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abstract

PURPOSE Approximately 10%-40% of patients with lung cancer report no history of tobacco smoking (never-
smokers). We analyzed whole-exome and RNA-sequencing data of 160 tumor and normal lung adenocarci-
noma (LUAD) samples from never-smokers to identify clinically actionable alterations and gain insight into the
environmental and hereditary risk factors for LUAD among never-smokers.

METHODS We performed whole-exome and RNA-sequencing of 88 and 69 never-smoker LUADs. We analyzed
these data in conjunction with data from 76 never-smoker and 299 smoker LUAD samples sequenced by The
Cancer Genome Atlas and Clinical Proteomic Tumor Analysis Consortium.

RESULTS We observed a high prevalence of clinically actionable driver alterations in never-smoker LUADs
compared with smoker LUADs (78%-92% v 49.5%; P , .0001). Although a subset of never-smoker samples
demonstrated germline alterations in DNA repair genes, the frequency of samples showing germline variants in
cancer predisposing genes was comparable between smokers and never-smokers (6.4% v 6.9%; P 5 .82). A
subset of never-smoker samples (5.9%) showedmutation signatures that were suggestive of passive exposure to
cigarette smoke. Finally, analysis of RNA-sequencing data showed distinct immune transcriptional subtypes of
never-smoker LUADs that varied in their expression of clinically relevant immune checkpoint molecules and
immune cell composition.

CONCLUSION In this comprehensive genomic and transcriptome analysis of never-smoker LUADs, we observed a
potential role for germline variants in DNA repair genes and passive exposure to cigarette smoke in the
pathogenesis of a subset of never-smoker LUADs. Our findings also show that clinically actionable driver al-
terations are highly prevalent in never-smoker LUADs, highlighting the need for obtaining biopsies with adequate
cellularity for clinical genomic testing in these patients.

J Clin Oncol 39:3747-3758. © 2021 by American Society of Clinical Oncology

INTRODUCTION

Approximately 10%-40% of lung cancers are diag-
nosed in never-smokers (individuals smoking fewer
than 100 cigarettes during their lifetime).1,2 The most
common histological subtype of lung cancer in never-
smokers is lung adenocarcinoma (LUAD). The de-
mographics of LUAD in never-smokers are distinct
compared with smokers, with a greater proportion of
women, Asian or Pacific islanders, and individuals of
younger age. Although environmental factors such as
passive exposure to cigarette smoke, radon, air pol-
lutants, and genetic polymorphisms in genes including
TERT, GPC5, DNA repair genes, glutathione S-trans-
ferase, and EGFR and ERBB2 have been implicated
as risk factors, causative factors for lung cancer in
never-smokers are poorly understood.1,3-11

Next-generation sequencing studies by various groups
including The Cancer Genome Atlas (TCGA) have
provided valuable insights into the genomic landscape
of lung cancer. However, the majority of these samples
were acquired from smokers.12-16 We performed whole-
exome sequencing (WES) of 88 tumors and their cor-
responding germline DNA, and RNA-sequencing of 69
tumor samples from never-smokers with LUAD from
three institutions in the United States (Institutional
cohort). We also used WES of tumor and germline
and RNA-sequencing data from never-smoker
LUADs sequenced by TCGA and the Clinical Proteo-
mic Tumor Analysis Consortium (CPTAC), comprising
the External cohort.15,17 We analyzed data from these
never-smoker LUAD samples (never-smoker cohort)
along with sequencing data from smoking-associated
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LUADs (smoker cohort) sequenced by TCGA and CPTAC to
gain an insight into the environmental and hereditary risk
factors that could predispose to never-smoker lung cancer
and identify clinically actionable alterations.

METHODS

Clinical Information

Lung cancer samples from 88 self-reported never-smokers,
diagnosed between 2007 and 2014, were collected from
Washington University School of Medicine, MD Anderson
Cancer Center, and New York University, through Insti-
tutional Review Board–approved protocols in compliance
with ethical guidelines and following informed consent.
Clinical information and demographic data were available
for 85 of 88 patients in the Institutional cohort (Data
Supplement, online only). WES and RNA-sequencing data
for 513 TCGA and 110 CPTAC samples comprised the
External cohort. In addition to self-reported smoking status,
a bioinformatic scoring model was applied to infer smoking
status for all samples in the Institutional and External
cohorts (Fig 1A, Data Supplement). In total, 160 never-
smoker (84 from the Institutional cohort and 76 from the
External cohort) and 299 smoker LUAD samples that
passed the bioinformatic scoring model were used for
analyses. Self-reported never-smoker and smoker samples
that did not pass the bioinformatic scoring model were
excluded from further analyses. Among Institutional cohort
samples, the majority (n 5 75, 89%) were fresh frozen
specimens and the rest were formalin-fixed archival speci-
mens. Driver alterations were defined as known activating
mutations or fusions in RTK/RAS/RAF pathway genes.18

Molecular Analysis

We performed WES of tumor samples to an average depth
of 20-303 and germline (peripheral blood mononuclear

cells) samples from 88 patients from the Institutional co-
hort. In addition, RNA-sequencing was performed on tumor
samples from 69 patients from this cohort. Sequencing
data were initially analyzed with the objective of identify-
ing germline variants that could predispose to lung can-
cer, mutational signatures in tumor tissue related to
environmental carcinogen exposure, and clinically tar-
getable alterations in tumor specimens. RNA-sequencing
data were analyzed for validating variant calls and studying
the tumor microenvironment. We additionally analyzed
targeted exome sequencing and clinical molecular test
results conducted in a Clinical Laboratory Improvement
Amendments–certified laboratory for 17 patients for the
Institutional cohort.19 Samples for which we failed to identify
driver alterations through WES or clinical test results were
subject to WES at higher sequencing depth of nearly
4003 when adequate DNA was available (n 5 13). The
sequencing, molecular, and clinical data for the External
cohorts (Data Supplement) were obtained from Genomic
Data Commons (GDC).20 A comprehensive description of
bioinformatics methods, algorithms, and workflow has
been provided in the Data Supplement.

RESULTS

Mutational Landscape

Since self-reported smoking status was difficult to directly
verify for patients from whom specimens were collected in
both cohorts, we developed a scoring model to infer
smoking status (inferred smoking status) with a high degree
of confidence. This model used tumor mutation burden
(TMB; number of somatic mutations per million base pairs
of sequenced DNA) and mutation signatures characteristic
of tobacco smoke exposure (smoking signature), apart from
documented self-reported smoking status (Fig 1A). This
scoring system identified a subset of 160 high-confidence

CONTEXT

Key Objective
To gain a better understanding of the risk factors that might be related to lung cancer in never-smokers, whole-exome and

transcriptome data from 160 never-smoker lung cancer samples were examined, in conjunction with whole-exome
sequencing data from corresponding normal tissue samples.

Knowledge Generated
Results from this analysis show that a small subset of never-smoker lung cancer samples contain pathogenic and likely

pathogenic germline alterations in DNA repair genes. Additionally, in some instances, tumor cells exhibited mutational
signatures characteristic of exposure to cigarette smoke (possibly passive). Never-smoker lung cancers also showed a
high prevalence of oncogenic driver alterations and heterogeneity in the expression of immune checkpoint molecules
and tumor immune composition.

Relevance
These results provide an insight into germline alterations associated with never-smoker lung cancers. Furthermore, these

results emphasize the need for comprehensive molecular analyses of never-smoker lung cancers in the clinic, given the
high prevalence of targetable alterations in these samples.
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never-smoker samples from Institutional (n 5 84 of 88
samples) and External (n 5 76) cohorts and 299 high-
confidence smoker samples from the External cohort for
additional analyses (Data Supplement).

The median age at diagnosis was comparable between
never-smoker and smoking-related LUAD cohorts (median:
67 v 65 years; P 5 .1). Compared with the smoker cohort,
females were over-represented in the never-smoker cohort
(69.4% v 48.5%; P , .001). Since ancestry information
was unavailable for all the samples in the Institutional and

External cohorts, this was inferred from germline infor-
mation (Data Supplement). Ancestry information for TCGA
LUADs was obtained through the PanCan Atlas Ancestry
Informative Markers working group. The majority of never-
smokers were of European ancestry (62%), followed by
Asian (25%), African (5.6%), and Admixed American
(5.6%) ancestries. In the smoker cohort, 79.6%, 13%,
5.7%, and 1.7% of smokers were of European, African,
Asian, and Admixed American ancestries, respectively,
suggesting an over-representation of Asian ancestry in
never-smoker LUAD.
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FIG 1. The data-driven smoking classification in the LUAD cohorts (Institutional, CPTAC, and TCGA). (A) The flowchart presents the analysis steps
included in deriving the scoring model (continuous smoking score range from 0 to 1). The bar charts show the smoking score distribution in each of the
three cohorts. The smoking score (0.3 as the lower-bound cutoff and 0.7 as the upper-bound cutoff) along with the self-reported smoking status, and
mutagen signature validation was used to infer smoking status. The pie charts represent the NS and S composition of each of the three cohorts on the basis
of the inferred smoking status. In total, the NS group consisted of 160 samples and the S group contained 299 samples. (B) The violin plot shows the
comparisons of log2-scaled total mutation counts and mutation fractions that contributed to the SS between NS and S samples (as inferred from steps
described in Fig 1A). CPTAC, Clinical Proteomic Tumor Analysis Consortium; DNP, dinucleotide polymorphism; LUAD, lung adenocarcinoma; NS, never-
smokers; S, smokers; SS, smoking signature; TCGA, The Cancer Genome Atlas.
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A median of 2.93 mutations per megabase (Mb) (range:
0.5-5.5) was observed per sample in the Institutional co-
hort. TMB was comparable between never-smoker sam-
ples from Institutional and External cohorts (median TMB of
1.25 per Mb and 1.95 per Mb in the CPTAC and TCGA
cohorts, respectively). Smoker samples showed a median
TMB of 9.1/Mb and 10.83 per Mb in the CPTAC and TCGA
cohorts, respectively. Given that smoker and never-smoker
samples were classified on the basis of a scoring system
incorporating TMB, and in line with what has previously
been reported, TMBs were much higher in smoker com-
pared with never-smoker samples (P , .0001; Fig 1B). A
comparison of the mutation frequency of 20 genes, which
are recurrently altered in LUAD, between smoker and
never-smoker samples showed a significantly higher fre-
quency of alterations in EGFR, CTNNB1, SETD2,MET, and
RB1 in never-smoker and KRAS, TP53, STK11, NF1,
BRAF, and KEAP1 in smoker LUAD21 (Data Supplement).
EGFR (51%; n 5 82 of 160) and KRAS (35%; n 5 103 of
299) were the most frequent driver alterations among
never-smoker and smoker samples, respectively (Data
Supplement).

Clinically Actionable Alterations

We were able to readily identify a known RTK/RAS/RAF
pathway driver alteration in 65% (55 of 84) of never-smoker
samples in the Institutional cohort through WES and RNA-
sequencing. Driver alterations were not readily identifiable in
35% (n 5 29) of Institutional cohort samples (termed on-
cogene negative [ON] by WES). A novel kinase domain
mutation in EGFR (p.A955R) and an activating mutation in
AKT1 (p.E17K) were observed in two samples, raising the
possibility that these are the driver alterations in these
samples. Further analysis of available clinical sequencing
and fluorescent in situ hybridization test results allowed us to
identify driver alterations in nine additional samples (in-
cluding fusions in ALK [n 5 2] and ROS1 [n 5 1] through
fluorescent in situ hybridization, and mutations in EGFR
[n5 3], ERBB2 [n5 2], and KRAS [n5 1] through clinical
sequencing; Data Supplement). A comparison of bio-
informatically estimated sample purity between these nine
reclassified samples and the 57 samples in which a driver
was readily identified suggested a relatively lower predicted
median tumor cellularity in the nine ON by WES samples
(46% v 60%; P5 .006; Data Supplement). Suspecting that
low tumor cellularity could have similarly precluded the
detection of driver alterations in the other ON by WES
samples, we pursued additional deep WES for 13 of the 18
samples from which sufficient DNA was available. This
allowed us to identify exon 14 skipping mutations inMET in
two samples. Taken together, we were able to identify a
driver alteration in nearly 81% (68 of 84) of never-smoker
LUADs from the Institutional cohort, the vast majority of
which are targetable with currently available therapies
(Fig 2A). Similarly, a high prevalence of driver alterations was
also observed in never-smoker LUADs from the External

cohort (78% of TCGA and 92% of CPTAC samples). In
contrast, driver alterations were observed only in 49.5%
(n 5 148 of 299) of smoker samples (P , .0001). Co-
occurrence and mutual exclusivity analyses showed alter-
ations in EGFR to be co-occurring with alterations in tumor
suppressors such as TP53, CDKN2A, and RB1 (P , .05),
whereas mutations in KRAS co-occurred with SETD2 al-
terations and showed a trend (P , .1) toward mutual ex-
clusivity with TP53 (Fig 2B).

Germline Variant Analysis

To understand the contribution of germline variants in
cancer predisposition to never-smoker LUAD, we used
WES data from normal samples in both cohorts for germline
variant calling. Variants were processed and classified
based on guidelines from the American College of Medical
Genetics and the Association for Molecular Pathology into
pathogenic, likely pathogenic, or prioritized variants of
undetermined significance (VUS), as described in the Data
Supplement.22,23 Through these analyses, we prioritized
198, 128, and 284 rare variants (minor allele
frequency# 0.05% in gnomAD and/or 1,000 Genomes) in
the Institutional, CPTAC, and TCGA cohorts, respectively
(Data Supplement). Among these, 14, 24, and 11 manually
reviewed variants were found affecting one of the 152 well-
described cancer predisposition genes (Fig 3A, Data
Supplement).

Overall, pathogenic and likely pathogenic germline variants
were observed in 6.4% of smokers and 6.9% of never-
smokers (Figs 3B and 3C). Among these, we observed
variants in cancer predisposition genes such as BRCA1,
BRCA2, FANCG, FANCM, HMBS, MSH6, NF1, POLD1,
TMEM127, and WRN, exclusively among never-smokers
(Figs 3D-3F). We also investigated the potential enrichment
of pathogenic and likely pathogenic variants at the gene
level in both smokers and never-smokers, in comparison
with a noncancer cohort from the Genome Aggregation
Database (gnomAD), using a total frequency test (Data
Supplement).24 Burden test results showed suggestive
enrichment (0.05 , false discovery rate # 0.15) of
pathogenic and likely pathogenic variants in FANCG and
TMEM127 in never-smokers compared with gnomAD
noncancer data set, indicating a potential role for these
genes in LUAD predisposition in never-smokers. TMEM127
is a negative regulator of mammalian target of rapamycin
signaling, and germline variants in this gene have been
reported in pheochromocytomas and paragangliomas.25,26

FANCG encodes for a core protein of the Fanconi anemia
pathway, which plays an important role in repairing DNA
damage. Germline mutations in FANCG have been re-
ported in the context of young-onset pancreatic cancers.27

To further explore the impact of these and other germline
variants, we examined if pathogenic, likely pathogenic, and
prioritized VUSs observed in the normal sample underwent
loss of heterozygosity (LOH) in the tumor sample. Through
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this analysis, we observed two prioritized VUSs undergoing
significant LOH in tumors in BRCA2 and FANCA, as well as
two prioritized VUSs in BRCA2 and CHEK2 undergoing
suggestive (false discovery rate # 0.15) LOH (Fig 3G). To
validate the allele specificity of these prioritized VUS LOH
events, we analyzed read-count data from both tumor and
normal samples, as well as somatic copy number variation
calls (Data Supplement).28 Through this analysis, we were
able to identify that the deletion of the wild-type allele in the
cancer sample contributed to LOH in BRCA2 (Fig 3H),
indicating that this VUS was likely a true pathogenic event.
Notably, we did not identify either co-occurring or mutually
exclusive interaction between somatic alterations in genes
frequently altered in LUAD and any of the pathogenic or
likely pathogenic germline variants in cancer predisposing
genes (Fig 2B).

Mutational Signatures

Never-smoker samples from both cohorts predominantly
demonstrated single base substitution mutation signatures
(SBS) 1, 2, 6, and 13 (Data Supplement).29,30 SBS 1 is
characterized by C to T transitions in the context of CpG
(cytosine followed by guanine sequences) and is likely a result
of spontaneous or enzymatic deamination of 5-methylcytosine
to thymine. SBS2 and13are related to APOBECmutagenesis.
SBS 6has been observed inmismatch repair deficient tumors.
To investigate the contribution of environmental agents to in
never-smoker LUADs, we determined the extent to which the
pattern of mutations observed in each sample resembled
mutation signatures associated with known environmental
carcinogens (Fig 4, Data Supplement).31 As anticipated, these
analyses showed that the somatic mutation signatures from
84% of samples from smokers demonstrated a strong cor-
relation (R2 . 0.3) with smoking-related mutagen (polycyclic
aromatic hydrocarbon) signatures. Notably, 5.9% (n 5 9) of

never-smoker samples also demonstrated the presence of
smoking-relatedmutagen signatures. Themost frequent driver
alteration in these samples was still EGFR (five of nine sam-
ples; one sample showed a BRAF G466V mutation and three
were ON by WES) implying a role for environmental carcin-
ogens, possibly from passive exposure to cigarette smoke, in
the pathogenesis of a subset of never-smoker lung cancers.

Immune Landscape

Unlike smoker LUADs, never-smoker LUADs typically do
not demonstrate durable responses with immune check-
point blockade despite high programmed cell death ligand
1 (PD-L1) immunohistochemical scores.32,33 Therefore, to
gain a better understanding of the immunobiology of never-
smoker LUADs, their tumor microenvironment was studied
using RNA-sequencing data.34 Consensus clustering on
the basis of the presence of various immune and stromal
cell types and expression of immune markers identified
three clusters of never-smoker LUADs within the Institu-
tional cohort (Fig 5A, Data Supplement). Compared with
tumors belonging to cluster 1 (IM-1), cluster 2 (IM-2) and
cluster 3 (IM-3) tumors were overall relatively depleted for
the presence of various types of immune cells (Fig 5B). IM-
1 tumors also demonstrated a higher level of expression of
immunemarkers such as PD-L1, PD-L2, TIM3, CTLA4, and
SIGLEC15. In contrast to IM-1 tumors, IM-3 tumors con-
tained tumors with the lowest proportion of immune cells
and were relatively depleted in the expression of immune
checkpoint molecules. IM-2 tumors appeared to consist of
a mix of IM-1 and IM-3 tumors, with the level of expression
of immune checkpoint molecules and percentage of im-
mune cells in these tumors varying across a continuum.

A similar pattern of clustering was observed for never-
smoker samples in the External cohort, validating the
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observations made in the Institutional cohort (Data Sup-
plement). The frequencies of driver mutations in EGFR
(55.9%, 53.8%, and 51.9% in IM-1, IM-2, and IM-3
clusters, respectively) and KRAS (11.8%, 9.6%, and
7.4% in IM-1, IM-2, and IM-3 clusters, respectively), and
TMB (median of 2/Mb, 1.97/Mb, and 2.03/Mb in IM-1, IM-2,
and IM-3 clusters, respectively) were not particularly
different between these clusters. A direct comparison of
immune landscapes of smoker and never-smoker sam-
ples using RNA-sequencing data was not performed since
such analyses are expected to be confounded by batch
effects.

DISCUSSION

Our analyses indicate that the genomic features of
smoking-related and never-smoker LUAD are largely
comparable with activation of RTK/RAS/RAF signaling as
a hallmark feature of LUAD.35 However, our results show
that LUADs arising in never-smokers demonstrate a much
higher prevalence of driver alterations in this pathway than
those from smokers. Most importantly, the vast majority of
these alterations are targetable. We were able to identify a
driver alteration in nearly 80% of our never-smoker
samples using a combination of WES and targeted
deep sequencing. These findings support a role for
comprehensive molecular testing to identify a driver al-
teration in never-smoker lung cancers. Furthermore, these
results emphasize the need to procure biopsies with ade-
quate tumor cellularity for sequencing, considering that
patients with lung cancer often undergo fine needle aspi-
rations that do not yield samples with adequate tumor cel-
lularity for sequencing.

We observed pathogenic and likely pathogenic germline
variants in cancer predisposing genes for approximately
7% of patients with never-smoker LUAD in the Institutional
and External cohorts. Pathogenic or likely pathogenic
germline alterations in the DNA repair genes such as
BRCA1, BRCA2, FANCG, FANCM, MSH6, and POLD1
were exclusively mutated in never-smokers. Among these,
BRCA2 mutations also demonstrated LOH in a tumor
sample, further supporting a contributory role for the
dysregulation of DNA repair in a subset of never-smoker
LUADs. Germline alterations in DNA repair genes have
previously been implicated as a risk factor for lung cancer
by multiple groups.36 For instance, in a large study that
used cell-free DNA testing on a limited gene panel and
reported incidental germline alterations in 0.7% (33 of 4,
459) of patients with lung cancer, mutations in BRCA2
were the most frequent (17 of 33 patients).37 Similar results
were also reported by Mukherjee et al,38 who observed an
increased frequency of germline alterations in patients with
lung cancer with a family history of other cancers, early age
at onset, or carrying a diagnosis of multiple cancers. Al-
though these studies did not specifically examine the re-
lationship between never-smoker lung cancer and
alterations in DNA repair, findings from other studies have
reported germline alterations in TP53, BRCA1, and BRCA2
in young patients (age, 45 years) with never-smoker lung
cancer.39 Nevertheless, the overall prevalence of germline
alterations was, surprisingly, comparable between never-
smokers and smokers in our analysis. These results suggest
that although germline alterations in known cancer pre-
disposing genes may contribute to lung cancer in a very
small subset of never-smokers—germline predisposition
alone is unlikely to explain the pathogenesis of this disease.
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In this context, it is worth noting from our results that en-
vironmental exposures such as that of passive exposure to
cigarette smoking—as inferred from mutation signature
analysis—are also likely to predispose to lung cancer in
never-smokers. However, analyses of this nature are limited
by the fact that mutational signatures of different envi-
ronmental carcinogens can show a considerable degree of
overlap.31 Additionally, these results can also be biased by
misclassification of smoker samples as never-smoker
samples, and artifacts introduced by sample fixation and
age.40

We also show that it is possible to categorize never-smoker
LUADs into relatively immune cold (IM-3 and select IM-2
cluster samples) and hot (IM-1 cluster) subtypes. Com-
pared with immunologically hot tumors, cold never-smoker
tumors appeared to lack expression of immune markers
that predict for response to immunotherapy, such as PD-
L1, and were also depleted for the presence of immune
cells, implying immune evasion through mechanisms that
are not very well characterized. For instance, never-smoker
LUADs in our study, overall, showed relatively lower TMBs
and a higher frequency of mutations in genes such as
CTNNB1, which participates in WNT signaling, compared

with smoker samples. Activation of WNT signaling has
been shown to facilitate immune evasion and contribute to
immunotherapy resistance across cancers.41 Together,
these results possibly explain the relatively lower response
rates associated with immunotherapy targeting pro-
grammed cell death 1 and PD-L1 in never-smoker LUADs
compared with smokers. Classifying never-smoker tumors
into immune subtypes in future clinical trials is likely to
provide a better understanding of biomarkers that predict
for response to different types of immunotherapies in this
patient population.

Overall, in this comprehensive analysis of never-smoker
lung cancer samples, we report that the key genomic al-
terations between LUADs arising in smokers and never-
smokers are largely similar, although they tend to differ in
terms of their prevalence, mutational patterns, and immune
cell infiltrates. Although a subset of never-smoker LUADs
are likely to be driven by germline alterations or exposure to
environmental carcinogens, the etiological underpinnings
of this disease continue to remain unclear and will require
additional studies using larger samples possibly through
multiomic approaches involving tumor tissues and germ-
line DNA analyses.
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