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Abstract

In this work, a new family of distributions, which extends the Beta transmuted family, was
obtained, called the Modified Beta Transmuted Family of distribution. This derived family
has the Beta Family of Distribution and the Transmuted family of distribution as subfamilies.
The Modified beta transmuted frechet, modified beta transmuted exponential, modified beta
transmuted gompertz and modified beta transmuted lindley were obtained as special cases.
The analytical expressions were studied for some statistical properties of the derived family
of distribution which includes the moments, moments generating function and order statis-
tics. The estimates of the parameters of the family were obtained using the maximum likeli-
hood estimation method. Using the exponential distribution as a baseline for the family
distribution, the resulting distribution (modified beta transmuted exponential distribution)
was studied and its properties. The modified beta transmuted exponential distribution was
applied to a real life time data to assess its flexibility in which the results shows a better fit
when compared to some competitive models.

1 Introduction

Due to complexity in distributions of real life data, there is need for developing distributions
that are more flexible in fitting these data. The flexible distributions can be derived by addition
of new parameters to the baseline distributions. Over years, many family of distributions has
been developed. Examples like Beta-G [1], Weibull-G [2], Beta-Weibull-G [3], Modified Beta-
G [4], Cubic Transmuted -G [5], Gompertz-G [6], Odd Lindley-G [7] e.t.c. Through these
families of distributions, several models have been developed and applied to real life situations.
[8] derived the transmuted-G family of distribution. In their work, they considered a baseline
cumulative distribution function (cdf) G(x;y) with corresponding probability density function
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(pdf) g(x;y) and obtained the c.d.f of transmuted-G family of distribution P(x;y) as

I(x7) = G(x;9)[1 + ¢ — ¢G(x;7)] (1)
with the probability distribution function p.d.f as

i(x;7) = gl 7)1 + ¢ — 20G(x; )] (2)

where ¢ is the transmuted parameter. When ¢ = 0 in Eqs 1 and 2, gives the p.d.f and the c.d.f
of the baseline distribution.

In this work, a new family of distribution was derived that will be more flexible than the
transmuted-G family of distribution by the addition of three more parameters to the trans-
muted-G family of distribution [8]. This concept is inspired by the work of Nadarajah et al.
(2014), who obtained the modified beta-G families of distributions. This study will derive
another family of distributions called the modified beta transmuted family of distributions
which is more flexible and model fitting than that of Nadarajah et.al.(2014). Another impor-
tant and crucial motivation is the study of modeling and analyses of lifetime data. The fitness
of the assumed lifetime distribution, on the other hand, has a significant impact on the quality
of statistical analyses. In a bid to achieve this, the modified beta- G family of distribution [4]
was used to obtain the modified beta transmuted family of distribution. Given the c.d.f of
baseline distribution G(x;y), the c.d.f of the modified beta-G family A(x;y) of distribution is
given as

(Glxy))

Alx;y) = / . (3)

0

which equivalently gives

B(r; u, o)
Alx:y) =1 6wy ,0) = ——" 4
(x7 /) 1+((£8(1)b>(>x:-,))(# 0) B(a, b) ( )

and the corresponding p.d.f as

ey = PG )G ) (L= Gl )"
( ay) B(,u’ o’)[l — (1 — T)G(x; ,y)}M‘HT (5)

where r = —¢tx2) 5 and B(r; p, 0) is an incomplete beta function. where y and o are shape

14+((r—1)G(x3y

parameters, I ey (a,b) is the incomplete beta function ratio. If y = 6= 7= 1, it gives the g
T+((—1)Gx)

(x;) and G(x;y) of baseline distribution. Therefore, in the section 2, the new family of distribu-
tion was derived. In Section 3, the mixture representation of the p.d.f and the c.d.f of the family
of distribution was obtained, section 4 studied the statistical properties and the estimation of
parameters of the family of distribution. Then, in Section 5, the family of distribution was stud-
ied using the exponential distribution as the baseline distribution. The properties were studied
and applied to a real data to assess its performance when compared to some sub-models. Sec-
tion 6 gives the conclusion of the work.
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2 Derivation of the Modified Beta Transmuted-G (MBTG) family of
distribution

Incorporating Eqs 1 in 3, the c.d.f of the MBTG family of distribution is derived as

7Gxy [1+6—$G(x)]

Ax;7) :/+ BT R L (6)
0
which gives
(fiu, 0)
A(x;7) =1 Guiso—scin == 7
50) =L oty 04 9) = 500 3) )
_ TG (x;7) [14+¢—G(xpy)]
where f = G e

From Eq 6, the p.d.f of the MBTG family of distribution is obtained as

_ e[+ ¢ — 20G(x NGl 7)[L + ¢ — 6G(x 1)) (1~ Gl )[1 + ¢ — G(x: 1)) ] (8)

B(p,0)[1 — (1 — 7)G(x;9)[1 + ¢ — ¢G(x;7)]]"""

where y,0 and 7 are the shape parameters and ¢ is the transmuted parameter. The MBTG fam-
ily of distribution has the following as the submodels;

1. when 7= 1, the beta transmuted-G family of distribution [9] is obtained

2. when 7=y =0 =1, the MBTG family of distribution becomes the Transmuted-G family [8]
3. when 7=1and ¢ =0, it gives the Beta-G family [1]

4. when 7=y =0=1and ¢ = 0, it gives the baseline distribution G(x;y)

5. when 7,0 = 1 it gives the Exponentiated Transmuted G family [10]

The survival function s(x;y) of MBTG family of distribution is obtained as

. _ _B(f;u,a):B(,u,a)—B(f;/,t,a)
050 =1 R ) B(u, ) ©)

and the hazard function h(x;y) is obtained as

B, o)t [g(x;7)[1 + ¢ — 26G(x; 0)](G(x: 9)[1 + ¢ — G(x;7)])" (1 = Gl )[1 + ¢ — ¢G(x:)])" ] (10)

(B, 0) = B(f31,0))(1 = (1 = 1)G(x;9)[1 + & — ¢G(x;9)])""

2.1 Sub-models of the MBTG family of distributions

In this section, three special models of the MBTG family of distribution is presented. These
models generalize some models that are already existing in literatures. The models have base-
lines of Gompertz (G), Exponential(E) and Lindley(L) distributions.

2.2 Modified Beta Transmuted Gompertz (MBTGo) distribution
The pdf and cdf of Gompertz distribution are given as
g(x;7,€) = erelre?)

and

G(x;t,e) =1— (=e(d-1))
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respectively, for x >0 and 7, € > 0. Now, the pdf fy;prc, and hazard function hyprg, of the
MBTGo distribution is given as

ocerreen[ g 201 - DY (1 - MY 1 g o1 - o]
o~ B[t (- (1M1 g(1— LN

(1= (1 D)oo o)
and

B(u, o)t [(lfe(*f(éfl))) [1 - 2¢(1 _ e(ﬂ(e%,l))m
(B(t,0) — B(f; 1, 0)) (1 — (1 =1)G(x;7y) [1 +é— ¢<1 _ e(,,(egl»)} >u+a

hMBTGo =

(1M - (1M (1= (1= ED) 146 - 6(1 - D))

The MBTGo distribution includes the Transmuted Gompertz(TG) [11] when 0= =¢ =1.
For 0 = a = p = 1, the MBT'Go becomes Beta Gompertz(BGo) distribution [12]. For = =1,
MBTGo reduces to Exponentiated Transmuted Gompertz(ETGo) distribution (NEW). Plots
of the density function and the hazard function of the MBTGo with various assigned parame-
ter values are shown in Figs 1 and 2 respectively.

2.2.1 Modified Beta Transmuted Exponential (MBTE) distribution. The pdfand cdf of
exponential distribution are given as

g(x; ) = Pe
Gx;f)=1—ef
Therefore, the pdf (fyprs) and hazard function (hapre) of the MBTE distribution is given as

_ (e M0+ 6 —20(1 —e M((L—e M1+ — g1 —e M)
. B(u,0)[1 = (1= 7)(1 —eM)[1 + ¢ = ¢(1 — e )"

1-(1—e™l4+¢—g(d—em)"
and

b Bl o) [(fe ™)L+ ¢ —2¢(1 — e M)((1 — e ™)[L + ¢ — $(1 — e M)
o (B(t,0) = B(fi1,0)(1 = (1 = 1) (1 — e ™)[1+ ¢ — ¢(1 — &))"

(I-—(1—e™I+¢—o1—el))"

The MBTE distribution includes the Transmuted Exponential [13] when 0 ={=¢ =1. For 0=
o = p = 1, the MBTE distribution becomes Beta Exponential(BE) distribution [14]. For 8 ={ =
1, MBTE reduces to Exponentiated Transmuted Exponential(ETE) distribution [15]. Plots of
the density function and the hazard function of the MBTE distribution with various assigned
parameter values are shown in Figs 3 and 4.
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pdfi(x=x, par = ¢(1.2,7.5,25,03,0.75,0.3)

POt (c=, par = ¢(2.2, 1.5, 25,03, 0.75,0.3))
Paft (c=x, par = (1.2, 1.5, 25,-0.8, 0.75,0.3))

2,15,05,-08,075,0.3)

T
0 1 2 3

Fig 1. Graphs of p.d.f of MBTGo with various parameter values.
https://doi.org/10.1371/journal.pone.0258512.g001

2.3 Modified Beta Transmuted Lindley (MBTL) distribution
The pdf and cdf of lindley distribution are given as

e (1 + B+ Bx)

G(x; p,h) =1 — 155

gl B ) = L (1+x)e?

Now, the pdf fyp7r and hazard function hypr; MBTL distribution is given as

2 —Px e hx 33 e hx » b » u=1
(0 w0 ) [+ - 20(1 - )] (- i) 14— of1 - g ]) ]

e—Px X oy » uto
B, o)1 — (1 — o) (1 — L0t [1 4 (1~ Ptiztasn)]]

fMBTL =

<1 (1‘W) [1+¢¢<1W)Dm
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hz1(c=x, par=e(1.2,1.5,25,03,075,03)
0 1 2 3
L L L L
h216
00 05
L

hz1e=x 25,-08,075,0)
0 10 15
L L L L
h
00 0
L

Fig 2. Graphs of hazard function of MBTGo with various parameter values.

https://doi.org/10.1371/journal.pone.0258512.g002

pftc=x, par= 5 5

0 1 2 6

L L L L
Pl =x, par= c(2.2, 25, 2.5,-0.3,05))

0 02 04 08 08

L L L L

Fig 3. Graphs of p.d.f of MBTED with various parameter values.
https://doi.org/10.1371/journal.pone.0258512.9003

PLOS ONE | https://doi.org/10.1371/journal.pone.0258512 November 18, 2021 6/25


https://doi.org/10.1371/journal.pone.0258512.g002
https://doi.org/10.1371/journal.pone.0258512.g003
https://doi.org/10.1371/journal.pone.0258512

PLOS ONE Modified beta transmuted family of distributions

.15,25,0.3,0.08)
015

o010

hz(e=x, par = ¢(1.2,15,25,03,05)

020 025 030
L L L

hzfx=x, par= ¢(22,05,25,0.3,05)

1
000 005 010 015
L L L L

5,65,-063,05)

T
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Fig 4. Graphs of hazard function of MBTED with various parameter values.
https://doi.org/10.1371/journal.pone.0258512.g004

and

B(w, a)r"[ ﬁ"—jl (1+ x)e,,;x) [1 +¢— 2¢(1 — _8”‘”<llig+ﬁx>>n

(B(1.0) = B, 0) (1 = (1 =) (1 = L) [1 46— o1 — L) )

((1 _w> {1 +o - ¢<1 _e’g"(llﬂ:L—ﬁl;r/ﬁC)ﬂ)M

- (-2

hMBTL =

The MBTL distribution includes the Transmuted Lindley(TL) [16] when 6 ={ =¢ = 1. For 8 =
o =p =1, the MBTL becomes Beta Lindley(BL) distribution [17]. For 8 = { = 1, MBTL reduces
to Exponentiated Transmuted Lindey(ETL) distribution [18]. Plots of the density function and
the hazard function of the MBTL with various assigned parameter values are shown in Figs 5
and 6.

From the plots of the submodels of the MBTG distribution, it shows that the proposed fam-
ily of distribution can be rightly skewed, symmetric, reverse J shape and other forms of shape
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20 25 30 a5

pdf2(c=x, par = (1.2,1.5, 25,03, 0.5)

paf2(c=x, par = £(1.1, 0.5, 10.5, 0,03, 1.5)

00 05 10 15
0

015

05 08

010

005

pdf2(c=x, par= (2.2, 05,075, 0,05, 3)
02

04
pdf2(c=x, par= c(1.2, 0.85, 1.75,-0.3, 0.5)

00 01
000

010 015

pof2(c=x, par = (2.2, 0.5, 25,03, 0.5)
005

000

Fig 5. Graphs of p.d.f of MBTL with various parameter values.
https://doi.org/10.1371/journal.pone.0258512.9005

inferring that this family of distribution will be suitable in modeling different form of real life
situations due to its flexibility.

3 Mixture representation

In this section, the mixture representation of the p.d.f of the MBTG family of distribution is
derived. Having this expression simplifies the derivation of some statistical properties of
MBTG family.

Using the binomial expression, as written in Wolfram Statistics

S q
(1-2)"" =Z(—1>"<k>zk (11)

0

such that |z| < 1 and k > 0 real non-integer.
From Eq 8, Considering

E=[1-(1-0Gx)[1+¢— ¢G(x;7)]]"" (12)
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ENEDSY

=0(12,15,25,03,05)
04 08 08
L L L L
hz2(e=x, par = ¢(2.2, 0.5, 0.75,0.05, 3))
00 02 04 08 08 10 12 14

hz2x=x, par=c .1.75,-0.3,0.5)
005 010 015 020
L L L L
hz2(x=x, par=c(1.1,05,10.5,0.03,1.5)
1 2 3

Fig 6. Graphs of hazard function of MBTL with various parameter values.

https://doi.org/10.1371/journal.pone.0258512.g006

By the application of the binomial expression, Eq 12 is

oo —uU—0
E= Z( L )(—1)k(1 ~ 0 (G )L+ ¢ - ¢G(x: 7))

Likewise considering
W=[1-Gx)[l+¢—¢Gx)]""

and using the binomial expression, Eq 14 is

~ [a—1
W= ( l ) (—1)"(G(x )1 + ¢ — 6G(x;9)])!

Il
=3

(14)

(15)

Applying Eqs 13 and 15 to Eq 8, the mixture representation of the p.d.f of the MBTG family is

g—1

(D)1 = 0)'gx )L + ¢ — 20G(x;9)(G(x;7)[L + ¢ — ¢G(x;7)])" " (16)

I
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Furthermore, Eq 16 can written in form of the exponentiated transmuted G as

ate) =33 oM, . (17)

k=0 =0
where

—uU—0 o—1
g = D" =0 (kD

and
M= (e ko4 Dglas )L+ 6 = 206Gl 1)L+ 6 = 96 ) ™

IT,s k.1 1s the p.d.f of the exponentiated transmuted-G family of distribution with index param-
eters p+k+l.
From Eq 17, the corresponding c.d.f of the MBTG family of distribution is

A(xa y) = iigrﬁwrkﬂ (18)

k=0 1=0

By+k+1is the c.d.f of the exponentiated transmuted-G family of distribution with index parame-
ters p+k+l.

4 Statistical properties

In this section, some statistical properties of the MBTG family of distribution are studied. The
properties include order statistics, moments, moment generating function, shanon entropy
and the quantile function.

4.1 Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. Let X,
X5, X3, X4, . . ., X, be random sample generated from the MBTG family of distributions. The p.
d.f of i order statistic, X;.,,, can be written as

n—1

i (557) = n(
h—J

>f(x; ML= F(x;p)]  Flag )" (19)

Inserting Eqs 8, and 6 in 19, then

n—j B(u,0)[1 — (1= 1)G(x;9)]""" B(, o) B(u,0)

1 (537) = ( ) 1) lr“[c;(x; PGy~ (1 - G<x;y>>“}] [Bo) B a)}“ g o->]” (20)

The first order statistics X(1) has the marginal p.d.f. obtained as

|60 ) (Gl 7)) (1 = Gl )" [B(f; u, 0’)] "
B(u,0)[1 — (1 — 7)G(x: )" B(u,0)

(21)
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while the last order statistics have the marginal p.d.f as

2160 5) (G )" (1~ Gy ] [Bl.0) ~ B )]
l B, o)L — (1 = 1G] H T 2

In terms of the mixture representation, order statistics of the MBTG family of distribution is

R W | > > D7 (550 )

n— k=0 1=0 k=0 1=0 k=0 1=0

and the first order marginal p.d.f and last order marginal p.d.f given as

(g

k=0 1=0 k=0 1=0

(ge)]

k=0 =0

() [ssn

k=0 1

4.2 Moments
The " moment of X, say t//'r follows from Eq 17 as

Y, = ZZgE (26)

k=0 1=0

Therefore E[H’

pA-k+1
The n' central moment of X, say M,, is given by

| is the r-th moment of the exp-Transmuted G family.

M, = EX ] = Z( ) (W) EX (27)

r=0 r

ii<_1)nrgr< ) W)™ [H:z+k+l] (28)

r=0 k=0 r

4.3 Moment generating function

Using the expression as in Eq 17, the moment generating function of the MBTG family of dis-
tribution is

=33 M, (1) (29)

k=0 1=0

where M, (t) is the moment generating function of the exp-Transmuted G family of
distribution.
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4.4 Quantile function

The quantile function of the distribution is discussed here. If X MBTG(y, 0, 7, ¢, ), then the
quantile function of X can be simulated as

1— 1)° + 4¢R
S ¢+ (i; )"+ 49 . (30)

where

B I (1, 0)

T o= I (wo)(e—1))

I''(u, 0) gives B(u,0) and U ~ univariate[0, 1].

4.5 Parameter estimation

Several approaches for parameter estimation exist in the literature but maximum likelihood
method is the most commonly employed. The maximum likelihood estimators (MLEs) enjoy
desirable properties and can be used when constructing confidence intervals and also in test
statistics. The normal approximation for these estimators in large sample theory is easily han-
dled either analytically or numerically. So, estimation of the unknown parameters for the
MBTG family are determined only by maximum likelihood estimation method. Here, the
MLEs of the parameters for complete samples only. Given samples X;, X,, . . ., X,, that follows
the MBTG family of distribution, then the loglikelihood function 1 is given as

l=n,ulnf—nlnB(,u,a)—l—nlng(x;y)+zﬂ:ln(1+¢—2¢G(xy —1Zln (1+ ¢ — éG(x;7)))
+(o—1) Zln (1= G(x)(1+ ¢ — ¢G(x; )—(#+U)zn:1n(1—((1—T)G(x;)(l+¢—¢G(X;“/))))(31)

Differentiating Eq 31 with the respective distribution parameters, to have

ﬁ—nn‘t——n T F,u—i—a n (
o " (F(u) T(u >+Zl )L+ ¢ = ¢G(x; 7))

n

> a1 (1= DG+ 6~ 66k ) )
%z—ncég—? — )+Zln1— )1+ ¢ — 6G(x;7))])
3 (1 (1 DG+ 6~ 660k ) )
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n

36~ 2

-1

1= (G(x7)(1 + & — ¢(G(x;7))))

o _nu (x)(1+ ¢ — ¢G(x;7))
A +b§:1 S (T e e Sy G4
1 - 2G(x:) N GEp(-Ge) o Jn Gley)(- Glx)
1+¢—wﬁxyf““ D G+ o—oGemn) VT 6w+ 6 o6m7)

n (1 =17)G(x;7)(1 — G(x;7))
+(,U + G); 1—((1=17)G(x;9)(1 + ¢ — &(G(x;7))))

Il ng'(xy) <~ —20G(x;) NG (7)1 + ¢ —2¢G(x; 7))
O glxy) * ; 14+ ¢ —2¢0G(x;7) T 1); G(x;7)(1+ ¢ — ¢(G(x;7)))

G (x;7)(1 + ¢ — 2¢0G(x; 7)) Fat b)i (1-1)G (x;7)[1+ ¢ — 26G(x;7)]
1 —

(=261 + 6 - 66 ) 0

Setting the set of Eqs in 32, 33, 34, 35, 36 to be equals to zero and solving them simultaneously

yields the MLE o= , g?),é,&,ﬁ,“}) of 6 = ({,¢,0,a.,p,y). Solving these equations cannot be done
analytically. This can be achieved by the aid of statistical software using iterative methods such
as Newton-Raphson type algorithms to solve numerically.

For interval estimation of the model parameters, the observed information matrix is
required. For interval estimation and test of hypothesis on the parameters ({, ¢, 6, o, p, 0), to
obtain a 6x6 unit information matrix

(Tee Tew Jeo T Ty Tz,
Jeo Tos Joo Jou Jop Jsy
Joo Joo Joo Jow Jop Joy
Joo T Tuo Tux Jup Ty
Jo Tos Too Jow Jop Ty

Uy Lo Too T T T

The corresponding elements are derived by the second derivatives of I with respect to the
parameters.

Under conditions that are fulfilled for parameters, the asymptotic distribution of v/n (3 —
d) is N,(0,]() ") distribution of  can be used to construct approximate confidence intervals
and confidence regions for the parameters and for the hazard and survival functions. The
asymptotic normality is also useful for testing goodness of fit of the beta type I generalized half
logistic distribution and for comparing this distribution with some of its special sub-models
using one of these two well known asymptotically equivalent test statistics- namely, the likeli-
hood ratio statistic and Wald statistic. An asymptotic confidence interval with significance
level 7 for each parameter J; is given by

ACI(8,,100(1 — 7)) = 6 — 2,\/J*?, 5 + 25/ o (37)

where J°* is the i'h diagonal element of K, (6) " fori = 1,2, 3,4, 5, 6 and z,, is the quantile of
the standard normal distribution.
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5 The modified beta transmuted exponential distribution

In this section the exponential distribution is considered as a baseline distribution of the
MBTG family of distribution. The exponential has been studied and many generalizations
have been made by different authors. Some of these works employed the use of transmutation
approach to derived the generalization of the exponential distribution. Such works includes
the transmuted exponential, exponentiated transmuted exponential, exponentiated cubic
exponential e.t.c. The p.d.f of the exponential distribution is

gl h)=te™ x>0,1>0 (38)
with c.d.fas
Glx;h)=1—¢e™ (39)

where A is a scale parameter. Therefore inserting the Eq 38 into Eq 8, the p.d.f of the Modified
Beta Transmuted Exponential Distribution gg(x; y) is derived as

e (1 — ¢ + 20e7) (1 — e + e — e %) (e — g™ + e )"
B(p,0)[1 — (1 —1)(1 — e + e — ge=2)]

ge(x2) = (40)

and the c.d.f Qg(x; L) as
B(M(x;)); 4, 0)

QE(X; k) = IM(x:?x)(’u7 O-) - B(,u 6)

ey e =20 (] 4 2pe— 20 . .
where M(x; \) = e H(E‘: 5 (17‘: =S (Eang) ) and B(M(x; ¥);4, 0) is an incomplete beta

function.
For the distribution, x > 0, A, 7, 4, >0 and |p| < 1.

5.1 Mixture representation of the MBTED

In this subsection, the mixture representation of the MBTED is derived. This will help derive
the analytical expression of the distribution and will be useful in obtaining some properties of
the MBTED.

Inserting Eqs 38 and 39 in Eq 16, the mixture representation of the p.d.f of MBTED is
obtained as

© o [(—pU—0 c—1
(% 1) = ZZ( ; ) < l ) (=11 =021 = ¢ + 207

(1= ™)L+ ge ™) (42)

Re-writing Eq 42 in terms of the p.d.f of exp-transmuted exponential distribution, it gives

2052 = 3> e (43)

k=0 =0

—u—0 oc—1
&= ( ) ( )(l)k”(l 1) (kD)
k )

where
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asis o) = |

and
Lkt = (+ K+ Dhe™[1 — ¢ + 207 ((1 — e)[1 + ge])" !

Xu+k+118 the p.d.f of the exponentiated transmuted exponential distribution with index parame-
ters yu+k+l1 as derived by [15].
From Eq 43, the corresponding c.d.f of the MBTG family of distribution is

QEn) =3 60, (44)

k=0 =0

O = ((1 - e + gbe_}‘x ¥+, is the c.d.f of the exponentiated transmuted exponential
distribution with index parameters gy+k+1.
The survival function of the MBTED is

B(u,0) — B(M(x;7); i, 0)
B(u,0)

S(x; 7\‘) =1- IM(x:}')(a’ b) =

and the hazard function as

r’*e’“(l _ ¢ + 2¢672M)(1 e + ¢e’“ _ (be—%x)l‘*l(e—kx _ ¢e—7\x + ¢e—21x)
(BM(x;M); p,0))[1 — (1= 1)(1 — e + e ™ — de 7))

h(x;2) = (46)

5.2 Quantile function

Inverting gg(x; L) = U, the quantile function of the MBTED is determined as

p+1—4/(p+1) +4¢R
S(EEETE)

-1
x=—1n

where

_ Iy (4, 0)
¢ = (I;' (1, 0)(c — 1))

I'(u, ) gives B(y,0) and U ~ univariate([0, 1].

5.3 Order statistics of MBTED

Let Xy, X5, X3, X4, . . ., X, be random sample generated from the MBTED distributions. The p.
d.f of i order statistic, X;.,,, can be written as

n—1

q (i n)(x %) = ”< )qg(x; ML= Qe M Qe M) (48)

n—j
Inserting Eqs 40 and 41 in 48, the order statistics of the MBTED has the expression as

e (1 — ¢+ 2¢e ™) (1 — e + pe ™ — pe 2%)" (e — e + pe %)
B(p,0)[1 — (1 —1)(1 — e™™ + e — pe=2)]

1

[B(M(x? V)?“»")} " [B(u, o) — B(M(x;7): 1, 0)]" )
Bl o) B(u,0)
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In terms of the mixture representation, order statistics of the MBTG family of distribution can
be written as

n—1 ni o0 o0 -1
qp(i:n)(xh) = ”( ) [ZE ;grnwwl [ZE 4 ﬂu+k+l‘| [1 - (ZE Sn[’)ww)] (50)
n—j/ == k=0 =0 k=0 =0
and the first order marginal p.d.f and last order marginal p.d.f given as

n—1 0 0 0o o n—1
n( ) [ZZ&HWM] [Z&rﬁp+k+l‘| (51)
h—J

k=0 =0 k=0 1=0

n—1 o oo n—1
n( ) [ZZ& bkl [1 - <Zzgrﬁu+k+l>] (52)

5.4 Moments of MBTED

The moments of the Exponential Transmuted exponential distribution, as established by [15]
is

o oo 1 a+k+I1-1 a+k+1-1 1
il o BB ()

m=0 w=0 z=0 m w Z

2°Tr+1 (53)
(i+j+m+1)"pr

the moments of the MBTED is derived as

00 00 1

L)) 9) ) B E IS

k=0 =0 m=0 w=0 z=0

(a—i—k—i—l—l)(a+k+l—1><1><—u—a><a—1> | ?Zr(r+1)r+1 5)
m w z k I (i+j+m+1)" pr

From the expression in Eq 54, the mean E[X], second moment E[X?], Variance, Kurtosis and
Skewness can be derived.

5.5 Moment generating function of MBTED

Using the moment generating function as established by [15], to have the moment generating
function of MBTED as

ZZZZZ m+k+l )kpw+z(1 _ p)l—z

k=0 =0 m=0 w=0 z=0

at+k+1-1 at+k+1-1 1 —u—oc o—1 (u+k+10)2°n s
m w z k I x(erererl)ft( )
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5.6 Shanon entropy
Entropy measures the uncertainty of a random variable X. The entropy of the MBTED is

—E[log(f(x))] (56)

B P (1 — 6+ 206 ) (1 — e+ e — e Y (e gt 4 o)
B=—E [log< B, 0)[1 — (1 —1)(1 — e ™ + ge ™ — e )] >:| (57)

This can be estimated iteratively.

5.7 Parameter estimation of MBTED

If samples X, X, . . ., X}, is set of reandom samples distributed to the MBTED, then the loglike-
lihood function l is given as

I=nulnt—nlnB(y, o +Zln )—I—Zln(l — ¢+ 2¢e) + (u— I)Zln(l —e 4 e — ke )

i=1

+(o — 1)i In(e™ — he™ +he ™) — (u+ o)i In(1—(1—1)(1—e™+pe™ —pe ™)) (58)

i=1

Differentiating Eq 58 with the respective distribution parameters, to have

ol F'(,u) ,u +0 ) Y x —2x
—=mnlno—n In(l—e™ +Xe™ —he
ou (F(u) [(p+o0) Z )

—i: In[1—1-t)(1—e™+de™ —pe™)] (59)

i=1

AN (T TWH0)\ L NS i g 4 e
do <F(6) F(#+0)>+;1( he” 4 he)

—i: In[1—-1-1)(1—e™+de™ —pe™)] (60)

Z - ( B 1)i e—)»x(l _ e—?»x) B (6 B 1)i 1— e—M
(9¢ 1— ¢ + 2q§e* a — 1 —e ™+ he ™ — he —1— ¢+ pe™

L e™(1—1)(1—e™)
) T (A e )= b+ 2] (61

81 B ~ 2¢he™ N ke (1 — ¢+ 2¢e ™)

L1 gt 2ges e (- 1)(1 - 4 260 )
D e U O T e+ e )
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Table 1. Simulation result of MBTED(2,3,2.5,-0.7,2).

Sample Size u o T ¢ A
50 AE 2.342 3.533 1.142 2.107 2.470
Bias 0.582 1.773 -0.617 0.346 0.710
MSE 2.588 3.382 2.558 3.625 2.958
100 AE 2.160 4.043 0.915 2.508 2.298
Bias 0.400 2.283 -0.844 0.748 0.538
MSE 2.049 3.598 2.051 3.901 2.69
200 AE 2.120 4.646 0.999 2.965 1.902
Bias 0.360 2.886 -0.760 1.205 0.142
MSE 1.793 3.903 2.187 4.189 2.553
https:/doi.org/10.1371/journal.pone.0258512.t001
e
”/1 IH'UZ (1= ¢+ 2¢e™) (63)
T 1— 1—1: )1 —e™)(1 4 pe ™))

The maximum likelihood estimator of parameters can be obtained solving this nonlinear sys-

tem of Eqs in 59, 60, 61, 62, 63. It is usually more convenient to use non-linear optimization

algorithms such as quasi-Newton algorithm to numerically maximize the log-likelihood
function.

5.8 Simulation study

In this section, a simulation study was performed using the MBTED in orfer to assess the per-
formance of the maximum likelihood estimates of the distribution. To conduct this, 1000
samples of sizes 30,100,200 were generated from the quantile function of the MBTED for
parameter values (2,3,2.5,-0.7,2),(3.2,1.3,1.5,0.5,0.5) and (3,3,3.5,0.2,2). The results of the simu-
lation study are presented in Tables 1-3. These results show that the estimates for the mean is
close to the parameter values as the sample sizes increase. Also, the mean square error
decreases as the sample size increases.

5.9 Application to real data

In this section, applications to two real data(Medicine and Behavioral datasets) are presented
to illustrate the importance and the fit of the MBTED. The maximum likelihood estimates (M.
L.E) of the distribution and that of the competitive distributions will be obtained. The good-
ness of fit of the distributins was assessed using the log-likelihood, Akaike’s information

Table 2. Simulation result of MBTED(3.2,1.3,1.5,0.5,0.5).

Sample Size u o T ¢ A
50 AE 2.695 1.339 0.463 0.553 1.319
Bias 1.295 -0.060 -0.936 -0.846 -0.080
MSE 7.798 1.626 2.481 1.898 1.462
100 AE 2.318 1.204 0.364 0.681 1.191
Bias 0.918 -0.195 -1.035 -0.718 -0.208
MSE 5.666 1.493 1.808 1.301 1.200
200 AE 1.990 1.171 0.314 0.717 1.090
Bias 0.590 -0.228 -1.085 -0.682 -0.309
MSE 1.901 1.262 1.536 1.279 1.163

https://doi.org/10.1371/journal.pone.0258512.t1002
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Table 3. Simulation result of MBTED(3,3,3.5,0.2,2).

Sample Size u o T ¢ A
50 AE 2.556 4.762 2.437 1.199 5.135
Bias 0.216 2.422 0.097 -0.846 2.795
MSE 2.714 5.304 3.402 5.973 6.176
100 AE 2.594 4.446 2.409 1.200 4.503
Bias 0.254 2.106 0.069 -1.140 2.163
MSE 2.377 4.611 3.320 5.717 4.616
200 AE 2.366 4.037 2.489 0.978 4.295
Bias 0.026 1.697 0.149 -1.361 1.955
MSE 2.186 3.104 3.086 3.442 4.437

https://doi.org/10.1371/journal.pone.0258512.t003

criterion (AIC), Bayesian information criterion (BIC), corrected Akaike’s information crite-
rion (CAIC), Hannan-Quinn Information Criterion(HQIC) and the Kolmogorov Smirnov
test for the models. The fits of the MBTED is compared with other competitive distributions
which are Exponentiated Generalized Weibull(EGW) [19], Exponentiated Kumuraswamy
Exponential(EKE) [20], Beta Burr XII [21], Modified Beta Gompertz(MBG) [22], Exponential,
Exponentiated Transmuted Exponential(ETED) [15]. The p.d.fs of these distributions are as

Table 4. Table displaying descriptive analysis of survival time of breast cancer patients.

Minimum First Quartile Median Mean Third Quartile Maximum
0.30 17.50 40.00 46.33 60.00 154.00
https://doi.org/10.1371/journal.pone.0258512.t1004
=
o
=
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Fig 7. TTT plot of survival times of breast cancer.

https://doi.org/10.1371/journal.pone.0258512.g007
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follows:

EGW = af(ty'x"te ) (1 — e 0)*! 1-(1- e’<'*"‘)r)“][H

EKE = ofy(ze)(1 — )" ()" (1= (1= (1 = )Y

o0 (1= () ) () )

B(a, B)

o—1 —1
7 (1 _ e’ﬁ(f"")*l) (e—g(e"x)*l)ﬂ (’ce(}xfé(eox*l))
MBG =

B f)[1— (1 =) (1 =3 1))

BBXII =

ED = he ™

5.9.1 Survival times of breast cancer patients. The real data set represent the survival

times of 121 patients with breast cancer obtained from a large hospital in a period from 1929 to
1938 [23]. The data are: 0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3, 11.0, 11.8,

12.2,12.3,13.5, 14.4, 144, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2,17.3, 17.5, 17.9, 19.8, 20.4,
20.9, 21.0, 21.0, 21.1, 23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0, 31.0, 32.0, 35.0, 35.0,
37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0, 39.0, 40.0, 40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 43.0,
44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0, 51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0,

Density

0.005 0.o10 0.015 0.020

0.000

Estimated pdfs

MBTED
— EGW

—EKE

= BBXII

— MBG

MTED
ETED
—ED
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Fig 8. Estimated pdf plots.
https://doi.org/10.1371/journal.pone.0258512.g008
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Table 5. Table displaying results of analysis of survival times of breast cancer patients.

Model Parameter

Estimate

L AIC CAIC BIC HQIC KS(p-value)

MBTED ¢

0.693

578.30 1167.095 1167.617 1181.074 1172.773 0.048(0.936)

4.436

Q =

0.6050

-0.971

0.011

ETED

0.019

581.8153 1169.632 1169.843 1183.23 1175.02 0.055(0.079)

0.663

1.645

EGW

1.258

579.603 1169.207 1169.729 1183.186 1174.884 0.058(0.803)

1.351

1.152

52.384

EKE

2.419

579.772 1169.545 1170.067 1183.524 1175.223 0.061(0.756)

1.384

0.689

0.022

BBXII

61.620

582.383 1174.764 1175.285 1188.743 1180.441 0.774(0.462)

27.297

0.372

0.792

MBG

2.756

579.43 1170.864 1171.601 1187.639 1177.677 0.061(0.761)

0.679

2.090

0.003

DIAVIR IR VIR IR NDINR IR ™IQ Qe (@A

0.030

ED

>

0.022

585.1277 1172.26 1175.05 1172.29 1173.391 0.120(0.059)

https://doi.org/10.1371/journal.pone.0258512.t1005

60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0, 78.0, 80.0, 83.0, 88.0, 89.0, 90.0, 93.0,
96.0, 103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0, 126.0, 127.0, 129.0, 129.0, 139.0, 154.0.

Table 4 shows the summary statistics for the real data. Fig 7 is the TTT plots of the dataset
which shows a non decreasing curve. Fig 8 shows the fitted plot of the data using the MBTED
and the competitive distributions. This indicated that the model fits the data. Table 5 reveals
that the modified beta transmuted exponential distribution gives the best fit when compared
to its submodels, due to lowest values of AIC, BIC, CAIC and HQIC therefore making it the
preferred model to consider for this data.

5.9.2 Recidivism failure time data. The second data consists of 61 observed recidivism
failure times (in days) revealed by correctional institutions in Columbia USA by [24]. The fail-
ure times data were:138, 141, 146, 217, 217, 228, 156, 162, 168, 183, 185, 1, 6, 9, 29, 30, 34, 39,
422,438, 441, 465, 41, 44, 45, 49, 56, 84, 89, 91, 100, 103, 104, 238, 241, 252, 258, 271, 275, 276,
279, 282, 305, 313, 329, 331, 334, 336, 336, 362, 209, 233, 384, 404, 408, 115, 119, 124, 198, 486,
556. Table 6 shows the summary statistics for the real data. Fig 9 is the TTT plots of the dataset
which shows a non decreasing curve. Fig 10 shows the fitted plot of the data using the MBTED

Table 6. Table displaying descriptive analysis of recidivism failure time data.

Minimum

First Quartile

Median Mean Third Quartile Maximum

1.0

100.0

209.0 211.7 313.0 556.00

https://doi.org/10.1371/journal.pone.0258512.t006
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Fig 9. TTT plot of recidivism failure times data.
https://doi.org/10.1371/journal.pone.0258512.g009
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Fig 10. Estimated pdf plots.
https://doi.org/10.1371/journal.pone.0258512.9010
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Table 7. Table displaying results of analysis of survival times of breast cancer patients.

Model Parameter Estimate L AIC CAIC BIC HQIC KS(p-value)
MBTED 0.567 379.517 769.034 770.125 779.589 773.171 0.044(0.999)
148.429
0.002
-0.907
0.006
0.079 387.658 781.316 781.737 787.649 783.798 0.136(0.208)
-0.008
0.059
0.226 380.684 771.367 772.458 781.922 775.504 0.049(0.998)
0.273
3.532
266.704
13.158 382.232 774.463 775.5539 785.0174 778.5994 0.062(0.971)
7.250
0.120
0.003
78.35 388.614 787.228 788.319 797.783 791.365 0.109(0.456)
36.520
0.286
0.736
0.741 379.576 771.153 772.709 783.818 776.117 0.051(0.996)
1.188
0.454
0.003
0.002
0.005 387.671 777.343 777.410 779.453 778.170 0.136(0.208)

ETED

EGW

R ™R Q& 2 [®a [ &

EKE

R ™R

BBXII

MBG

DR IR R ™R

ED
https://doi.org/10.1371/journal.pone.0258512.t007

>

and the competitive distributions. This indicated that the model fits the data. Table 7 reveals
that the modified beta transmuted exponential distribution gives the best fit when compared
to its submodels, due to lowest values of AIC, BIC, CAIC and HQIC therefore making it the
preferred model to consider for this data. Clearly, based on the values of the criteria used, all of
the two applications provided indicate that the MBTED distribution is superior to the other
models. It has lower values for the LL, AIC, CAIC, BIC, and HQIC than it does for the others.

6 Conclusion

In this article, a new family distribution called the Modified Beta Transmuted-G family is
introduced. The properties of the family such as moments, generating functions, quantile
function, random number generation, reliability function and order statistics were extensively
studied. Furthermore, expressions for the the maximum likelihood estimation of parameters
for the Modified Beta Transmuted-G family of distribution were derived. An exponential dis-
tribution was applied as a baseline distribution for the modified beta transmuted-G to derive
the modified beta transmuted exponential distribution. The properties of the modified beta
transmuted exponential distribution were also been discussed and estimation of parameters
done using the maximum likelihood estimation method. The modified beta transmuted expo-
nential distribution was applied on a real data set in which it was observed that the modified
beta transmuted exponential distribution provides better fit than its submodels. We anticipate
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that the proposed model will be used to investigate a wider range of applications in diverse
areas of applied research in the future, and that it will be considered a superior alternative to
the baseline model. The model could also be applied in other fields such as machine learning
and artificial intelligence.
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