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ABSTRACT Despite the global use of rotavirus vaccines, vaccine breakthrough cases
remain a pediatric health problem. In this study, we investigated suspected rotavirus
vaccine breakthrough cases using next-generation sequencing (NGS)-based viral
metagenomics (n = 102) and a panel of semiquantitative reverse transcription-PCR
(RT-gPCR) (n = 92) targeting known enteric pathogens. Overall, we identified coinfec-
tions in 80% of the cases. Enteropathogens such as adenovirus (32%), enterovirus
(15%), diarrheagenic Escherichia coli (1 to 14%), astrovirus (10%), Blastocystis spp.
(10%), parechovirus (9%), norovirus (9%), Clostridioides (formerly Clostridium) difficile
(9%), Dientamoeba fragilis (9%), sapovirus (8%), Campylobacter jejuni (4%), and
Giardia lamblia (4%) were detected. Except for a few reassortant rotavirus strains, un-
usual genotypes or genotype combinations were not present. However, in addition
to well-known enteric viruses, divergent variants of enteroviruses and nonclassic
astroviruses were identified using NGS. We estimated that in 31.5% of the patients,
rotavirus was likely not the cause of gastroenteritis, and in 14.1% of the patients, it
contributed together with another pathogen(s) to disease. The remaining 54.4% of
the patients likely had a true vaccine breakthrough infection. The high prevalence of
alternative enteropathogens in the suspected rotavirus vaccine breakthrough cases
suggests that gastroenteritis is often the result of a coinfection and that rotavirus
vaccine effectiveness might be underestimated in clinical and epidemiological
studies.

KEYWORDS enteric coinfections, gastroenteritis, NGS, RT-qPCR, vaccine breakthrough,
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roup A rotaviruses (referred to here as rotavirus) can cause gastroenteritis in

infants less than 5 years old, leading to high morbidity in developed settings (1).
The rotavirus genome consists of 11 double-stranded RNA (dsRNA) segments encoding
6 structural proteins (VP1 to VP4, VP6, and VP7) and 6 nonstructural proteins (NSP1 to
NSP6). The rotavirus outer capsid proteins, VP7 and VP4, form the basis for a dual clas-
sification into G and P genotypes, respectively (2). To account for genomic evolution,
this dual classification has been extended to all 11 genes, establishing so-called geno-
type constellations (2-4). Two of them, Wa-like and DS-1-like, are responsible for most
human infections and are designated 11-R1-C1-M1-A1-N1-T1-E1-H1 and 12-R2-C2-M2-
A2-N2-T2-E2-H2, respectively, for the non-G and non-P genotypes (4).

There are two oral live-attenuated vaccines against rotavirus gastroenteritis that are
used worldwide: Rotarix (GlaxoSmithKline, Belgium) and RotaTeq (Merck & Co., Inc.,
USA). They have decreased the rotavirus gastroenteritis burden significantly and are
highly effective against rotavirus gastroenteritis in countries with low child mortality
(5). Rotarix was introduced in Belgium in 2006 and immediately reached a high degree
of coverage. Since then, there has been exhaustive surveillance of the possible effect
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of vaccine introduction on the rotavirus genotype distribution. It was observed that
G1P[8] was dominant in the prevaccine period, whereas G2 became dominant after
vaccine introduction, albeit with strong genotype fluctuations in the following years
(6). There are also similar postvaccination reports from Brazil, South Korea, and
Australia on increased G2 dominance, although a causal link with vaccine introduction
is currently lacking (7-10).

Although the vaccines provide heterotypic immunity, it is uncertain whether the
protection will extend against completely heterotypic and newly emerging rotavirus
strains. Therefore, it is crucial to screen the natural and/or vaccine-induced changes in
the circulating rotavirus population. On the other hand, a third of the yearly rotavirus
infections are asymptomatic in children younger than 2 years old (11), and there is little
screening for most other enteropathogens which might cause (a)symptomatic infec-
tions. Sporadic diarrhea can also be caused by viruses such as noroviruses, enteric
adenoviruses (type 40/41), astroviruses, sapoviruses, and picornaviruses; bacteria such
as Campylobacter jejuni, enteropathogenic Escherichia coli, Shigella, Yersinia, Shiga-
toxin producing E. coli, and Salmonella; and parasites such as Cryptosporidium, Giardia
lamblia, and Entamoeba histolytica (12-15). Moreover, enteric coinfections might
impact gastroenteritis progression in infants. Previous studies have shown prevalent
coinfections, as well as longer diarrhea and increased hospitalization, associated with
coinfections in rotavirus gastroenteritis (16-19). We speculate that often, gastroenteri-
tis diagnosed as of rotavirus etiology in vaccinated infants might actually be a coinfec-
tion or entirely caused by another pathogen and that rotavirus was present only as an
asymptomatic infection.

In light of this, we performed a combination of a nontargeted next-generation
sequencing (NGS) and a sensitive reverse transcription-PCR (RT-qPCR) approach to
screen for enteric viruses, bacteria, and parasites in suspected Rotarix vaccine break-
through cases in Belgium. Our first aim was to investigate the rotavirus genotypes and
genotype constellations. Secondly, we aimed to investigate enteric coinfections, as
well the genetic diversity of the coinfecting viruses. Thirdly, we attempted to identify
the most likely cause of gastroenteritis, by estimating the contribution of each patho-
gen to the disease. Ultimately, we believe that this study will contribute to a better
assessment of rotavirus disease burden and rotavirus vaccine effectiveness.

MATERIALS AND METHODS

Selection of rotavirus vaccine breakthrough cases. Rotavirus-positive fecal samples have been
collected from patients throughout Belgium as part of Rotavirus Surveillance Network Belgium (RSNB)
and the National Reference Center (NRC) activities for rotavirus. Stool samples were initially screened for
rotavirus antigen (e.g., enzyme immunoassay [EIA]) or RNA (RT-PCR-based techniques) by hospitals,
physicians, or diagnostic centers, and positive samples were sent to the Leuven University Hospital (UZ
Leuven). The VP7 and VP4 genes of the rotaviruses are routinely RT-PCR amplified and Sanger
sequenced to determine their G and P genotypes, as described previously (6). For the current study, we
focused on 915 patients who were known to have received a full Rotarix vaccination regimen (2 doses)
between the 2007-2008 and 2017-2018 rotavirus seasons. From these patients, we selected a representa-
tive set of 8 to 13 samples per season for sequencing analysis. The final identification of 102 rotavirus
vaccine breakthrough cases was made based on the following criteria: (i) there must be at least 15 days
between the episode of gastroenteritis and completion of the Rotarix vaccination regimen (https://www
.ema.europa.eu/en/medicines/human/EPAR/rotarix), (ii) the selected samples must represent the G and
P genotype distribution present in that respective rotavirus season, and (iii) the partial VP7 and VP4
sequences obtained from the samples must not share high nucleotide similarity (>99%) with Rotarix or
RotaTeq vaccine strains, as confirmed with BLASTn analysis. The study was approved by the Ethics
Committee Research (EC Research) of UZ Leuven with the reference number S64614. Details about the
selected 102 samples (year of sample collection, rotavirus genotype, sex, age at sample collection, time
between last Rotarix vaccination and sample collection, and NGS reads) can be found in Table S1 in the
supplemental material.

Viral metagenomics. The NetoVIR protocol was used for viral enrichment of the fecal suspensions
as described before (20). Briefly, the fecal samples were suspended in Dulbecco’s phosphate-buffered sa-
line (dPBS) and homogenized with a Minilys homogenizer (Bertin Technologies) for 30 s at 4,000 rpm.
The homogenates were centrifuged for 3 min at 17,000 x g and filtered with 0.8-um polyethersulfone
(PES) filters (Sartorius). Filtrates were treated with Benzonase (Novagen) and micrococcal nuclease (New
England Biolabs) at 37°C for 2 h to remove the free-floating nucleic acids. Subsequently, DNA and RNA
were extracted using the QIAamp viral RNA minikit (Qiagen), without addition of carrier RNA. Reverse
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transcription and second-strand synthesis were performed by an adjusted version of the whole-tran-
scriptome amplification (WTA2; Sigma-Aldrich) protocol as described previously (21). A sequencing
library was constructed with the Nextera XT library preparation kit (Illumina). The size of the library was
checked with a Bioanalyzer (Agilent Technologies) with a high-sensitivity DNA chip, and the 2 nM
pooled libraries were sequenced on either an lllumina NextSeq 500 platform (2 x 150-bp paired-end) or
a NovaSeq 6000 platform (2 x 150-bp paired-end).

NGS data analysis. Low-quality reads, ambiguous bases, and primer and adapter sequences were
removed from the paired-end reads with Trimmomatic v0.36 with default parameters (22). Sequences
mapped to the human genome reference (hg38) and negative-control sequences were removed.
Quality-controlled reads were de novo assembled with metaSPAdes v3.14.0 using 21, 33, 55, and 77 k-
mer lengths (23). The contigs were concatenated, subjected to a 600-bp length cutoff, and clustered on
95% nucleotide identity covering 80% of the contig using a perl script (24), to generate a nonredundant
contig set. This contig set was annotated with DIAMOND v0.9.10 against a nonredundant protein data-
base (25). The eukaryotic viral contigs were extracted with an in-house script. Where possible, the incom-
plete viral genomes were completed in silico by mapping the quality-controlled reads against the refer-
ence sequences determined by the highest BLASTn nucleotide similarity with the lowest E value using
BWA software v0.5.9 (26) and SAMtools v1.6 (27). BWA and SAMtools were also implemented to obtain
the relative abundances by mapping the quality-controlled reads to the non-redundant contig set. Only
the contigs that were covered in length by 70% were kept for further analyses, and the contigs that had
fewer than 100 mapped reads were discarded.

Enteric virus characterization and phylogenetic analyses. The NGS read counts were normalized
to the total quality-controlled reads of the corresponding sample, as well as the genome length of the
virus of interest, and log,,-transformed to obtain relative abundances of contigs that represent viral
genomes. In order to generate relative abundance heat maps based on NGS data, Reshape2, tidyverse,
and complex heat map R packages were used (28-30). Enteroviruses, noroviruses, and sapoviruses were
genotyped with the National Institute for Public Health and the Environment (RIVM) genotyping tool
(31). Rotavirus gene segments were genotyped using the Virus Pathogen Database and Analysis
Resource (ViPR) (32). The presence of vaccine(-derived) sequences was investigated by mapping quality
control (QC) reads per sample to Rotarix (accession numbers KX954616 to KX954624) and RotaTeq
(accession numbers GU565041 to GU565051 and GU565063 to GU565095) sequences using BWA and
SAMtools. Open reading frames were determined by the NCBI ORF Finder tool (33) (www.ncbi.nlm.nih
.gov/orffinder). Only sequences that cover at least 85% of the ORF are included in the phylogenetic anal-
yses. Nucleotide-level multiple sequence alignments were generated using MUSCLE (34) with default pa-
rameters in MEGA software v7.0.26 (35), except for adenovirus sequences, where MAFFT v7 is used with
auto mode, due to better scalability with longer genomes (36). The nucleotide substitution models were
predicted using jModelTest v2.1.10 for all enteric-virus alignments (37). An optimized number of boot-
strap replicates (100 to 1,000) was determined by the autoMRE option, and maximum likelihood trees
were generated with RAXML-NG v0.9.0 (38). The rotavirus genotype representations next to the VP7 phy-
logeny in Fig. 3 were generated in R with ggtree package (39). Enteric virus phylogenies and rotavirus
VP1 to -3 and NSP2 to -5 gene trees were rooted at the midpoint. Outgroup rooting was performed for
VP4 (G8P[14] PR1973 strain), VP7 (G6P[15] Roe deer strain), and NSP1 (G6P1A[8] RotaTeq strain) genes.
Accession numbers for all the reference strains are given in Table S7.

Enteropathogen detection with RT-qPCR. Fecal dilutions (10%, PBS) of the 92 samples from sus-
pected rotavirus vaccine breakthrough cases, of which sufficient material was left from the initial 102
(Table S1), were transported to the AZ Sint Jan Brugge-Oostende clinical laboratory, mixed with DNAzol
buffer (Thermo Fisher), and stored at —80°C until further analysis. Next, RNA/DNA extraction was per-
formed on the QIAsymphony SP (Qiagen), and a RT-qPCR was performed with a customized TagMan
array card targeting gastrointestinal pathogens, in batches of 8 samples. The target genes were detected
in 48 uniplex real-time PCRs on a ViiA 7 system (Thermo Fisher). The tested pathogens included 8
viruses: norovirus (genotypes |, I, and V), adenovirus, astrovirus, sapovirus (genotypes |, Il, IV, and V),
rotavirus (serogroup A), enterovirus, hepatitis E virus (HEV), and human parechovirus. They also included
10 bacteria: toxigenic Clostridioides (formerly Clostridium) difficile, Campylobacter spp. (Campylobacter
jejuni, C. coli, C. lari, C. upsaliensis, and C. hyointestinalis), Salmonella sp., enteroaggregative E. coli (EAEC),
enteroinvasive E. coli (EIEC), enteropathogenic E. coli (EPEC) (atypical, eaeA positive; typical, eaeA and
bfpA positive), enterotoxigenic E. coli (ETEC), Shiga-toxin producing E. coli (STEC), Yersinia enterocolitica,
Yersinia pseudotuberculosis. Last, they included 8 parasites: Giardia lamblia (syn. Giardia duodenalis),
Cryptosporidium sp., Entamoeba spp. (E. histolytica), Strongyloides stercoralis, Dientamoeba fragilis,
Blastocystis spp., Microsporidium spp. (Enterocytozoon bieneusi, Encephalitozoon hellem, Encephalitozoon
intestinalis, and Encephalitozoon cuniculi), and Schistosoma spp. (Schistosoma mansoni, S. intercalatum, S.
haematobium, S. guineensis, S. mekongi, and S. japonicum). Phocine distemper virus (PDV) was added
during nucleic acid extraction as an experimental control (40). The 18S rRNA gene was used as an inter-
nal control. The primer sequences are proprietary to the AZ Sint Jan Brugge-Oostende and can be made
available for noncommercial purposes upon request. The RT-gPCR data were interpreted as follows: (i)
the quantification cycle (C,) value, defined as the number of PCR cycles where the fluorescent signal was
higher than the detection threshold (41), was determined and (ii) a G, value greater than or equal to 40
was accepted as negative for all pathogens. Additional information on how the analytical performance
of the gPCR assays was determined can be found in the supplemental materials and methods.

C, values for each standard per sample and the spread of their distribution are shown in Table S2. To
assess the gastroenteritis etiology, a score was given for each of the pathogen-specific RT-qPCR assays
(including rotavirus): strongly positive, 3 points; positive, 2 points; weakly positive, 1 point. The
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FIG 1 G/P-genotype distribution of the rotavirus vaccine breakthrough strains collected between 2007 and 2018 (postvaccination period). (A) Relative
proportions of the rotavirus genotypes per season for all known vaccine breakthrough cases (n = 915), with the absolute numbers of cases (N) and the
selected number of cases (n) indicated above each bar. (B) Genotype distribution of the 102 samples selected for further analyses.

relationship between the C, scores and the clinical scoring is shown in Table S6. Subsequently, we calcu-
lated the ratio of the sum of alternative pathogen scores present in each sample, over the rotavirus
score.

Data availability. The data have been deposited with links to BioProject accession number
PRINA729919 in the NCBI BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/). The sequen-
ces have been deposited in GenBank, and the accession numbers can be found in Table S8.

RESULTS

Sample selection from suspected rotavirus vaccine breakthrough cases. In this
study, we explored coinfecting enteropathogens in patients who received a full Rotarix
vaccination regimen (2 doses) and were diagnosed with acute gastroenteritis. These
patients were designated as having suspected rotavirus vaccine breakthrough cases
(referred to here as breakthrough cases), and their samples were analyzed using both
NGS and RT-gPCR. Accordingly, we selected 102 samples collected from 2007 to 2018
(see Materials and Methods).

Figure 1A shows the G/P genotype distributions of all known breakthrough cases, and
Fig. 1B shows the genotypes of the 102 selected samples, reflecting the overall break-
through G and P genotype distribution. Among the 15 detected genotype combinations,
the G2P[4], GOP[8], G3P[8], G1P[8], G4P[8], and G12P[8] genotypes were the most common.

NGS-based identification of coinfecting eukaryotic viral families. To obtain an
unbiased view of the viruses in these 102 samples, we purified virus-like particles and
subjected them to lllumina sequencing. The relative abundances of identified eukaryo-
tic viral families are shown in Fig. 2. Rotavirus was prevalent and abundant in the ma-
jority of the samples. In 18.6% of the samples, we detected nonrotavirus (alternative)
eukaryotic virus families containing members known to cause gastroenteritis in humans,
namely, Picornaviridae (10%), Astroviridae (7%), Adenoviridae (5%), and Caliciviridae (1%).
Furthermore, we also detected members of Anelloviridae (54%), Picobirnaviridae (7%),
Parvoviridae (5%), and Circoviridae (4%); however, they were not included in the down-
stream analyses, as their association with gastroenteritis is either weak or nonexistent.
Some samples contained multiple enteric viruses, and in some cases, the viral read abun-

dance was higher for alternative viral pathogens than for rotavirus (Fig. 2, boldface).
No unusual rotavirus genotypes or genotype constellations. Next, we evaluated

the genotypes and phylogenetic relationships of rotavirus gene segments. The full geno-
type constellations of 93 (out of 102) human rotaviruses could be determined (Fig. 2,
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FIG 2 Abundance heat map of the identified human eukaryotic virus families in 102 samples by NGS. The log,,-transformed and length-normalized NGS
read counts (RC) are shown. The total numbers of quality-controlled reads per sample are shown on top. An asterisk indicates that a (nearly) complete
genome was obtained from the virus.

asterisks). Like most of the circulating human rotavirus strains, they possessed either the
Wa (51%) or DS-1-like (48%) genotype constellation, except for a single bovine-like geno-
type constellation in combination with the G6/G8 and P[14] genotypes (Fig. 3). The G1
(n=16),G3 (n=11), G4 (n = 4), G (n = 14), and G12 (n = 4) genotypes were mostly
found in combination with P[8] and a Wa-like genetic backbone, whereas G2 (n = 37)
and G3eq (equine-like G3 lineage) (n = 6) were linked with a DS-1 backbone. We also
observed 3 intergenogroup reassortant rotaviruses: (i) G1P[8] with a DS-1-like backbone
(sample F06040), (ii) Wa-like G3 coupled with P[6] and a DS-1-like backbone (F02577),
and (iii) Wa-like T1 NSP3 with G2P[4] and a DS-1-like backbone (F03268). We further
identified coinfections with Wa-like and DS-1-like strains in 4 samples (Fig. 3, highlighted
strain names). In addition, we did not detect vaccine-derived reads in any of the samples
(Rotarix and RotaTeq).

The phylogenetic tree of VP7 revealed close genetic relatedness to typical human
rotaviruses, with high nucleotide identities (NI) (95 to 99%) (Fig. 3). The VP7 of the dou-
ble-reassortant DS-1-like G1P[8] (F06040) was closely related to a Japanese double-
reassortant strain (42). The DS-1-like G3P[6] (F02577) showed close genetic similarity to
another G3P[6] Belgian strain detected in 2009 (43). The 6 G3 strains with a DS-1-like
genotype constellation clustered with equine-like G3 strains. There was one sample
(FO3011) possessing both the G6 and G8 genotypes, clustering closely with other ani-
mal or animal-like human strains.

As mentioned above, the VP4 gene and the remaining 9 segments had either a Wa-
like or DS-1-like genotype constellation and mostly presented a low genetic diversity
compared to currently circulating rotaviruses (Fig. S1 to S10). The 9 segments of the
animal-derived F03011 were closely related to bovine-like rotavirus genotypes, as well
as zoonotic human strains (44). Interestingly, the VP1 gene of a DS-1-like G2P[4] strain
(FO1450) clustered with a zoonotic human strain, within the same monophyletic group
as the F03011 strain (Fig. S2). Overall, genotype constellations and phylogenetic analy-
sis revealed that the breakthrough strains shared close genetic relatedness to the com-
monly circulating human rotaviruses in Belgium and worldwide.

Several variants of common viral enteropathogens. For several alternative en-
teric viruses, (nearly) complete genomes could be obtained for further evolutionary
analyses (Fig. 2, asterisks). Nine types within Picornaviridae were detected, namely, cox-
sackievirus A9 (CV-A9), coxsackievirus A4 (CV-A4), coxsackievirus B2 (CV-B2), coxsackie-
virus B4 (CV-B4), echovirus E9 (EC-9-V), human parechovirus 1 (PeV-A1), Saffold virus 3
(SAFV-3), Aichivirus 1 (AiV-1), and human rhinovirus 78 (RV-A78). The phylogenetic
analysis showed that the AiV-1 and PeV-A1 strains clustered closely with known
Southeast Asian strains with high NI (99% and 94%, respectively) (Fig. 4) (45). However,
several other picornaviruses showed a higher genetic diversity; e.g., enteroviruses CV-
A9, CV-B4, and EC-9-V and cardiovirus SAFV-3 shared 87 to 91% NI with their closest
references. The genomes assigned to Astroviridae were closely related to either the
classic human astrovirus strains (HAstV-1 and HAstV-3; 98 to 99% NI) or recently
described divergent astroviruses (MLB1 and VA2; 98 to 99% NI) (Fig. 4). Among the
Adenoviridae, only a single enteric human adenovirus (human mastadenovirus F,
HAdV-41) was identified, which clustered with strains detected worldwide with high
genetic relatedness (99%) (Fig. 4). Three nonenteric human adenoviruses, classified as
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FIG 3 Maximum-likelihood tree of the VP7 gene of the detected rotavirus sequences (in boldface) with reference rotavirus genomes. The genotype
constellations of the detected strains are shown on the right. Samples harboring multiple genotype constellations (rotavirus coinfections) are highlighted.
Only the bootstrap values above 70% are shown. The branch lengths are drawn to scale and represent the nucleotide substitutions per site.

human mastadenovirus C (HAdV-C) and human mastadenovirus B (HAdV-B), were also
identified. HAdV-C strains clustered closely to either European HAdV-1 or HAdV-5
strains (99% NI). Another strain formed a clade with North American and Southeast
Asian HAdV-3 strains with high NI (99%).

Even though no noroviruses were detected by NGS; a single sapovirus (SV) Gl.2,
which is another member of the Caliciviridae, formed a clade with the strains from
around the world (98 to 99% NI) (Fig. 4).
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Picornaviridae

F02577 BEL/2010/EC-9-V
MF678320.1 AUS/2008/EC-9-V
LC321988.1 JPN/2017/EC-9-V
LS451297.1 ROU/1982/EC-9-V
F05244 BEL/2013/CV-B4
KF878966.1 AUS/2011/CV-B4
X05690.1 USA/JVB/1950/CV-B4
MH752987.1 USA/2005/CV-A9
KM890277.1 CHN/2009/CV-A9
99Fl)2«$IJ2 BEL/2010/CV-A9
KP290111.1 CHN/2013/CV-A9
MK652143.1 VEN/2018/CV-A9
V01149.1 Mahoney/1981/PV-1
U05876.1 FIN/CV-A16
BA{PFGHSS BEL/2015/PeV-A1

LC318432.1 JPN/2017/PeV-A1
.1 FIN, -A1
L KY351627.1 GER/2014/PeV-A1

HM181999.1 NL/2005/SAFV-3
72l EU681179.2 GER/2004/SAFV-3
100 F05504 BEL/2013/SAFV-3
AB983594.1 JPN/2008/SAFV-3
100 85 FJ890523.1 CHN/2008/AIV-1
100 leF01005 BEL/2008/AIV-1
100 MG200054.1 AUS/2008/AiV-1
KP247440.1 GER/2013/BN-5

Adenoviridae

LCO068712.1 JPN/1987/HAV-6
J01917.1 1978/HAdV-2
MH121110.1 GER/HAdV-1
100®F02402 BEL/2010
MK041235.1 CHN/2001/HAdV-5
F00396 BEL/2008

MH121094.1 GER/2014/HAdV-5
AF108105.1 HAdV-17
KF528688.1 HAdV-21
AY601636.1 HAdV-16
100@F05527 BEL/2013

KF268202.1 USA/HAdV-3

MK962806.1 ZAF/HAdV-41

Enterovirus B

| Enterovirus C

| Enterovirus A

| Salivirus A

97| AY599836.1 USA/1997/HAdV-3

MK883603.1 CHN/2011/HAdV-3

KF303070.1 USA/2010/HAdV-41
F03160 BEL/2011

KY316164.1 CHN/2015/HAdV-41

100 MT797127.1 BRA/2013/HAdV-41
MG925782.1 IRA/2016/HAdV-41
KU162869.1 FIN/1979/HoviX/HAdV-40
MN968817.1 BGD/2017/HAdV-40
MK955315.1 ZAF/HAdV-40
GU191019.1 USA/1954/HAdV-18

0.1

Human
mastadenovirus C

Human
mastadenovirus D

Human
mastadenovirus B

Human
mastadenovirus F

Human
mastadenovirus A

Astroviridae

°*l | HQ398856.2 HUN/2010/HAstV-1

Journal of Clinical Microbiology

72~ DQO70852.1 BRA/1995/HASIV-4
AY720891.1 GER/HAstV-4
MK059952.1 USA/HAStV-4
KF039912.1 RUS/2005/HAstV-4
o~ DQ344027.1 CHN/HAstV-4
MK059956.1 USA/HAstV-8
MF684776.1 CHN/2013/HASV-5
DQ028633.1 BRA/1994/HAStV-5
100) MN433703.1 USA/2013/HAstV-1
F07049 BEL/2015/HAstV-1
F01097 BEL/2009/HAStV-1 Mamastrovirus 1
JUNB87820.1 KR/200/HASV-1
FJ755402.1 CHN/2005/HAstV-1
100 MK059955.1 USA/HAStV-7
JF491430.1 RUS/2004/HAstV-3
MK059951.1 USA/HAStV-3
' MK296753.1 IE/HASV-3
MG571777.1 VEN/2015/HAstV-3
e F03069 BEL/2011/HAstV-3

_E KF039910.1 RUS/2005/HAstV-2
MN433705.1 USA/2014/HAstV-2

o7 1 JQO86552.1 CHN/HAstV-MLB1
100 NC 011400.1 USA/HAstV-MLB1
73| FJ402983.1 USA/HAstV-MLB1
F02402 BEL/2010/HAstV-MLB1

Caliciviridae

92 AB829252.1 TUR/HAstV-MLB2

L" JF742759.1 USA/2008/HAstV-MLB2

MK327365.1 CHN/HAstV-MLB2
KJ920197.1 UK/2014/HAstV-VA1
KY933670.1 USA/2017/HAstV-VA1
JX857868.1 IND/2005/HAstV-VA3
GQ502193.2 USA/2009/HAstV-VA2
F02114 BEL/2010/HAstV-VA2

Unclassified
Mamastrovirus

AB614356.1 BRA/2009/GI.2

F03159 BEL/2011/GI.2

JX993277.1 GER/2012/GI.2
KT327081.1 CHN/2014/Gl.1
MG012401.2 KEN/2006/GI.3
MG012443.1 USA/2015/GI.6
Sapporo
AY603425.1 JPN/2001/GII.3 virus
MN102401.1 TWN/2008/GllI.2

MH922773.1 KEN/2008/GII.6

KX274477.1 BRA/2011/GIl.4
MGO012444.1 USA/2015/GlI.1
MG012451.1 PER/2016/GII.5
MG012461.1 PER/2016/GIV.1

MG012434.1 USA/2014/GV .1

FIG 4 Maximum likelihood trees of the complete genomes of picornaviruses, astroviruses, adenoviruses, and sapoviruses. The strains identified in this study
are indicated with boldface type and dark circles. The species are shown next to the branches. Only bootstrap values above 70% are shown. The branch
lengths are drawn to scale and represent the number of nucleotide substitutions per site.

Fifteen enteropathogens identified with RT-qPCR. To screen for nonviral entero-
pathogens (e.g., bacteria and parasites) and to achieve a more sensitive detection for
viruses, RT-qPCR was performed on 92 samples for which sufficient material was available.
Consequently, 15 out of the 26 (58%) pathogens tested for were detected: rotavirus, ade-
novirus, astrovirus, picornavirus (enterovirus and parechovirus), sapovirus, norovirus, EPEC
(atypical and typical), EAEC, STEC, C. jejuni, C. difficile, Blastocystis spp., D. fragilis, and G.
lamblia (Fig. 5). Conversely, HEV, Salmonella, Y. enterocolitica, Y. pseudotuberculosis, ETEC,
EIEC, Cryptosporidium, E. histolytica, S. stercoralis, Schistosoma, and Microsporidium were
not detected. RT-qPCR results and demographics of enteropathogen-positive patients are
shown in Tables S2 and S3. Rotavirus was detected in all samples, and adenovirus (32%)
and enterovirus (15%) were the most common coinfecting viruses (Table S4A).
Pathogenic bacteria were identified in 35 samples, whereas protozoan parasites were
found in 21 samples. Moreover, there were in total 31 combinations of coinfection con-
sisting of virus-virus, virus-bacterium, virus-parasite, or virus-bacterium-parasite, and the
first two accounted for the majority of the coinfections (Table S4B). The most common
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FIG 5 Relative number of the enteropathogens detected in rotavirus breakthrough cases (top) and classification into gastroenteritis etiology groups
(bottom). The top panel shows the C, values based on the RT-gPCR results. The normalized NGS read counts (RC) per pathogen are shown in the middle
panel. Different types of detected pathogens are shown in different colors: pink to green, viruses; blue, bacteria; purple, parasites. In the bottom, the
grouping of the potential etiology of the gastroenteritis is shown, which is based on the given scores (see Materials and Methods). Samples marked with
an asterisk contain a viral pathogen(s) which was not detected by RT-qPCR.

co-occurring enteropathogens were adenovirus and EAEC (4%), followed by norovirus
and enterovirus (2%), and adenovirus and EPEC (2%). Overall, 36% of the samples har-
bored 1 coinfecting enteropathogen, 27% had 2 enteropathogens, 13% had 3 entero-
pathogens, and 3% had 4 enteropathogens alongside rotavirus. In the end, combined
data from NGS and RT-qPCR showed that there was at least one coinfecting pathogen in
80% of the rotavirus-positive samples.

Rotavirus is most likely not the cause of gastroenteritis in almost a third of the
cases. After determining the prevalence of enteropathogens in breakthrough samples,
we visualized the relative pathogen quantifications per sample, using the C, values (RT-
qPCR) and the relative abundances (NGS) (Fig. 5, top). Relying on the RT-qPCR results,
we attempted to assess the role of rotavirus in gastroenteritis etiology and developed a
scoring scheme. Accordingly, each pathogen-specific RT-gPCR assay was given a score
(see Materials and Methods; Table S6), and the ratio of the alternative-pathogen scores
over the rotavirus score was calculated for each patient. Based on this ratio, we desig-
nated each sample as representing a true breakthrough case (breakthrough) (ratio < 1),
equal contribution of rotavirus and alternative enteropathogen(s) (equal) (ratio = 1), or
alternative etiology for gastroenteritis (alternative) (ratio > 1) (Fig. 5, bottom). It is impor-
tant to note that, as this classification took only RT-gPCR data into account, it excluded
viruses that were not included in the RT-gPCR panel, yet were detected by NGS (Fig. 5,
samples with asterisks). Among the 3 samples that possessed such strains, a lower rela-
tive abundance of astroviruses (FO1097 and F02114) and cardiovirus (F05504) was found
in comparison to rotavirus (Fig. 2), validating their representation in the breakthrough
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group. On the other hand, there was an ~8-fold-higher relative abundance of Aichivirus
than rotavirus in FO1005, which would place this patient in the alternative gastroenteritis
etiology group. This evaluation finally resulted in 50 patients (54.3%) with a true vaccine
breakthrough infection, 13 patients (14.1%) with equal contribution of rotavirus and al-
ternative pathogen(s) to gastroenteritis, and 29 patients (31.5%) having an alternative
etiology. Moreover, among the patients that possibly had an alternative gastroenteritis
cause, 15 of them harbored more than 3 coinfecting agents (Fig. 5; Table S4B).

Discrepancies between detection methods. Overall, the results of the NGS and
RT-gPCR were in accordance (Table S5). RT-gPCR identified 61 additional viral patho-
gens in comparison to NGS due to higher sensitivity. On the other hand, there were 4
viruses that were detected only by NGS, as they were not included in the RT-gPCR
panel (AiV-1, SAFV-3, MLB1, and VA2). For a single sample (FO1097), NGS identified
HAstV-1, which should also have been identified by the RT-qPCR panel. The RT-qPCR
remained negative after retesting of this sample. Further comparison between the
HAstV-1 genome and the primers and probes did not show any mismatches which
could have explained this discrepancy (data not shown).

DISCUSSION

Multiple coinfections in breakthrough cases. Even though many enteric patho-
gens have been associated with pediatric gastroenteritis, only a few are routinely
screened, hiding the bigger picture. As several of these infections may not be the (main)
cause of gastroenteritis, it can be difficult to determine the true causative agent.
Furthermore, not much is known about host genetic and immune responses to gastro-
enteritis disease progression during coinfections. As a first step, it is important to identify
all the enteropathogens, which might contribute to the transition of an asymptomatic
infection to a symptomatic one or increase the severity of the disease (46). In this study,
we estimated the impact of coinfecting enteric pathogens in suspected rotavirus break-
through infections in Belgian infants. Surprisingly, approximately half of these cases
most likely either had an alternative gastroenteritis etiology (31.5%) or were the result of
coinfections including rotavirus (14.1%) (Fig. 5). Most coinfections were unique combina-
tions of viruses, bacteria, and parasites, which shows the complexity involved in reaching
a correct diagnosis.

Infants are frequently exposed to enteropathogens in households with multiple chil-
dren and in daycare centers, but also through poor hygiene and contaminated food (47).
Multiple coinfections can cause severe and chronic diarrhea in immunocompromised
patients, in some cases with fatal outcomes (48). However, since early exposures to
microorganisms is also known to be important for a proper training of the infant
immune system, the long- and short-term impact of enteric (co)infections should be
more thoroughly investigated (49, 50).

RT-gPCR detection of bacteria and parasites. Apart from the bacteria typically
associated with pediatric gastroenteritis (diarrheagenic E. coli, Campylobacter, toxino-
genic C. difficile), there are also atypical pathogens associated with travelling (e.g.,
EAEC and ETEC) (15). Traveler's diarrhea-associated EAEC was frequently detected in
this study, often in coinfection with other enteropathogens (Table S4). Unfortunately,
we did not have access to the immigration or travel history of the patients to assess
the import or endemicity of EAEC in Belgium. Other causative agents of gastroenteritis
detected here were parasitic protozoa, which are responsible for less than 10% of the
infantile gastroenteritis globally (51). The clinical significance of G. lamblia, Blastocystis
spp., and D. fragilis is still disputed, but association with gastrointestinal symptoms and
even chronic diarrhea has been reported, especially in immunocompromised patients
(52, 53). Blastocystis spp. had a very low C, value in one patient in this study, which
might indicate an acute infection (Fig. 5; Table S2).

NGS detection of viruses. Viruses are the most common cause of pediatric gastro-
enteritis and, as expected, they were also the most detected coinfecting pathogens in
this study. The NGS analyses allowed us to further classify and characterize the enteric
viruses in the suspected breakthrough cases. Consequently, several known (e.g.,
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HAstV-1 and HAdV-41) and divergent (e.g., CV-B4 and CV-A9) enteric viruses were
detected in the alternative gastroenteritis group, which are expected and unexpected
candidates in infantile diarrhea, respectively (14, 54, 55). Consistent with previous
reports, we also detected several picornaviruses at low frequency and with multiple
coinfections, such as PeV-A1, AiV-1, and SAFV-3 (56-58) (Table S4A). Another eukaryo-
tic virus family with a strong link to gastroenteritis is Astroviridae, and nonclassic astro-
viruses have been sporadically detected in diarrheic infants with unclear pathogenicity
since 2008 (14). We reported here the first Belgian MLB1 strain detected in 2010 in a 7-
month-old infant (Fig. 4). It has been suggested that the astrovirus infection rate is
decreasing due to the replacement of classic human astroviruses with the novel strains,
which are not part of the screening (14). Even though enteric adenoviruses (type 40/
41) are one of the leading causes of gastroenteritis in developed settings (55), we iden-
tified nonenteric adenoviruses more frequently (e.g., HAdV-B and HAdV-C) (Fig. 4).
Similar observations were made previously in diarrheic cases in Southeast Asia (55),
even though subgroup B and C adenoviruses are commonly associated with respira-
tory infections (59). Few members of the Caliciviridae (including the globally circulating
SV Gl.2) were detected at low prevalence in our study, which was rather unexpected,
as they are frequently reported in gastroenteritis (15, 60).

Comparison of NGS and RT-qPCR detection methods. As mentioned above, we
opted for a combined RT-gPCR and NGS method in this study, and the two approaches
yielded similar results. RT-qPCR, as expected, was more sensitive, whereas NGS identified
divergent viruses not covered in the RT-qPCR panel and allowed further molecular strain
characterization. One of the additional detections by RT-gPCR was noroviruses. Norovirus
is reportedly displacing rotavirus as the most common cause of diarrhea hospitalization in
settings where rotavirus vaccines are highly effective, such as Belgium (61-63). Identified
noroviruses mostly belonged to the Gl genogroup, which aligns with the reports on the
expansion of the Gll.4 since the mid-2000s (64). Furthermore, detection of a classic astrovi-
rus (HAstV-1) by NGS but not by RT-gPCR was an unanticipated result, which might be
caused by the additional freeze-thaw step between implementation of NGS and RT-gqPCR
methods, leading to RNA degradation. Overall, we showed that NGS and RT-gPCR are
complementary approaches for the detection and genomic characterization of genetically
diverse viral genomes. Moreover, even though the NGS data do not prove that the
detected viruses are actually enteropathogens, including nonclassic astrovirus surveillance
to investigate their spread and clinical significance should be considered.

NGS characterization of suspected rotavirus breakthrough strains. Since rotavi-
rus genotype diversity changes temporally, and its segmented genome makes it prone to
reassortments, unusual genotype constellations can emerge and escape vaccine-induced
immunity (65). Especially following the mass introduction of rotavirus vaccines, selection
of vaccine escape mutants has been a concerning issue (66-68). Our investigation of rota-
virus genotypes in the suspected breakthrough infections revealed a pattern similar to
that in previous observations, with common detection of Wa and DS-1-like genotype con-
stellations and a lack of evidence of possible vaccine escape mutants (6).

Due to the likely fitness cost to change an established genotype constellation, it
was not surprising that only 3 reassortant strains were detected (69) (Fig. 3). Double-
reassortant DS-1-like G1P[8] rotaviruses have emerged in Southeast Asia, but they have
spread globally in the postvaccine period (70-72). In this study, we report a double
reassortant G1P[8] in Belgium that was closely related to a Japanese reassortant G1P[8]
(70). The genotype constellation of the Belgian G1P[8] and several G3P[8] strains were
also related to equine-like G3P[8] strains. The equine-like strains have already been
reported worldwide and they are emerging in Europe (73-77). Another reassortant was
a G3P[6] with a DS-1-like backbone, a genotype combination previously described in
Belgium in 2009 (43). The G3P[6] type is detected in low frequencies but should be
monitored, as it is also fully heterotypic relative to the Rotarix vaccine.

Another driver of genetic diversity in rotavirus population is zoonotic transmissions.
Here, we describe a G6P[14] strain (from patient FO3011) that was almost identical to the
Belgian B10925 strain obtained from a diarrheic infant in 1997 (78) (Fig. 3; Fig. S2 to S10).
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It was speculated that livestock species are the most likely origin of this infection.
Interestingly, patient F03011 seemed to have a coinfection and also possessed a typical
bovine G8 genotype, which was phylogenetically closely related to a zoonotic human
strain from Italy (44). Overall, rotavirus analysis yielded a low frequency of intergen-
ogroup reassortments and zoonotic transmissions and no unusual genotypes in sus-
pected breakthrough strains in comparison to the circulating human rotaviruses.

Limitations. There were several limitations to this study. We did not consider that
gastroenteritis can also be noninfectious. Sample selection was nonrandom, and we
did not have a control group without acute gastroenteritis in order to associate clinical
significance with frequent enteropathogen detection. We also did not have complete
information on the epidemiological variables, which could be tested for associations to
gastroenteritis etiology groups. Moreover, several identified pathogens are regularly
detected in (healthy) infants, and diagnostic testing might not always be relevant. For
example, C. difficile is considered a part of the commensal microbiota in infants
younger than 2 years of age (79), and the oldest patient that was C. difficile positive
here was 16 months old. In addition, RT-qPCR can also detect virus shedding during
asymptomatic infections, and even though there are several studies attempting to es-
tablish a C, value cutoff for detection of a symptomatic infection, it is difficult to link vi-
ral load with disease (80, 81). On the other hand, several studies have reported a posi-
tive correlation between viral load and disease severity, supporting the inference of
clinical outcome using C, values in this paper (82, 83). Despite various limitations, in
this proof-of-concept study, we demonstrated multiple coinfections in gastroenteritis
cases which were initially classified as rotavirus vaccine breakthrough infections.
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