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Abstract

We compared lesion-based sensitivity of dual-time-point FDG-PET/CT, bone scintigraphy
(BS), and low-dose CT (LDCT) for detection of various types of bone metastases in patients
with metastatic breast cancer. Prospectively, we included 18 patients with recurrent breast
cancer who underwent dual-time-point FDG-PET/CT with LDCT and BS within a median
time interval of three days. A total of 488 bone lesions were detected on any of the modali-
ties and were categorized by the LDCT into osteolytic, osteosclerotic, mixed morphologic,
and CT-negative lesions. Lesion-based sensitivity was 98.2% (95.4—-99.3) and 98.8%
(96.8—99.5) for early and delayed FDG-PET/CT, respectively, compared with 79.9% (51.1—
93.8) for LDCT, 76.0% (36.3—94.6) for BS, and 98.6% (95.4—99.6) for the combined BS
+LDCT. BS detected only 51.2% of osteolytic lesions which was significantly lower than
other metastatic types. SUVs were significantly higher for all lesion types on delayed scans
than on early scans (P<0.0001). Osteolytic and mixed-type lesions had higher SUVs than
osteosclerotic and CT-negative metastases at both time-points. FDG-PET/CT had signifi-
cantly higher lesion-based sensitivity than LDCT and BS, while a combination of the two
yielded sensitivity comparable to that of FDG-PET/CT. Therefore, FDG-PET/CT could be
considered as a sensitive one-stop-shop in case of clinical suspicion of bone metastases in
breast cancer patients.
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Introduction

Breast cancer mortality is almost exclusively a result of distant metastatic disease [1] with sur-
vival rates of 99% for patients with localized disease and only 25% for patients with metastatic
disease [2]. Bone is the most common site of metastasis in patients with breast cancer, occur-
ring in up to 70% of patients with advanced disease [1,3]. This leads to chronic metastatic
bone disease in many, since relevant treatment can often delay progression [4]. Bone metasta-
ses seem to originate in bone marrow, and structural changes in the bone will occur in a post-
poned phase [5]. Structural changes in the bone can be detected and classified as osteolytic,
osteosclerotic, or mixed (osteolytic/osteosclerotic) metastases [6]. Planar bone scintigraphy
(BS) reflects osteoblastic activity and is probably superior in detecting osteosclerotic and
mixed metastases than other types of bone metastases [7]. BS and computed tomography (CT)
are the most often used modalities of conventional imaging and are recommended in current
guidelines for the detection of bone metastases in breast cancer [8,9].

[18F]-fluorodeoxyglucose-Positron Emission Tomography with integrated computed-
tomography (FDG-PET/CT) reflects glucose metabolism, and thus this modality may facilitate
detection of all types of bone metastases including bone marrow metastases [10]. It is well
known that breast cancer patients represent various types of bone metastatic lesions, but the
literature is equivocal regarding whether FDG-PET/CT or conventional imaging is superior in
detection of bone metastases [11-13]. However, it has often been pointed out that FDG-PET/
CT may be superior in detecting osteolytic rather than osteosclerotic bone lesions in breast
cancer patients [13-17].

The ability to distinguish malignant from benign lesions with FDG-PET/CT may be
improved by delayed imaging [18,19]. Also, delayed imaging using FDG may therefore be par-
ticularly useful for diagnosing low metabolic malignancies such as breast cancer and especially
for the less detectable lesions on regular FDG-PET/CT such as osteosclerotic bone metastases
[19].

Considering the fact that bone involvement is the predilection site for metastasis in breast
cancer patients, and when the progression of bone metastasis is not detected and taken care of,
the risk of developing skeletal-related events increases and result in higher risk of mortality
[20,21]. We hypothesized that delayed FDG-PET/CT scan would act more accurately regard-
ing the detection of bone metastatic lesions than on early FDG-PET/CT and conventional
imaging. Therefore, we aimed to investigate the lesion-based sensitivity of dual-time-point
FDG-PET/CT compared with BS and low-dose CT (LDCT) for the detection of bone metasta-
ses in breast cancer patients. Furthermore, we aimed to determine FDG standardized uptake
values (SUVs) in different types of bone lesions at early and delayed images; however the small
sample size is a critical limitation to this specific aim.

Materials and methods
Study design and subjects

This prospective study was carried out at the Department of Nuclear Medicine of Odense Uni-
versity Hospital (Odense, Denmark). A written informed consent form was obtained from all
included patients and the study protocol was approved by the ethics committee (S-20110138)
at the University of Southern Denmark (Odense, Denmark), which was in compliance with
good clinical practice and the Declaration of Helsinki (Registration code at ClinicalTrials.gov:
NCT01552655).

In a prospective comparative design, patients with suspected breast cancer recurrence or
with verified local recurrence and potential distant disease, referred from the Department of
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Oncology between 2011 (Dec) and 2014 (Sep), were considered eligible for the inclusion.
Exclusion criteria were history of concurrent malignancy, age younger than 18 years, preg-
nancy or breast-feeding, diagnosed diabetes mellitus, or considered unable to cooperate. All of
the patients who accepted participation were asked to undergo dual-time-point FDG-PET/CT
and whole-body BS, within a median time interval of three days (range: 0-24). The patients
with histopathologically confirmed metastatic breast cancer with approved bone involvement
were included in analysis. All patients initiated systemic therapy based on the biopsy-verified
diagnosis and according to national oncologic guidelines for metastatic breast cancer [22].
Overall patient-based accuracy results of this study have been published previously [23], and
the current analysis considered lesion-based sensitivity focusing on various types of bone
metastases along with respective quantification measures reflecting FDG-uptake.

FDG-PET/CT protocol

Before the FDG-PET/CT scan, patients were required to fast for at least 6 h, after which their
blood sugar levels were measured. PET/CT was considered acceptable at levels up to 144 mg/
dL. The 18F-FDG tracer was administered intravenously with an activity of 4 MBq per kg of
body weight. The patients were requested to rest for 60 min (+5 min) p.i. before PET/CT imag-
ing was performed from the top of the skull to the proximal femur [24]. The second scan was
performed in the same manner after 180 min (+5 min) [25]. The total examination time was
approximately 210 min for each patient. All scans were performed using either the Discovery
STE (VCT) equipped with BGO crystals or the Discovery RX equipped with LYSO(Ce) crystals
(GE Healthcare Systems, Chicago, IL, USA). PET was performed over 7-9 bed positions in 3D,
with a scan time of 2.5 min per bed position for 1-h images and 3.5 min per bed position for
3-h images. PET images were reconstructed iteratively, with ordered subset expectation maxi-
mization, 2 iterations, and 21 or 28 subsets.

LDCT protocol

Low-dose CT imaging, with two scout views for both exams, was performed using either GE
Discovery STE or Discovery RX (GE Medical Systems, Milwaukee, WI), at 140 kV with
SmartmA tube current modulation (noise index 35, 0.8 seconds per rotation, slice thickness
3.75 mm) and used for attenuation correction and anatomic orientation followed by a 3D PET
scan (OSEM iterative reconstruction, slice thickness 3.75 mm) [26].

Bone scintigraphy

The patients were injected with 700 MBq (0.019 Ci) Technetium-99m-3,3-disphosphono-
1,2-propanodicarboxylic acid (Tc-99m-DPD) three to four hours prior to whole-body imag-
ing. In the waiting period, the patients were asked to drink approximately 1 liter of clear lig-
uids. The scan was performed on a Skylight or PRISM XP2000 gamma camera (Philips
Medical, Surrey, UK) with the following parameters: LEHR collimator, energy window 140
keV + 20%, matrix 256 x 1024, scan speed 14 cm/min.

Reference standard

Suspected recurrence was verified by biopsy as the reference standard. All patients treated
explicitly for bone metastasis, typically with bisphosphonates, were categorized as having bone
metastases. Follow-up time was defined as the time interval between the date of the first scan
and the date of the latest registered clinical contact to the Departments of Clinical Oncology or
Breast Surgery.
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Image interpretation

All FDG-positive bone lesions present on 1h or 3h FDG-PET/CT scans were counted by single
group of nuclear medicine specialists through daily practice. BS studies were examined to
identify the FDG-positive lesions and potential additional lesions. An experienced radiologist
categorized metastatic bone lesions into osteolytic (partially ill-defined margin with pattern of
bone resorption and focal bone destruction), osteosclerotic (dense and often well-defined mar-
gin with pattern of bone formation and ossification), and mixed subtypes based on radio-
graphic features of the LDCT. FDG-positive lesions without changes on LDCT were
designated as “CT-negative metastases” [27,28]. All bone lesions were categorized as positive
in patients with confluent FDG-uptake in bone on FDG-PET/CT or confluent Tc-99m-DPD
uptake on BS (super scan). All bone lesions detected by FDG-PET/CT, LDCT, or BS were con-
sidered positive, although degenerative lesions in large joints were not included. The radiolo-
gist had the LDCT and BS scans in two separate screens (side by side) for the lesion
categorization through LDCT+CT.

Lesion-based sensitivity and quantification

Lesion-based sensitivity with 95% confidence intervals (95% Cls) was calculated for all three
modalities and for the combined LDCT+BS. FDG-avid bone lesions were quantified using
dedicated software (ROVER, ABX, Radeberg, Germany) to determine maximum and mean
SUVs and the latter corrected for partial volume effect (SUVmax, SUVmean, cSUVmean).
Segmentation of bone lesions was obtained by manually placing a three-dimensional mask on
all suspected lesions and delineating the region of interest (ROI) by using a threshold of 40%
of the maximum value of the three-dimensional mask. We included a minimum ROI volume
of one cubic centimeter and excluded ROI intersections [29]. The software then automatically
calculated metabolically active volume (MAV) for each ROI [30]. The retention index of each
lesion was calculated as follows [19]:

Retention Index = (SUV[3h] — SUV[1h])/SUV[1h] x 100%

Statistical analyses

Descriptive statistics were performed according to the data type (continuous: median and
range; categorical: frequencies and percentages). Simple linear regression was used to test for
differences in SUVs and MAV between different bone lesion types with 3h and 1h FDG-PET/
CT imaging. Clustered sandwich estimators were used in both linear regression and derivation
0f 95% Cls to account for clustered data. P-values of <0.05 were considered significant. All sta-
tistical analyses were conducted with STATA/MP 16 (StataCorp, College Station, 77845 Texas,
USA).

Results

Demographic information

Eighteen patients with a median age of 61.5 years (range: 38-76) had confirmed bone recur-
rence; 7 by bone biopsies and 11 by biopsies from other sites with confirmation of bone
involvement by further imaging, or retrospectively observed progression in bone lesions on
later scans. The patients were followed-up for a median period of 19 months (range: 1-35
months). Baseline characteristics of included patients are summarized in Table 1.
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Table 1. Baseline characteristics of included patients with metastatic breast cancer.

Variable Results* Variable Results”

Primary tumor size (mm) 21 (10-70) Estrogen receptor status Positive 15 (83.3)
Time until relapse** (month) 60 (0-324) Negative 2 (11.1)
Histopathology Invasive ductal carcinoma 15 (83.3) Unknown 1(5.6)
Invasive lobular carcinoma 3 (16.7) Herceptin-2 receptor status Positive 3(16.7)

Surgery type Lumpectomy 7 (38.9) Negative 14 (77.8)
Mastectomy 11 (61.1) Unknown 1(5.6)

Treatment protocol Chemotherapy 13 (72.2) Malignancy Grade 1 3(16.7)
Hormone therapy 12 (66.7) 2 7 (38.9)

Radiotherapy 15 (83.3) 3 8 (34.4)

*Data are shown as frequency (%) and median (interquartile range).

“*Time period between primary breast cancer and diagnosis of metastasis.

https://doi.org/10.1371/journal.pone.0260066.t001

Lesion-based sensitivity

A total of 488 bone lesions were detected by any modality with a median of five lesions per
patient (range: 1-99). Three FDG-PET/CT studies did not include the head by technical mis-
take. Four patients had a super scan on BS, and seven patients (39.9%) had more than ten bone
lesions. FDG-PET did not identify five osteolytic skull lesions, four of which were detected by
both LDCT and BS, one by LDCT only.

The lesion-based sensitivity for each modality is presented in Table 2. Early and delayed
FDG-PET/CT images had higher sensitivity compared with BS and LDCT separately, while
they showed almost the same sensitivity when compared with the combined BS+LDCT. Sixty-
two of 98 (63%) CT-negative lesions on LDCT were located in the ribs, humerus, scapula, or
clavicles.

BS detected significantly fewer osteolytic lesions (104/213) than other bone metastatic
lesions (267/275). Also, BS could not identify any lesion in three patients and detected only a
few of several lesions (1/17 and 8/87) in two patients (Figs 1 and 2).

One patient with bone metastatic lobular carcinoma presented with diffuse osteosclerotic
changes in the skeleton that did not take up FDG. The diffuse appearance made the lesions
uncountable. She had seven lytic lesions that were FDG-avid and therefore counted as true
positive on FDG-PET/CT.

Table 2. Types of detected lesions and lesion-based sensitivity by each modality.

Detected lesions Lesion type Lesion-based sensitivity(95% CI)
Osteolytic Osteosclerotic Mixed CT-negative All lesions
Modality
LDCT 213 80 97 0 390 79.9 (51.1-93.8)

BS 104 79 97 91 371 76.0 (36.3-94.6)
FDG-PET/CT (1h) 206 78 97 98 479 98.2 (95.4-99.3)
FDG-PET/CT (3h) 208 79 97 98 482 98.8 (96.8-99.5)

LDCT+ BS 213 80 97 91 481 98.6 (95.4-99.6)

CI: Confidence interval; LDCT: Low-dose computed tomography; BS: Bone scintigraphy; FDG-PET/CT, Fluorodeoxyglucose positron emission tomography with
integrated computed-tomography.

https://doi.org/10.1371/journal.pone.0260066.t002
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Fig 1. A 54-year-old woman with true-positive bone metastases. A) Whole-body bone scintigraphy shows only one area with increased uptake of 9mTc-DPD (arrow).
B) FDG-PET 1h and 3h images show multiple osseous metastases in the spine and the pelvis. C) Axial FDG-PET/CT images demonstrating FDG-avid lesions in the spine,
sacrum, and iliac bones. D) Axial CT images at the same level as C show osteolytic changes.

https://doi.org/10.1371/journal.pone.0260066.9001

Quantification findings

Seven lesions were located in the skull and were excluded from quantification analyses due to
scatter from high FDG-uptake in the cerebrum. The remaining 481 lesions showed a statisti-
cally significant 1h to 3h increase in SUVmax, SUVmean, and cSUVmean for all lesion types
(P<0.0001, Table 3). Osteolytic and mixed-type lesions had higher SUVs than osteosclerotic
and CT-negative metastases at both time-points. The 1h to 3h increase in SUV's was lower for
osteosclerotic than other lesion types. The median retention index was significantly lower in
osteosclerotic lesions compared with other types of lesions (P = 0.006). Comparison of early
and delayed cSUVmean through different lesion types is shown in Fig 3.

Discussion

FDG-PET/CT was superior to BS and LDCT regarding the detection of bone metastases in
patients with recurrent metastatic breast cancer. This modality had significantly higher lesion-
based sensitivity for bone recurrence than LDCT or BS alone, in particular, because it was
much better than BS for the detection of osteolytic lesions and superior to LDCT in the detec-
tion of lesions which were deemed invisible by LDCT (CT-negative metastases). Early and
delayed FDG-PET/CT images showed almost the same sensitivity (98.2% vs. 98.8%). Although
all types of bone metastases showed increased FDG-uptake and were equally detectable at 1h
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Fig 2. A 71-year-old woman with true-positive bone metastases. A) Whole-body bone scintigraphy shows few areas with increased uptake of 9mTc-DPD osteolytic
lesions. B) FDG-PET images show multiple osseous metastases in the skeleton and metastases in other organs on 1h and 3h images. C) Axial 1h and 3h FDG-PET/CT
images showing FDG-avid lesions in the spine, sacrum, and iliac bones. D) Axial CT images at the same level as C show osteolytic changes.

https://doi.org/10.1371/journal.pone.0260066.9002

and 3h images and with high respective lesion-based sensitivities, FDG-PET/CT parameters
(SUVs and retention index) were significantly lower in osteosclerotic lesions compared with
the others.

Strengths of our study were the prospective design, which all patients were treatment-naive
concerning bone metastases, and that patients acted as their own controls during the follow-
up time. Besides, the short time interval between imaging procedures, using of the experienced
readers for each specific modality, the implication of dedicated software for PET quantifica-
tion, and LDCT of the same field of view as with FDG-PET/CT could count as the advantages
of the current study. Limitations were a relatively small sample size with a skewed range of
lesions per patient, that image modalities could not be blinded for the lesion-based analysis
that osteosclerotic lesions were more difficult to characterize due to their more diffuse appear-
ance and that only a single biopsy from each patient dictated the origin of the majority of
lesions. Furthermore, BS was without SPECT/CT and that 18F-Sodium Fluoride PET/CT and
contrast-enhanced CT were not included in the comparison.

In a retrospective Japanese study of 88 breast cancer patients with bone metastasis, they
found higher lesion-based sensitivity (94%) for FDG-PET/CT than for CT and BS (77% and
89%, respectively), which were in line with the results of our study. However, they found a rela-
tively lower detection of osteosclerotic lesions for FDG-PET/CT than other lesion types [13],
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Table 3. FDG uptake and metabolically active volume in types of bone metastasis*.

Lesion type | Osteolytic (n =207) | Osteosclerotic (n =79) Mixed (n=97) CT-negative (n =98) | All lesions (n = 481)
Quantitative measure

SUVmax 1h 6.0 (1.2-16.6) 44 (1.5-11.8) 6.5 (3.1-14.9) 3.8 (1.7-11.5) 5.3 (1.2-16.6)
3h 7.7 (1.8-21.2) 5.5(2.3-15.5) 8.4 (2.7-21.1) 5.1(2.1-14.4) 6.6 (1.8-21.2)
A 1.5(-1.4-7.1) 0.9 (-0.6-5.2) 2.2 (-4.8-7.3) 1.2 (-0.8-5.0) 1.4 (-4.8-7.3)
SUVmean 1h 4.0 (0.9-10.0) 3.1(1.1-6.3) 4.2(1.8-9.2) 2.6 (1.0-7.4) 3.6 (0.9-10.0)
3h 5.1 (1.0-13.1) 3.8 (1.4-8.1) 5.1 (2.0-11.7) 3.1(1.3-9.6) 4.5(1.0-13.1)
A 0.9 (-0.9-4.7) 0.6 (-0.6-2.6) 1.2 (-2.7-4.1) 0.7 (-0.2-4.6) 0.9 (-2.7-4.7)
cSUVmean 1h 7.6 (0.9-36.4) 5.2 (1.6-17.0) 7.5(2.1-19.9) 5.0 (1.2-15.9) 6.7 (0.9-36.4)
3h 10.2 (1.1-26.0) 6.3 (2.0-25.8) 10.0 (2.9-36.3) 5.9 (1.7-19.1) 4.5 (1.0-13.1)

A 2.1(-18.5-14.1) 1.2 (-5.9-15.5) 3.0 (-12.7-21.7) 1.2 (-10.5-11.9) 1.8 (-18.5-21.7)
Metabolically active volume (cm®) | 1h 1.8 (0.1-65.1) 4.2 (0.2-31.0) 3.6 (0.4-61.9) 2.4 (0.3-26.6) 2.5(0.1-65.1)
3h 1.9 (0.2-71.7) 3.9 (0.3-35.5) 3.4 (0.4-52.3) 2.0 (0.5-21.7) 2.3(0.2-71.7)

A -0.1 (-34.6-6.6) 0.0 (-5.6-8.3) -0.4 (-18.2-4.3) -0.1 (-14.5-2.8) -0.1 (-34.6-8.3)

Retention index (%)

25.0 (-28.0-125.0)

20.0 (-14.6-81.0)

34.5 (-57.1.102.1)

29.4 (-13.6-166.7)

27.7 (-57.1-166.7)

SUV: Standardized uptake value; cSUVmean: Corrected SUVmean.

*Data was shown as median (interquartile range).

https://doi.org/10.1371/journal.pone.0260066.t003

which was not confirmed by our study. Additional to the results of previous studies regarding
the superiority of FDG-PET/CT in detection of bone metastases compared to BS [11,12,15],
our study showed that LDCT and BS combined could provide sensitivity equal to that of
FDG-PET/CT in detection of skeletal metastases.

Corrected SUVmean

12

H Osteolytic

FDG-PET/CT 1h

B Mixed u Osteosclerotic

FDG-PET/CT 3h

B Invisible (CT-negative)

Fig 3. Comparison of early and delayed corrected standardized uptake value for partial volume within different
lesion types (FDG-PET/CT: Fluorodeoxyglucose positron emission tomography with integrated computed-
tomography; Corrected-SUVmean: Corrected standardized uptake value for partial volume).

https://doi.org/10.1371/journal.pone.0260066.g003
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FDG-PET/CT has also previously been reported to be superior to BS in the detection of
osteolytic and less sensitive in detecting osteosclerotic lesions [13,14]. However, in retrospec-
tive studies, it may be likely that some patients are not treatment-naive, and in that case, FDG-
negative osteosclerotic lesions may represent bone healing. We detected FDG-positive osteo-
sclerotic lesions although we did find higher FDG-uptake in osteolytic and mixed metastases
than in osteosclerotic and CT-negative lesions, thus supporting previous findings to some
degree. The delayed FDG-PET/CT images had in general better tumor-to-background dis-
crimination and improved image quality in agreement with previous reports on delayed imag-
ing [31]. Nonetheless, the improved image quality and higher SUVs at delayed scans did not
translate into significantly higher detection sensitivity.

In a recently published paper, comparing clinical management of metastatic breast cancer
patients undergoing BS, contrast-enhanced CT, and FDG-PET/CT regarding the assessment
of bone metastasis, it has been shown that FDG-PET/CT resulted in clinically relevant man-
agement differences in 16% of patients compared with BS [32]. Since it has already been
approved that early detection of bone metastasis plays an important role in the survival of
patients with metastatic breast cancer [33], the clinical application of FDG-PET/CT may guide
the treatment better than when using conventional imaging [34,35].

Therefore, proper detection of bone metastases is crucial for the choice of proper treatment.
Previous studies showed higher patient-based sensitivities with FDG-PET/CT than with con-
ventional imaging when diagnosing bone recurrence [23,36]. These findings suggest that oli-
gometastatic bone disease can be detected earlier by FDG-PET/CT than by conventional
imaging. Also, patient-based specificity was improved by FDG-PET/CT, which may signifi-
cantly benefit patients and reduce management costs in this particular patient group.

Our results indicated that FDG-PET/CT, compared with conventional imaging, could act
more sensitive regarding the detection of bone metastasis and distinguishing the different
types of bone lesions. However, these results need to be approved by prospective larger studies
which include 18F-Sodium Fluoride PET/CT and contrast-enhanced CT to the comparison in
order to achieve a firm conclusion about the most sensitive modality to detect bone metastasis.
Additional information derived from follow-up scans could provide relevant results on diag-
nostic accuracy of FDG-PET/CT in response evaluation of skeletal metastases and needs to be
considered in future studies.

Conclusions

FDG-PET/CT had significantly higher lesion-based sensitivity than low-dose CT or bone scintigra-
phy alone and thus, may act more clinically useful as a one-stop-shop for diagnosing bone recur-
rence in breast cancer patients. FDG-PET/CT had significantly higher sensitivity than BS and
LDCT for the detection of osteolytic metastases and lesions appearing in the bone marrow, respec-
tively. Delayed FDG-PET/CT imaging did not improve lesion-based sensitivity significantly.
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