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abstract

PURPOSE Patients with myelodysplastic syndromes (MDS) have a survival that can range from months to
decades. Prognostic systems that incorporate advanced analytics of clinical, pathologic, and molecular data
have the potential to more accurately and dynamically predict survival in patients receiving various therapies.

METHODS A total of 1,471 MDS patients with comprehensively annotated clinical and molecular data were
included in a training cohort and analyzed using machine learning techniques. A random survival algorithm was
used to build a prognostic model, which was then validated in external cohorts. The accuracy of the proposed
model, compared with other established models, was assessed using a concordance (c)index.

RESULTS The median age for the training cohort was 71 years. Commonly mutated genes included SF3B1,
TET2, and ASXL1. The algorithm identified chromosomal karyotype, platelet, hemoglobin levels, bone marrow
blast percentage, age, other clinical variables, seven discrete gene mutations, and mutation number as having
prognostic impact on overall and leukemia-free survivals. The model was validated in an independent external
cohort of 465 patients, a cohort of patients with MDS treated in a prospective clinical trial, a cohort of patients
with paired samples at different time points during the disease course, and a cohort of patients who underwent
hematopoietic stem-cell transplantation.

CONCLUSION A personalized prediction model on the basis of clinical and genomic data outperformed
established prognostic models in MDS. The new model was dynamic, predicting survival and leukemia
transformation probabilities at different time points that are unique for a given patient, and can upstage and
downstage patients into more appropriate risk categories.

J Clin Oncol 39:3737-3746. © 2021 by American Society of Clinical Oncology

INTRODUCTION

Myelodysplastic Syndromes (MDS) are clonal hema-
topoietic disorders that lead to bone marrow failure and
a risk of progression to acute myeloid leukemia (AML).1

The outcomes of patients with MDS are heterogeneous,
with some alive more than a decade following diagnosis
and others dying within a few months. Accurately
predicting outcome can help patients manage expec-
tations for their disease trajectory and help physicians
identify appropriate therapies.2,3

Established prognostic models rely primarily on clinical
variables that are derived from bone marrow pathology
and peripheral blood counts and divide patients into a
handful of risk categories.4 The most commonly used
models in clinical practice and for clinical trial eligibility
are the International Prognostic Scoring System (IPSS)
and the revised IPSS (IPSS-R).5,6 The recent addition of
molecular data to these scoring systems has enhanced
the accuracy of these models, allowing upstaging and
downstaging of patients into more appropriate risk
categories, although the increment in improving their

accuracy is modest.7,8 Furthermore, these prognostic
models, many of which were developed in untreated
patients, may underestimate or overestimate the actual
survival of a patient, affecting treatment recommen-
dations and prediction of disease course.7,8

In this study, we took advantage of a machine learning
algorithm that can take into account clinical, patho-
logic, and molecular variables, as well as their inter-
actions with each other, and developed and validated
a prediction model that can provide a personalized
prognosis that is specific for a given patient.

METHODS

Patient Cohort

Peripheral blood and bone marrow samples from
patients diagnosed with MDS according to 2016 WHO
criteria9 (criteria were reviewed and updated for pa-
tients who were diagnosed before 2016) and evaluated
at the Cleveland Clinic and Munich Leukemia labo-
ratory between 2001 and 2018 were included in the
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training cohort. The training cohort was used to build the
model that was subsequently validated in an independent
cohort of patients with MDS treated at the Moffitt Cancer
Center between 2005 and 2018. Karyotypes were classified
using the International System for Cytogenetic Nomen-
clature Criteria. The IPSS and IPSS-R were calculated as
described previously.5,6

All patients signed informed consent for their samples and
data to be used in future studies, and the study was ap-
proved by each participating center’s Institutional Review
Board committee in accordance with Declaration of Hel-
sinki. More details regarding the patient cohorts and
samples are summarized in the Methods section of the
Data Supplement (online only).

DNA Sequencing and Analysis

Targeted deep sequencing was performed on 38 genes that
are commonly reported in commercial laboratories’ geno-
mic panels and have shown to have clinical impact in MDS
and other myeloid malignancies. Annotation of the muta-
tions was blinded from the clinical variables and performed
by individuals not associated with the study. Detailed se-
quencing information is provided in the Methods section in
the Data Supplement.

Statistical Analyses

Overall survival (OS) was defined as the time from diagnosis
until death from any cause or censoring at the time that the
patient was last known to be alive. Patients who underwent
an allogeneic stem-cell transplant were censored at the
time of the transplant. Stepwise Cox proportional hazard
analyses were conducted to evaluate the prognostic impact
of each mutation on OS and AML transformation in uni-
variate analyses and after controlling for age and IPSS-R
score. For AML transformation, death without AML transfor-
mation was considered to be a competing risk. A Bonferroni
correction was used to identify significant mutations (a
P value , .002 is considered significant instead of .05).
To build the new model, clinical and mutational data
were entered into random survival forest algorithm.10 The

algorithm randomly bootstraps the original data into two
thirds, where the model is developed, and one third, where
the model is internally validated. The process is repeated
multiple times to assure reproducibility of the final result.
Furthermore, the algorithm includes all the variables and
takes into account the relationship between each variable
and other variables and the desired outcome (Data Sup-
plement). Missing variables are imputed using an internal
function built into the algorithm (more details are given in
the Methods section in the Data Supplement). To produce
an easy-to-use and reliable model, only variables with a
significant impact on the desired outcome were included
using variable importance analysis (Data Supplement). The
top variables that affected the desired outcome were
chosen to build the final model. Given a significant overlap
between the top variables that affected OS and leukemia
transformation, we decided to have one combined model
rather than two separate models to ease the communi-
cation and implementation of the final model. The per-
formance of the proposed model, compared with other
models, was assessed by Harrell concordance index (c-
index). More details regarding the statistical analyses are
included in the Statistical Analysis section in the Data
Supplement.

RESULTS

Patient Characteristics

Data on 1,471 patients were used to build the new model.
The clinical characteristics of the cohort are summarized in
Table 1. The median age was 71 years (range, 19-99
years). Cytogenetic risk categories per IPSS-R included
65 patients (4%) with very good, 1,060 (72%) with good,
193 (13%) with intermediate, 60 (4%) with poor, and 93
(6%) with very poor risk. Risk stratification per IPSS-R
included 749 (51%) with very low or low risk, 336 (23%)
with intermediate, 182 (19%) with higher or very high risk,
and 7% not calculated because of missing values. The
clinical and mutational characteristics for the validation
cohort compared with the training cohort as well the

CONTEXT

Key Objective
Build and validate a personalized prediction model using artificial intelligence.
Knowledge Generated
A personalized genoclinical model outperformed established prognostic models in myelodysplastic syndromes. The new

model was dynamic, predicting survival and leukemia transformation probabilities at different time points that are unique
for a given patient.

Relevance
The new model can be used as a stand-alone model or in conjunction with other established models to improve the

predictability of outcomes in patients with myelodysplastic syndromes. It can also be used as a risk stratification tool for
clinical trials enrollment.
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treatment modalities in each cohort are summarized in the
Data Supplement. The validation cohort has more patients
with higher-risk disease and differs in the presence of some
mutations compared with the training cohort (Data
Supplement).

Molecular Landscape of MDS and Mutations Associations

To identify mutations associated with OS and AML trans-
formation and to standardize the definition of mutation
number or sample, we focused the analyses on 24 genes
that were mutated in at least 30 patients in the study cohort
(these genes are commonly included in commercial labo-
ratory panels and have been shown to affect outcomes in our
study and others11,12; Fig 1 and the Data Supplement). We
identified at least one mutation of these genes in 1,149
patients (78%) with a median number of mutations per
sample being 2 (range, 0-8). Gene mutation frequencies
were consistent with those reported in previous studies.11,12

We then evaluated the correlation of these genes with each
other. Strong correlations were observed for TP53mutations
and complex karyotype, TP53 and chromosome seven
abnormalities, and STAG 2 or RUNX1 with ASXL1mutations
(Fig 1). SF3B1mutations were mutually exclusive with TP53
mutations, complex karyotype, chromosome seven abnor-
malities, and ASXL1/SRSF2/U2AF1 (Fig 1).

Impact of Mutations on OS

With a median follow-up of 43.6 months, the median OS
was 32.2 months (range, 0.03-221.8 months). The impact
of mutations on OS in univariate analyses and after ad-
justment for age and IPSS-R scores is summarized in
Table 2. Using the Bonferroni correction, 10 mutations
(ASXL1, EZH2, IDH2, KRAS, NRAS, RAD21, RUNX1,
SRSF2, STAG2, and TP53) had a significant negative
prognostic impact on OS, whereas only SF3B1 was asso-
ciated with favorable outcomes (Table 2 and Fig 2). Only
seven mutations (with the exception of KRAS, RUNX1, and
SRSF2) remained significant after adjustment for age and
IPSS-R scores (Table 2 and Fig 2). In a multivariate analysis
that included age, IPSS-R risk categories, and significant
mutations in univariate analysis versus all 24 gene muta-
tions regardless of their significance, the prognostic impact
of some of these mutations fluctuated depending on the
variables included in the model. For example, only muta-
tions in ASXL1, EZH2, KRAS, NRAS, RAD21, SF3B1, and
TP53 were significant when only significant mutations in
univariate analysis were added to the multivariate analysis,
whereas more mutations (ASXl1, CBL, EZH2,NRAS,RA21,
SF3B1, TET2, and TP53) were significant when adding all
the 24 genes (Data Supplement).

We also investigated the impact of variant allelic frequency
(VAF) of each mutation on OS. When VAF was used as a
continuous variable, only EZH2 (hazard ratio [HR] 6.27;
95% CI, 2.12 to 18.50; P , .001) had a negative adjusted
(for age, IPSS-R risk categories, and the Bonferroni cor-
rection) impact on OS (Data Supplement).

Impact of Mutations on AML Transformation

A total of 231 patients (16%) had AML transformation
during their disease course. The leukemia transformation
rate in our cohort correlates with previous reports.6,11 The
impact of mutations on leukemia transformation in uni-
variate analysis and after adjustment with age and IPSS-R is
summarized in Table 2. In a multivariate analysis that in-
cluded age, IPSS-R risk categories, and significant muta-
tions in univariate analysis (after the Bonferroni correction)
versus all 24 gene mutations regardless of their signifi-
cance, the prognostic impact of some of thesemutations on
leukemia transformation also changed depending on the
variables included in the model. For example, only muta-
tions in ASXL1, IDH2, PHF6, PTPN11, RAD21, RUNX1,
SF3B1, STAG2, and TP53 were significant when only
significant mutations in univariate analysis were added to
the multivariate analysis, whereas more mutations (ASXl1,
IDH2, RAD21, RUNX1, SF3B1, SRSF2, STAG2, and TP53)
were significant when adding all the 24 genes (Data
Supplement).

We also investigated the impact of VAF (as a continuous
variable) on AML transformation. Only mutations in ASXL1
(HR 1.08; 95% CI, 1.05 to 1.11; P , .001), NPM1 (HR
12.02; 95% CI, 1.40 to 103; P 5 .023), RUNX1 (HR 3.07;
95% CI, 0.26 to 35.8; P5 .019), and TET2 (HR 4.67; 95%
CI, 1.38 to 15.83; P 5 .013) led to a higher likelihood of
AML transformation (Data Supplement).

Mutation Number As an Independent Prognostic Variable

Mutation number canmeasure the mutational load of MDS,
although its number depends on the number of genes that
are included in the panel. Using the 24 genes that were
mutated in $ 30 patients in our cohort, we found that the
number of mutations had a significant impact on OS and
leukemia transformation (Fig 3). This impact remained
significant even after adjustment for age and IPSS-R cat-
egories (OS, HR 1.13; 95% CI, 1.07 to 1.19; P, .001) and
(AML transformation, HR 1.45; 95% CI, 1.33 to 1.57; P ,
.001). More importantly, mutation number retained its
prognostic impact even after the removal of SF3B1 (OS, HR
1.29; 95% CI, 1.23 to 1.35; P , .001) (leukemia-free
survival, HR 1.59; 95% CI, 1.48 to 1.71; P , .001)
and TP53 mutations (OS, HR 1.20; 95% CI, 1.14 to 1.26;
P , .001) (AML transformation, HR 1.50; 95% CI, 1.39 to
1.62; P , .001).

Personalized Prediction Model

Variables that affected OS and leukemia transformation are
shown in Figure 4 (ranked from the most to the least im-
portant). As expected, cytogenetic risk groups per IPSS-R
were the most important variable for survival, whereas blast
percentage was most important for AML transformation.
Although there is a partial interaction between blast per-
centage and 2016 WHO criteria, both variables remained
significant for OS and leukemia transformation and affected
the final model accuracy. A total of seven mutations,
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along with mutation number, affected OS and AML
transformation (Fig 4). The final model internal cross-
validation showed the c-index score of 0.74 (95% CI, 0.73
to 0.75) for OS and 0.81 (95% CI, 0.80 to 0.82) for leukemia
transformation in the training cohort and 0.71 (95% CI, 0.73
to 0.75) and 0.84 (95%CI, 0.73 to 0.75) compared with IPSS
0.66 (95% CI, 0.62 to 0.67) and IPSS-R 0.67 (95% CI, 0.62
to 0.68) in the validation cohort, respectively (Fig 4), which
included patients diagnosed at an independent center, who
underwent sequencing analyses that used a different set
of genes and sequencing method. The new model out-
performed the IPSS and IPSS-R even when mutations were
added to the scoring systems as described previously7,8

(Fig 4). Furthermore, the proposed model was very well-
calibrated in the training and validation cohorts for OS and
leukemia transformation (Data Supplement).

To translate this model into a useful clinical tool, we built an
online calculator13 that can generate the survival and
leukemia transformation probabilities at different time
points in a patient’s disease course using available clinical,
laboratory, and molecular data.

Clinical Implications of the Proposed Model

As shown in Figure 4D, OS survival rates varied sub-
stantially even among patients in the same IPSS-R risk

TABLE 1. Patient Clinical Characteristics

Parameter
Training Cohort
(N 5 1,471)

Median age, years (range) 71 (19-99)

Sex, female, No. (%) 486 (33)

MDS etiology, No. (%)

Primary MDS 1,315 (89)

Secondary MDS 56 (4)

Therapy-related MDS 100 (7)

Patients who transformed to AML,
No. (%)

231 (16)

Patients who received bone marrow
transplant, No.

130

2016 WHO subtypes, No. (%)

MDS with del5q abnormality 62 (4)

MDS MLD 358 (24)

MDS SLD 78 (5)

MDS with excess blasts—1 315 (21)

MDS with excess blasts—2 258 (18)

MDS-SLD/MLD-RS 351 (24)

MDS-U 49 (3)

Clinical characteristics

Median white blood cell count, k/
mL (range)

4.2 (0.6-82.6)

Median hemoglobin, g/dL (range) 9.9 (3.9-15.6)

Median platelets, k/mL (range) 120 (4-975)

Median absolute neutrophil
count, k/mL (range)

2.1 (0-65.1)

Median absolute monocyte count,
k/mL (range)

1.52 (0-6.5)

Median absolute lymphocyte
count, k/mL (range)

5 (0-62)

Median bone marrow blast
percentage (range)

4 (0-19)

Median peripheral blood blast
percentage (range)

0 (0-15)

Bone marrow blasts, % , 5%,
No. (%)

838 (57)

Bone marrow blasts, 5%-10%,
No. (%)

408 (28)

Bone marrow blasts, . 10%,
No. (%)

225 (15)

Cytogenetics per IPSS, No. (%)

Good 1,045 (71)

Intermediate 246 (17)

Poor 180 (12)

Cytogenetics per IPSS-R, No. (%)

Very good 65 (4)

Good 1,060 (72)

(continued in next column)

TABLE 1. Patient Clinical Characteristics (continued)

Parameter
Training Cohort
(N 5 1,471)

Intermediate 193 (13)

Poor 60 (4)

Very poor 93 (6)

IPSS risk categories, No. (%)

Low 391 (27)

Intermediate-1 626 (43)

Intermediate-2 280 (19)

High 70 (5)

Missinga 104 (7)

IPSS-R risk categories, No. (%)

Very low 318 (22)

Low 431 (29)

Intermediate 336 (23)

High 190 (13)

Very high 92 (6)

Missinga 104 (7)

Abbreviations: AML, acute myeloid leukemia; IPSS, International
Prognostic Scoring System; IPSS-R, revised IPSS; MDS, myelodysplastic
syndromes; MDS-U, MDS unclassifiable; MLD, multilineage dysplasia;
RS, ring sideroblast; SLD, single lineage dysplasia.

aMissing is related to missing one or more of the clinical variables
such as hemoglobin, platelets, or absolute neutrophil counts that are
required for calculating the IPSS and IPSS-R scoring systems.
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group. Applying the new model, patients with a survival
probability , 50% at 18 months (patients with a median
OS , 18 months) were considered higher-risk. Using the
new model, 306 patients (20%) in the training cohort were
identified as a higher-risk group; among them, 148 (48%)
were classified as lower-risk per IPSS and 107 (35%) per
IPSS-R (score# 3.5)14 (Fig 4D). Similarly, 73 patients (16%)
in the validation cohort were classified as a higher-risk and
28 (39%) of them were classified as lower-risk per IPSS and
33 (45%) per IPSS-R (Fig 4D).

Validations of the New Model in Different Settings

To further assure the reproducibility of our model in dif-
ferent settings, we validated it in three different cohorts.
First, we obtained clinical and mutational data from

patients who participated in the prospective, phase II, North
American Intergroup S1117 trial in which patients with
higher-risk MDS and chronic myelomonocytic leukemia
received azacitidine monotherapy or azacitidine combined
with either lenalidomide or vorinostat. The study cohort and
outcomes were described previously and are summarized
in the Methods section in the Data Supplement. After ex-
cluding patients with chronic myelomonocytic leukemia,
we identified 75 MDS patients with available clinical and
genomic data. The clinical and mutational characteristics
of this patient cohort are summarized in the Data Sup-
plement. The cohort did not include absolute monocyte
counts or absolute lymphocyte counts (not collected), and
37 patients (49%) had no karyotype results reported by the
participating centers despite IPSS scores being reported for
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FIG 1. Genomic landscape of the training cohort: (A) the graph represents frequencies of recurrent gene mutations in this cohort, (B) the mosaic plot
represents distributions of recurrent gene mutations in 1,471 patients, and (C) exclusivity and co-occurrence between different gene mutations. The circles
were sized and colored according to their log (odds) from Fisher’s exact test and person correlation (pink color represents co-occurrence, and green color
represents exclusivity). H, high; INT, intermediate; IPSS-R, revised International Prognostic Scoring System; L, low; MDS, myelodysplastic syndromes; MDS-
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all patients. We compared our model with the IPSS scoring
system only to assure the accuracy of the comparison.

When applying our model to this patient cohort, the c-index
for our model was 0.68 compared with 0.57 for the IPSS
scoring system. Although this trial targeted patients with
higher-risk MDS per the IPSS scoring system, our model
identified 24 patients (32%) as being higher-risk (con-
sidering patients with a survival probability of , 50% at
18months) and 51 (68%) as lower-risk. In total, 37 patients
(64%) with higher-risk disease per the IPSS (26 of 39 with
intermediate-2 risk and 11 or 19 in high-risk categories)
were downstaged by our model, whereas 3 of 17 patients in
the Intermediate-1 risk group were upstaged to a higher-

risk category. Interestingly, the median OS for the patients
who were downstaged using our model was 26.1 months
(95% CI, 12.5 to 45.6) compared with 16 months (95% CI,
12.3 to 35.3; P5 .33) for patients without changes in their
risk category. Furthermore, the median OS for patients who
were identified as higher-risk by our model and by the IPSS
scoring system (unchanged category) was 12.5 months for
patients (n 5 7) who received azacitidine treatment
compared with 25.8 months for patients who received
azacitidine plus lenalidomide (n 5 9) and 14.9 months for
patients who received azacitidine plus vorinostat (n 5 8).
However, the median OS for patients who were downstaged
by our model was 28, 16.6, and 36.1 months, respectively.

TABLE 2. Impact of Mutations on OS and Leukemia Transformation in Cox Regression Model

Variable No.

OS Leukemia Transformation

No. of
Events

Unadjusted Adjusted
No. of
Events

Unadjusted Adjusted

HR (95% CI) P HR (95% CI) P HR (95% CI) P HR (95% CI) P

ASXL1 289 195 1.78 (1.51 to 2.10) , .001 1.41 (1.19 to 1.67) , .001 82 2.42 (1.85 to 3.17) , .001 2.17 (1.63 to 2.89) , .001

BCOR 68 39 1.53 (1.11 to 2.11) .01 1.24 (0.89 to 1.72) .20 20 2.38 (1.50 to 3.76) , .001 2.02 (1.24 to 3.29) .005

BCORL1 25 11 0.80 (0.44 to 1.46) .47 0.91 (0.50 to 1.66) .76 3 0.79 (0.26 to 2.44) .68 1.08 (0.34 to 3.40) .89

CBL 57 35 1.54 (1.09 to 2.16) .013 1.64 (1.17 to 2.31) .004 10 1.05 (0.54 to 2.03) .89 1.07 (0.54 to 2.13) .85

CEBPA 14 7 1.38 (0.66 to 2.91) .39 0.97 (0.46 to 2.05) .93 2 1.05 (0.24 to 4.54) .95 0.72 (0.17 to 3.15) .67

DNMT3A 174 91 0.89 (0.71 to 1.11) .30 0.92 (0.74 to 1.14) .44 33 1.21 (0.83 to 1.76) .32 1.33 (0.91 to 1.95) .13

ETV6 36 25 1.34 (0.90 to 2.00) .15 1.26 (0.85 to 1.88) .26 10 1.80 (0.97 to 3.32) .062 1.71 (0.90 to 3.27) .10

EZH2 69 55 1.91 (1.45 to 2.52) , .001 1.57 (1.19 to 2.08) .002 18 1.73 (1.05 to 2.85) .031 1.63 (0.98 to 2.71) .059

FLT3 18 14 1.74 (1.03 to 2.96) .039 2.23 (1.31 to 3.79) .003 7 2.68 (1.26 to 5.69) .01 2.85 (1.21 to 6.70) .017

GATA2 13 6 1.23 (0.55 to 2.76) .61 1.19 (0.53 to 2.66) .68 3 1.72 (0.59 to 4.97) .32 1.65 (0.57 to 4.74) .36

IDH1 39 26 1.43 (0.96 to 2.11) .076 1.52 (1.03 to 2.26) .036 8 1.31 (0.65 to 2.63) .45 1.34 (0.66 to 2.73) .41

IDH2 55 40 1.70 (1.24 to 2.34) .001 1.32 (0.96 to 1.82) .09 24 3.71 (2.41 to 5.71) , .001 3.48 (2.21 to 5.49) , .001

JAK2 57 30 0.90 (0.62 to 1.30) .57 0.90 (0.62 to 1.30) .57 8 0.74 (0.35 to 1.57) .43 0.84 (0.39 to 1.83) .67

KDM6A 15 9 0.91 (0.47 to 1.75) .77 1.10 (0.57 to 2.13) .77 2 0.71 (0.19 to 2.70) .62 0.85 (0.22 to 3.29) .81

KIT 13 6 1.30 (0.58 to 2.89) .53 1.26 (0.56 to 2.83) .58 2 1.13 (0.30 to 4.28) .86 1.13 (0.29 to 4.45) .86

KRAS 30 23 2.08 (1.37 to 3.14) , .001 1.83 (1.21 to 2.78) .004 6 1.34 (0.57 to 3.13) .50 1.05 (0.44 to 2.51) .91

NF1 38 25 1.46 (0.98 to 2.18) .063 1.55 (1.04 to 2.32) .031 8 1.34 (0.65 to 2.73) .43 1.23 (0.59 to 2.55) .59

NPM1 35 24 1.83 (1.22 to 2.75) .004 1.38 (0.91 to 2.09) .12 10 1.92 (0.98 to 3.76) .059 1.95 (1.00 to 3.80) .051

NRAS 46 35 2.73 (1.94 to 3.85) , .001 1.84 (1.30 to 2.60) , .001 13 2.24 (1.26 to 4.00) .006 1.50 (0.80 to 2.81) .20

PHF6 36 26 1.43 (0.97 to 2.12) .072 1.24 (0.84 to 1.85) .28 13 2.50 (1.44 to 4.36) .001 2.26 (1.25 to 4.06) .007

PTPN11 29 22 1.83 (1.19 to 2.79) .005 1.84 (1.20 to 2.81) .005 14 3.94 (2.18 to 7.12) , .001 4.24 (2.25 to 7.99) , .001

RAD21 61 46 2.24 (1.66 to 3.02) , .001 1.80 (1.33 to 2.44) , .001 24 3.27 (2.16 to 4.96) , .001 2.98 (1.85 to 4.79) , .001

RUNX1 113 86 2.37 (1.89 to 2.97) , .001 1.44 (1.13 to 1.83) .003 43 3.28 (2.35 to 4.58) , .001 2.43 (1.67 to 3.53) , .001

SF3B1 369 147 0.48 (0.40 to 0.58) , .001 0.62 (0.51 to 0.75) , .001 25 0.32 (0.21 to 0.48) , .001 0.44 (0.28 to 0.67) , .001

SRSF2 219 146 1.70 (1.42 to 2.04) , .001 1.22 (1.01 to 1.48) .035 61 2.16 (1.61 to 2.89) , .001 1.99 (1.43 to 2.77) , .001

STAG2 118 88 2.48 (1.98 to 3.11) , .001 1.50 (1.18 to 1.90) , .001 43 3.23 (2.28 to 4.56) , .001 2.57 (1.79 to 3.70) , .001

TET2 363 183 0.88 (0.75 to 1.04) .15 0.73 (0.61 to 0.86) , .001 63 1.11 (0.83 to 1.49) .47 1.16 (0.85 to 1.59) .34

TP53 100 74 3.10 (2.43 to 3.95) , .001 1.98 (1.53 to 2.56) , .001 19 1.35 (0.84 to 2.19) .22 0.72 (0.43 to 1.22) .22

U2AF1 106 68 1.46 (1.14 to 1.87) .003 1.31 (1.02 to 1.68) .034 27 1.80 (1.20 to 2.70) .004 1.69 (1.11 to 2.56) .014

U2AF2 8 5 2.57 (1.07 to 6.22) .036 1.74 (0.72 to 4.24) .22 2 2.24 (0.54 to 9.20) .26 1.55 (0.32 to 7.63) .59

WT1 11 6 1.06 (0.48 to 2.38) .88 0.91 (0.40 to 2.05) .82 4 2.71 (1.07 to 6.84) .035 2.09 (0.72 to 6.01) .17

ZRSR2 94 48 0.84 (0.63 to 1.12) .24 0.85 (0.63 to 1.14) .27 17 1.10 (0.68 to 1.81) .69 1.24 (0.75 to 2.04) .40

Abbreviations: HR, hazard ratio; OS, overall survival.
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FIG 2. Impact of mutations on OS. Kaplan-Meier curves comparing the OS of patients with a mutated gene (blue) compared with a wild type (red). Only
significant mutations after Bonferroni correction are shown. OS, overall survival.
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FIG 3. OS and leukemia-free survival on the basis of mutation number: (A) Kaplan-Meier curves for OS on the basis of mutation number and (B) Kaplan-
Meier curves for leukemia-free survival on the basis of mutation number. NR, no response; OS, overall survival.
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These findings suggest that patients with lower-risk disease
by our model had a shorter survival when they received
azacitidine plus lenalidomide, whereas truly higher-risk
patients might have benefitted from the combination, al-
though small numbers precluded significant conclusions.

We also validated our model in a cohort of patients with
paired samples from different time points during the dis-
ease course and another cohort of patients who underwent
allogeneic hematopoietic stem-cell transplantation (HCT).
More details on the characteristics of these cohorts and the
performance of our model compared with the IPSS/IPSS
are summarized in the Data Supplement.

DISCUSSION

In this study, we developed a prognostic model that uses
clinical and mutational data to provide estimates of the risk

of death or progression to AML that are specific for a given
patient. The proposedmodel significantly outperformed the
IPSS and IPSS-R scoring systems (the most widely used
systems in clinical practice and trial eligibility). To assure
the reproducibility and generalizability of the model and its
applicability in routine or real-world patients, our training
cohort represents a diverse MDS population treated at
centers in the United States and Europe and was validated
in an independent cohort and a cohort of patients with MDS
who were enrolled on a prospective clinical trial. In these
cohorts, our model significantly outperformed the IPSS and
IPSS-R scoring systems and indicated a possible different
impact of treatment on the basis of the new classification by
our model. We also validated our model in a patient cohort
with paired samples at different time points and demon-
strated the stability of our model performance over time
compared with the IPSS/IPSS-R scoring systems. Although
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our model c-index was better compared with that of the
IPSS/IPSS-R when applied to a cohort who received HCT,
the drop in the performance of all models may be related to
the lack of clinical and mutational variables that affect
transplant-related outcomes, such as graft versus host
disease. We have previously shown that transplant-related
factors such as donor age, graft type, conditioning regimen,
and others have a significant impact on the personalized
prediction for patients with MDS before the transplant.

Recent efforts to improve the accuracy of established clinical
prognostic scoring systems included the addition of mo-
lecular data or the development of gene-only prognostic
models.7,8,12,15 These approaches have shown that the ad-
dition of selected genemutations to establishedmodels such
as the IPSS and IPSS-R can improve their predictive power
and can upstage or downstage patients into more appro-
priate risk categories. Another study tried to build a gene-only
model after controlling for clinical variables, but the model
underperformed compared with a genoclinical model.12 The
incremental improvement in the model’s performance when
molecular data were added was modest, though, suggesting
that ad hoc inclusion of other variables, analyzed using
traditional statistical methods, is not enough.

Our study has some limitations. Recent studies have shown
that patient-reported outcomes and frailty scores have a
significant impact on OS and that adding such variables
can improve the accuracy of prognostication. Such data
were not available for inclusion in the final model. Although
our patient cohort is large, the significant impact of infre-
quent mutations on outcomes can be too small and

misleading. Thus, we focused our analyses on the top 24
genes that are mutated in more than 30 patients and the
seven genes that were included in our final model were
among the top 10 mutated genes in our cohort and other
previous reports.11,12 Although we controlled for patients
who proceeded with HCT by censoring at the time of
transplant, we did not control for specific treatment mo-
dalities, since not all patients had treatment data recorded
in our data set. The impact of treatments (such as hypo-
methylating agents) on the performance of the model is
minimal and only seen in a subset of higher-risk patients.
Furthermore, our model was validated in four different
validation cohorts at different settings including patients
who received hypomethylating agents on a clinical trial.
Finally, our model includes age as an important prognostic
variable although younger patients with MDS generally
have a greater loss of life (in years) than older patients.
Thus, including age in prognostic scores may lead to less
intensive treatment in younger patients since they have
better OS.

In conclusion, we built and validated a personalized pre-
diction model that can provide survival and leukemia
transformation probability at MDS diagnosis and through-
out a patient’s disease course. The model outperformed
other existing models that are used in clinical practice, for
clinical trial eligibility, and the timing of transplant. This
model can be used as a stand-alone model or in con-
junction with the IPSS/IPSS-R scoring systems to improve
their accuracy.
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