flexible probes cannot be detected. Some work has been done using micro-CT 

to detect microelectrodes in tissue, however this method is not widely used at this time.

Histology has been used at the termination of in vivo experiments to determine the relative 

location of probes with respect to each other [10, 54] (figure 32). This provides valuable 

information within a single slice, however because of the distortion of the tissue during 

processing and slicing, it is difficult to get reliable location information from histology 

between different slices and with respect to the brain as a whole. In particular, it is difficult 

to determine the exact relationship of the electrode sites to adjacent neurons. Some probes 

have to be removed prior to slicing which further disrupts the tissue–device interface.
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For in vivo experiments with active electrical recordings or stimulation, electrical activity 

can be correlated with physiological response (for example, recording in brain areas which 

control breathing and simultaneously observing the breathing itself) [9]. This can be 

effective in some areas of the brain (when the physiological response is regular and easily 

recordable), but not possible for other areas (for example, the hippocampus where there is no 

observable physical response to brain activity).

Because most of these techniques are not optimized to view small, flexible probes, most 

studies do not evaluate probe targeting. The evaluations of targeting accuracy in the 

remainder of this section are theorized based on fundamental properties of the insertion 

technique.

The insertion methods which likely produce the most accurately located probes are the 

shuttle and injection methods, as they allows the probe to be guided to its target with 

a relatively rigid structure which is unlikely to bend or move during insertion. The 

magnetically guided insertion would also likely produce accurate placement of probes as 

it allows the surgeon to directly guide the tip, however there is no published data to support 

this hypothesis.

Slightly lower accuracy targeting is possible via insertion methods which have less support 

at the tip of the probe, such as the use of dissolvable stiffeners, stiffness changing materials, 

engineered cross sections, or stiff tipped probes. Each of these methods provides some 

support to the entire length of the shank, but to a lesser extent than a shuttle or magnetically 

guided probe. In the case of dissolvable stiffeners or stiffness changing materials, the probe 

can begin to soften as it is inserted, allowing it to deviate around any inhomogeneities in the 

tissue (such as blood vessels). In probes with engineered cross sections, any sort of torsion 

on the probe (again, caused by inhomogeneities in the tissue) can lead to bending of the 

probe away from its target. With stiff-tipped probes, the initial insertion is identical to that 

of a rigid probe insertion, but after the tip is fully inserted into the tissue, the flexible cable 

allows the probe to deviate inside the tissue.

The least accurate targeting is achieved through unaided, guided, and braced insertion. Each 

of these strategies functions by supporting the device above the tissue, so when the probe is 

inserted into the tissue, it is free to bend and deviate from its planned path. Even relatively 

stiff probes may experience some bending due to anatomical features.

7.4. Surgical difficulty

Surgical difficulty is characterized by the number of steps required for successful insertion 

and the overall difficulty of each step. The methods which are the easiest to implement 

surgically are those which do not require any extra steps or training, such as the unaided, 

stiff-tipped, and engineered cross section insertion methods. In each of these techniques, the 

probe itself is designed to allow for a standard, simple insertion.

Several insertion methods require more delicate handling, making them slightly more 

difficult to perform. For example, probes with a dissolvable stiffener may be brittle 

(depending on the properties of the stiffener) and require extra care to ensure there is no 
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damage to the probe prior to insertion. Similarly, with a stiffness-changing material, the 

surgeon must work quickly in order to ensure the material remains sufficiently stiff during 

insertion (i.e. so it does not begin to soften prematurely upon exposure to body temperature 

or body fluid). Additionally, many of these coatings dissolve when exposed to water or 

saline, so they must be stored in a dry environment to prevent pre-surgical damage.

Some methods, while not inherently difficult, require extra training to ensure they are 

performed properly. When using a dissolvable brace, the probe is advanced in a standard 

way, but must be paused periodically to dissolve the bottom portion of the brace. Although 

each of the steps in this process is somewhat simple, it requires care to ensure it is done 

correctly and that too much of the brace is not dissolved away. For the injection method, 

after the needle is inserted, the device (suspended in saline) must be injected at the same 

rate that the needle is retracted to ensure no damage to the device and proper placement. For 

magnetic insertion, the magnetic field must be properly aligned prior to insertion to ensure 

the probe is inserted in the intended direction.

Finally, some methods are characteristically more difficult and require extra training to 

perform. One such example is the shuttle insertion method, which requires patience and 

training to learn to separate the shuttle from the probe and ensure that the probe is not 

retracted with the shuttle. The difficulty of this process relies heavily on the design of the 

probe/shuttle system. Another example of a more difficult insertion method is the use of 

an insertion guide. Depending on the design of the guide and insertion system, there are 

varying degrees of difficulty in aligning the probe to the guide and removing the guide after 

insertion.

7.5. Tissue immune response

Most insertion studies do not evaluate the immune response after insertion, however 

there is some supporting data for the more common insertion methods. In general, the 

methods which insert the bare probe on its own (unaided, guided, and braced) tend to 

have the smallest immune response because the material remains flexible during the entire 

insertion, allowing it to bend around features like blood vessels rather than cut through 

them. Histological evaluation of flexible probes implanted acutely (2 h duration) via the 

dissolvable brace method detected stab wounds matching the probe dimensions with no 

evidence of blood cells, indicating that very little or no bleeding occurred [54]. In contrast, 

a similar acute insertion for blunt-tipped wires of 0.24 mm diameter resulted in bleeding 

observable on histology images [119]. Methods which use small volumes of rigid materials 

(for example, small shuttles or thin dissolvable coatings) also show very minimal immune 

response in the immediate vicinity of the probe [60, 63, 175] as compared to methods which 

utilize larger rigid materials (such as larger shuttles or thick dissolvable coatings) [141].

After the initial acute response, the glial sheath begins to form, which can easily be seen 

using standard histology techniques. For the best recording and stimulation performance, 

the distance between the electrode and tissue should be as small as possible. Therefore, the 

thickness of the glial sheath should be minimized. Thicker glial sheaths tend to be associated 

with probes built from non-flexible materials. After implantation for 4–12 weeks, a thick 

glial scar in the range of 50–100 μm on each side of the probe was observed using rigid 
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silicon probes of 14–130 μm thickness and 200 μm width [49, 108]. This is similar to 

the scarring observed for a magnetically inserted probe (with a semi-rigid cable consisting 

of FeNi alloy coated in polyimide) after 5 weeks, which yielded a scar of 100–200 μm 

thickness per side (probe cross section 6 × 20 μm2) [168]. When using thin dissolvable 

coatings, the glial sheath is generally thinner after 7–29 weeks implanted, ranging from 3 

to 60 μm thick on each side of the probe (using parylene and polyimide probes with 1–14 

μm thickness, saccharose, dextran, PLGA, or CMC coatings with 13–150 μm thickness) [60, 

79, 151, 152]. A histological image following removal of a 14 μm thick parylene probe 

coated in 13 μm thick dextran after 4 months of implantation is shown in figure 33. One 

study evaluated the differences in glial scarring for implants and coatings of different sizes. 

Dissolvable CMC shuttles were molded with two different widths (100 and 300 μm) but 

identical thickness and length (125 μm and 1.5 mm), and then implanted for 12 weeks. 

Histology revealed a significantly larger glial scar, with a total thickness of 120 μm, when 

using the wider shuttle as compared to the narrow shuttle, with a total thickness of 3.6 

μm, indicating that the overall cross section of all implanted materials plays a large role 

in glial scarring [79]. Parylene and polyimide probes (5–48 × 70–300 μm2 cross sections) 

inserted with rigid shuttles (of unknown dimensions) for 4–5 weeks exhibited thinner glial 

scars of approximately 25 μm thickness [141, 176]. Histology associated with a 200 μm 

thick polyimide probe inserted with a tungsten rod is shown in figure 34. Similar to shuttle­

inserted probes, injected mesh structures (SU-8 with 0.5 × 5–20 μm2 threads) implanted for 

2–5 weeks produced thin glial scars that were less than 50 μm thick [110, 111]. All data 

described in this section is summarized in table 6.

Published research on stiff-tipped and engineered cross section probes do not currently 

include evaluation of the immune response. The immune response can be hypothesized 

by comparing to similar insertion methods (for example, stiff-tipped probes likely have a 

response magnitude between that of bare probes and probes inserted with a shuttle because 

of their similarities to these two methods), however there is currently no published data to 

support this claim.

In addition to the insertion method, the probe design itself impacts the immune response 

and resulting glial encapsulation. Most probes have a similar shape (a long, slender probe), 

however some groups have evaluated probes with open architecture or other features into 

which the microglia can travel and form a scar. The presence of perforations in the probe has 

not been shown to impact the magnitude of scarring, however the encapsulation does travel 

into the sheath of the probe (see figure 35) [176, 177]. This type of scarring likely makes 

removal of the device difficult, however further investigation is necessary to determine other 

effects of this geometry.

7.6. Overall limitations

In the comparisons of surgical difficulty, targeting, and immune response, it is assumed that 

the probe is sized such that a successful insertion is possible (namely, that the cross section 

is large enough and/or the length is short enough to prevent buckling). In order to satisfy this 

assumption, there are certain limitations of each insertion method that must be considered. 
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Many of these limitations are discussed in detail in the insertion techniques section of this 

review, but briefly summarized here and in table 7.

For unaided, guided, and stiff-tipped insertion, the probe itself must be sufficiently large 

(cross section), short, or stiff in order to be successfully inserted without buckling. Similarly, 

currently available stiffness changing materials are not sufficiently stiff when fabricated in 

thin layers, so the probes and/or coatings must be sufficiently large and short.

When inserting with a shuttle, a dissolvable adhesive (such as PEG) is often used to adhere 

the probe to the shuttle. It is often difficult to detach the probe from the shuttle, resulting 

in a slight retraction of the probe while the shuttle is removed. In most cases, this can be 

characterized and corrected by inserting the probe slightly past the target area.

When using dissolvable stiffeners or braces, the biggest limitation is the inability to retract 

and reinsert the device if it is incorrectly placed. In many cases, electrical recordings are 

collected during surgery to determine if the device is receiving a signal. If the device is not 

in the correct area, there is no way to re-insert it, because the brace or stiffener is dissolved 

during the first insertion. In addition, if the dissolvable coating is blocking the electrodes, 

recording during insertion is not possible.

Overall, devices with engineered cross sections have very few limitations, but the fabrication 

process can be prohibitively difficult. For devices built with vertical struts, highly 

anisotropic etching and very accurate alignment is required to achieve the desired geometry. 

For devices with curved cross sections, highly delicate fixturing and thermoforming (to 

achieve the desired shape) is necessary. Both of these processes are difficult and may suffer 

from low yield during fabrication.

Magnetically-guided devices rely on a magnetic material at the tip of the device, however 

the majority of biocompatible metals are non-magnetic. Published magnetically-guided 

devices use either a copper magnet wire or an iron alloy, neither of which are approved 

as a biocompatible implantable material. As such, devices using this technique would likely 

have a greater immune response and would not be functional for long term recording or 

stimulation.

For injectable devices, the main limitation is that the entire device must fit through a needle. 

As such, the device must not be packaged prior to insertion, which leads to more handling 

after insertion (and higher likelihood of shifting the device out of position).

7.7. Requirements for human use

Although flexible neural probes are currently exclusively used for research in animal 

models, it is important to keep the requirements for human use devices in mind. Currently, 

the only penetrating neural probes approved for human use are DBS and SEEG probes (FDA 

approved for chronic use) and the Utah array (FDA approved for investigational use for up to 

30 d implantation). The main obstacles preventing flexible probes from FDA approval (and 

Utah arrays from full approval) are the low number of electrode sites per device, lack of 

efficacy over time, and poor targeting accuracy [182].
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For devices to be effective in research or clinical purposes, multiple recording or stimulation 

electrodes are often needed. DBS and SEEG probes generally have 4–10 large electrodes, 

often with numerous additional microelectrodes along the length of the probe [6, 29, 32], 

while the most commonly used Utah array has 100 electrodes [43, 44]. Early versions of 

many research devices have only one electrode at the tip (such as microwires and carbon 

fibers), however more advanced devices (such as multisite silicon probes and most flexible 

probes) have multiple electrodes along the length of a single probe.

One of the biggest issues currently faced for research probes is the lack of efficacy over 

time. This is due to two major causes: glial scarring, and device wear and tear. Glial 

scarring, as discussed in section 7.5, is significantly less pronounced in flexible devices with 

small cross sections that are inserted using methods that do not cause significant bleeding. 

If the glial scar is sufficiently thin and the electrodes remain close to the target tissue, 

the device can continue to function over long periods of time. Device wear and tear is an 

issue that is commonly seen in neural devices. As an example, Utah arrays have an average 

recording lifetime of 12 months due to breakdown of the device by the immune system 

[182]. Flexible devices are often plagued with this issue as well due to the permeability 

of most polymers to water and ions in the body. Of the studies cited in this review, the 

flexible probe which remained functional for the longest period of time was implanted for 

only two years [100], while most other studies were terminated after weeks or months of 

implantation.

Another major issue with flexible devices is the poor targeting accuracy, which is discussed 

in sections 6 and 7.3. For devices to perform their function properly, they must be implanted 

in the correct area. For flexible devices with small electrode sizes, the targeting accuracy 

becomes even more critical, as the electrode can only stimulate or record from tissue within 

a small distance.

In addition to these issues specific to flexible probes, there are a host of issues encountered 

by all devices that must be met prior to FDA approval, such as biocompatibility of materials, 

surgical risk, and mechanical compatibility with surrounding tissue. Any devices which are 

implanted into neural tissue are considered a Class III (high risk) medical device, and are 

thus subject to the most stringent set of testing requirements [182].

8. Conclusion

Flexible microelectrode arrays have been shown to evoke a lesser immune response and 

to be more successful in chronic neural recording and stimulation. Without insertion aids, 

flexible probes are limited to accessing shallow cortical areas because of their low buckling 

force as compared to the force required to insert the probe into brain tissue.

To achieve successful and useful long term recordings in deep brain areas (and improve 

the efficacy of animal experiments), flexible microelectrode arrays with multiple electrodes 

must be developed alongside an insertion method that allows for accurate placement with 

minimal tissue response. The fabrication of arrays and response to chronic implantation 

has been widely studied and, more recently, insertion techniques are being advanced and 
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published to allow flexible probes to be more widely used. Because this research is relatively 

new, however, it is important to review the many insertion techniques that have been 

developed to evaluate which method is best for any given application.

Moving forward, more research is needed to further refine the insertion methods discussed 

in this review. The majority of studies discuss the insertion of one probe at a time, however 

it is often more useful to implant many probes simultaneously in the targeted brain area 

to allow for high density recording and stimulation. In addition, more work is needed to 

evaluate if probes accurately reach their target locations via the imaging methods discussed 

in this review or other methods that have not yet been developed.

As more research is performed, more complex questions will arise, which will necessitate 

the use of larger animal models. The majority of in vivo flexible microelectrode array 

research thus far has been performed in rodent models because many brain areas can be 

reached with a short probe. As larger animal models are used, the need for deeper insertions 

(and more effective insertion methods) will become more critical.
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Figure 1. 
The major types of BMI electrode interfaces in (A) brain, (B) spinal cord, and (C) peripheral 

nerve (figures not to scale). EEG electrodes are placed on the scalp. ECoG electrodes are 

placed subdurally. DBS and SEEG probes are implanted into deep brain tissue. Neural 

dust are micron-scale devices containing microelectrodes and passive electronics placed 

directly into the brain tissue and work in conjunction with a wireless receiver (note: these 

have not yet been demonstrated in brain tissue, only on the outer surface of spinal tissue). 

The Utah array contains regularly arranged tines each having a single electrode site at the 

tip. These penetrating probes are typically 1–2 mm long. Microwires and carbon fibers 

are penetrating probes each with a single electrode site at the tip that can extend several 

millimeters long allowing access to deeper brain regions and are also available as arrays. 

Multisite silicon arrays and flexible arrays are probes with arrays of microelectrodes that 

can also extend several millimeters long, but are distinguished from the other types of 

penetrating microelectrodes in that the probe supports multiple microelectrodes along its 

length, allowing greater access to brain regions at multiple depths. Flexible arrays can also 

be placed on the surface of the tissue to act similarly to ECoG electrodes.
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Figure 2. 
Brain sizes for human and common animal models. Rhesus monkey, lamb and rat have 

approximately 5.7%, 5.4%, and 0.1% of the brain volume of humans respectively [12–17].
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Figure 3. 
Diagram of a DBS or SEEG probe. Dimensions sourced from [6, 29, 32].
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Figure 4. 
The neuropace responsive neurostimulation (RNS) system which consists of a pulse 

generator (1), a DBS probe with four ring-shaped electrodes (2) and a subdural ECoG probe 

with four circular electrodes (3). The left image (A) shows the device, and the right image 

(B) shows a diagram of the fully implanted device. Reprinted from [69], Copyright (2015), 

with permission from Elsevier.
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Figure 5. 
Diagram of a microwire with three common tip geometries shown. Dimensions sourced 

from [8–11].
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Figure 6. 
SEM image of a microwire probe tip. A 70%/30% platinum/iridium wire is 

electrochemically sharpened (producing the pointed tip), then coated with parylene C. After 

coating, the electrode tip is exposed using laser etching. Reprinted from [8], Copyright 

(2007), with permission from Elsevier.
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Figure 7. 
Two microwire arrays of different lengths consisting of 18 microwire probes. Reprinted from 

[8], Copyright (2007), with permission from Elsevier.
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Figure 8. 
Diagram of a carbon fiber probe with two common tip geometries shown. Dimensions 

sourced from [35–40].
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Figure 9. 
SEM image of a glass-coated carbon fiber. These fibers are coated using a glass pulling 

process, then the exposed end of the fiber is cut to a predetermined length. In this case, 

the exposed carbon fiber electrode has been coated with platinum nanoparticles, producing 

a textured electrode surface. Reprinted from [36], Copyright (2019), with permission from 

Elsevier.
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Figure 10. 
A 2 × 8 array of carbon fiber electrodes. Reprinted by permission from Springer Nature 

Customer Service Centre GmbH: Nature, Sci. Rep [72]. (c) 2020.
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Figure 11. 
Diagram of a Utah array. (A) Shows a full 10 × 10 array, and (B) shows a single probe of a 

Utah array with a detail view of the exposed electrode tip. Dimensions sourced from [20, 44, 

74].
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Figure 12. 
SEM images of a Utah array containing 100 electrodes of 1.5 mm length. (A) Shows the 

entire 10 × 10 electrode array, and (B) shows a detailed image of the exposed electrode tip 

and insulated probe. Reprinted from [75], Copyright (2016), with permission from Elsevier.
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Figure 13. 
Photograph of the backside of a mounted Utah array containing 36 electrodes of 1 mm 

length. Reprinted from [10], Copyright (2009), with permission from Elsevier.
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Figure 14. 
Diagram of a multisite silicon probe. Note that the tip shape and electrode arrangement vary 

between devices—the design shown here is one example. Dimensions sourced from [10, 19, 

21, 46–49].

Thielen and Meng Page 46

J Neural Eng. Author manuscript; available in PMC 2022 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 15. 
Photograph of a Neuronexus multisite silicon array with 16 electrodes (four shanks with four 

electrodes at the tip of each probe). Reprinted from [10], Copyright (2009), with permission 

from Elsevier.
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Figure 16. 
(A) Diagram of a multisite silicon array with four shanks with 16 electrodes each. (B) 

Diagram of a multisite silicon array with one shank with 64 electrodes. (C) SEM image of 

the distal end of the 1 × 64 probe. Reprinted from [47], Copyright (2012), with permission 

from Elsevier.
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Figure 17. 
Diagram of a neural dust recording system. The external transceiver is placed on the scalp 

and communicates with the subdural transceiver, which is placed underneath the dura on 

the brain surface. The neural dust nodes are inserted into the brain tissue and communicate 

with the subdural transceiver. Reprinted from [51], Copyright (2015), with permission from 

Elsevier.
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Figure 18. 
Photographs of a prototype neural dust mote. Reprinted from [53], Copyright (2016), with 

permission from Elsevier.
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Figure 19. 
Young’s modulus ranges of brain tissues, agarose, and common probe materials (see table 2 

for specific material values).
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Figure 20. 
Insertion of a flexible probe into brain tissue. (A) Insertion force acts on the proximal end 

of the probe; puncture force acts on the distal tip of the probe. For successful insertion, 

the insertion force must be increased until it is greater than the puncture force. (B) If the 

insertion force is less than the buckling force, the probe overcomes the puncture force and 

inserts into the tissue. (C) If insertion force is greater than the buckling force, the probe 

buckles before the insertion force can overcome the puncture force.
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Figure 21. 
Insertion of a probe with no aid. (A) The probe is positioned above the brain tissue and 

advanced downward. (B) The probe is fully implanted.
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Figure 22. 
Insertion of a probe with a shuttle. (A) The probe and shuttle are positioned above the 

brain tissue and advanced downward. (B) The probe and shuttle are in place. (C) The probe 

is peeled away from the shuttle, usually using saline to separate them. (D) The shuttle is 

retracted out of the tissue, while the probe is held in place. (E) The probe retained in the 

brain.
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Figure 23. 
Insertion of a probe with a dissolvable stiffener. (A) The stiffened probe is positioned above 

the brain tissue and advanced downward. (B) The probe is in place; saline is applied to 

dissolve the stiffener. (C) The stiffener dissolves. (D) The probe is fully implanted.
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Figure 24. 
Insertion of a probe with a guide. (A) The probe is positioned above the brain tissue with the 

guide sitting on the brain, and the probe is advanced downward. (B) The probe is in place, 

and the guide is removed. (C) The probe is fully implanted.
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Figure 25. 
Insertion of a probe with a dissolvable brace. (A) The braced probe is positioned above 

the brain tissue and advanced downward. (B) Once the brace reaches the tissue, saline is 

applied at the brain/brace interface. (C) The bottom of the brace dissolves. (D) The probe 

is advanced again, and the dissolving/advancing steps are repeated until the target depth 

is reached. (E) Once the probe reaches the target depth, saline is applied to dissolve the 

remainder of the brace material. (F) The probe is fully implanted.
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Figure 26. 
Insertion of a probe with a stiff tip. (A) The probe is positioned above the brain tissue and 

advanced downward. (B) The probe is fully implanted.
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Figure 27. 
Insertion of a probe with a stiffness-changing coating. (A) The probe with stiffener is 

positioned above the brain tissue and advanced downward. (B) The probe is in place and 

begins to warm to body temperature or absorb fluid, softening the stiffener. (C) The probe is 

fully implanted.

Thielen and Meng Page 59

J Neural Eng. Author manuscript; available in PMC 2022 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 28. 
Insertion of a probe with engineered cross section. (A) The probe is positioned above the 

brain tissue and advanced downward. (B) The probe is fully implanted. The type of modified 

cross section shown here (C) has struts along the back of the probe for stability.
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Figure 29. 
Insertion of a probe with magnetic guidance. (A) The probe with magnetic tip is positioned 

above the brain tissue, and a magnetic field is applied to force the tip downward. (B) The 

probe is fully implanted.
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Figure 30. 
Insertion of a probe using injection. (A) The probe is suspended in a needle in saline, 

positioned above the brain tissue, and advanced downward. (B) The probe and needle are 

in place. (C) The needle is retracted at the same rate that fluid is pushed out of the needle, 

leaving the probe behind. (D) The probe is fully implanted.
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Figure 31. 
Insertion of a polyimide probe into agarose gel using a tungsten rod. The probe is easily 

visible through the gel, and the retraction of the probe after rod withdrawal (box 6) can be 

easily measured. Reproduced from [55]. CC BY 4.0.
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Figure 32. 
Histology image of a rat brain implanted with a multisite silicon array. Arrows point to 

holes in the tissue where the probe shanks were implanted. Images are stained to show 

(A) reactive astrocytes in red (anti-GFAP (glial fibrillary acidic protein)) and neurons in 

green (anti-beta-III tubulin), and (B) reactive astrocytes in red (anti-GFAP) and monocytes/

macrophages in light blue (anti-CD68). Reprinted from [10], Copyright (2009), with 

permission from Elsevier.
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Figure 33. 
Confocal imaging of a flexible parylene probe (14 μm thickness, tapered 218–72 μm width) 

inserted using a dissolvable dextran stiffener. Image shows reactive astrocytes (anti-GFAP) 

in red and the neuronal nuclei in green. The dotted line represents the size of the coated 

electrode prior to dissolution of the stiffener. The presence of neurons (green) inside the 

dotted line indicates that the neurons were able to recover after dissolution of the coating. 

The thick line of astrocytes (red) shows the location of the glial scar, which is approximately 

3 μm thick. Reproduced from [60]. CC BY 3.0.
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Figure 34. 
Histological analysis of a flexible polyimide probe (20 × 350 μm2 cross section) inserted 

using a tungsten shuttle. Image shows an H&E stained tissue slice at 6 mm depth 30 d after 

implant. There is no evidence if an ongoing immune reaction, however a fibrosis measuring 

approximately 50 × 350 μm2 is present. Scale bars are 500 μm (left) and 50 μm (right). 

Reprinted from [141], Copyright (2018), with permission from Elsevier.
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Figure 35. 
Immunohistochemical analysis of an open architecture probe. The white dotted line outlines 

the two parts of the probe, with the space between them being a perforation. The image 

shows an overlay of reactive astrocytes (anti-GFAP) in red and microglia and macrophages 

(OX-42) in green. Scale bar is 100 μm. Reprinted from [176], Copyright (2007), with 

permission from Elsevier.
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Table 2.

Young’s moduli of human and rat brain tissues, agarose brain phantom, flexible probe materials, and stiff 

probe materials.

Material Young’s modulus

Brain tissues Rat cortex [81] 0.03–1.8 kPa

Rat hippocampus [81, 82] 0.04–1.2 kPa

Rat dura [83] 0.4–1.2 MPa

Human cortex [84, 85] 0.6–15.2 kPa

Human hippocampus [85] 2.3–12.9 kPa

Human dura [86, 87] 31.5–61.5 MPa

Brain phantom Agarose, 0.5% [88] 5.1–5.6 kPa

Flexible probe materials PDMS [89] 0.4–9.4 MPa

Polyimide [90, 91] 1.0–8.5 GPa

SU-8 [92] 2.2–8.1 GPa

BCB [93] 2.7–3.1 GPa

Parylene C [94] 2.8 GPa

LCP [95] 9.3–31 GPa

Stiff probe materials Glass [96, 97] 50–90 GPa

Silicon [97] 62–202 GPa

Platinum [98] 154–172 GPa

Carbon fiber [99] 206–482 GPa
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Table 3.

Young’s moduli of common dissolvable stiffeners.

Material Young’s modulus

Polyethylene glycol (PEG) [121] 80–200 MPa

Silk [112, 121] 1.8–2.8 GPa

Sugars [60, 150, 153] 0.6–38 GPa

Carboxymethylcellulose (CMC) [79, 154] 24.7 MPa

Tyrosine-derived polymer [59, 106] 0.4–5 GPa
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Table 5.

Summary of maximum buckling force increase between aided and unaided insertion for each insertion 

technique.

Insertion technique Material(s) Buckling force increase
a

Dissolvable stiffener [112, 121]
Parylene C (probe) 250 μm PEG (coating

b
)

18

Parylene C (probe) 250 μm silk (coating
b
)

115

Polyimide (probe) 18–69 μm silk (coating
b
)

64–2498

Surface guide [124] Polyethylene (probe)
PMMA (guide)

3.8–4.5

Dissolvable brace [54] Parylene C (probe)
PEG (brace)

3.5

Engineered cross section [128] Parylene (probe with struts) 2.5–6.8

a
Force increase is defined as (force with insertion aid)/(unaided force).

b
Thickness refers to coating thickness, not full device thickness.
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