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Abstract

Glycans introduce complexity to the proteins to which they are attached. These modifications 

vary during the progression of many diseases; thus, they serve as potential biomarkers for 

disease diagnosis and prognosis. The immense structural diversity of glycans makes glycosylation 

analysis and quantitation difficult. Fortunately, recent advances in analytical techniques provide 

the opportunity to quantify even low-abundant glycopeptides and glycans derived from complex 

biological mixtures, allowing for the identification of glycosylation differences between healthy 

samples and those derived from disease states. Understanding the strengths and weaknesses of 

different quantitative glycomics analysis methods is important for selecting the best strategy 

to analyze glycosylation changes in any given set of clinical samples. To provide guidance 

towards selecting the proper approach, we discuss four widely used quantitative glycomics 

analysis platforms, including fluorescence-based analysis of released N-linked glycans and three 

different varieties of MS-based analysis: LC-MS analysis of glycopeptides, MALDI-TOF MS, 

and LC-ESI-MS analysis of released N-linked glycans. These methods’ strengths and weaknesses 

are compared, particularly associated with the figures of merit that are important for clinical 

biomarker studies, including: the initial sample requirements, the methods’ throughput, sample 

preparation time, the number of species identified, the methods’ utility for isomer separation and 

structural characterization, method-related challenges associated with quantitation, repeatability, 

the expertise required, and the cost for each analysis. This review, therefore, provides unique 

guidance to researchers who endeavor to undertake a clinical glycomics analysis by offering 

insights on the available analysis technologies.

1. INTRODUCTION

Protein glycosylation is the most complex post-translational modification, and more than 

50% of human proteins are glycosylated. The process of protein glycosylation occurs 

within the endoplasmic reticulum and Golgi apparatus, and it is controlled by a series of 

enzymes that modify the carbohydrates that are covalently attached to proteins through 

certain amino acid residues.1–3 This modification is complex to study, in part, because of 

the heterogeneous nature of the glycans. Unlike protein biosynthesis, glycan biosynthesis 
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does not rely on an underlying template, and the resultant glycan structures can be very 

heterogeneous. Both the enzyme availability and the cellular environment can affect the final 

glycosylation profile.2 In addition, this complexity is further enhanced by the presence of 

multiple monosaccharide units, which are linked together in a variety of ways to form glycan 

structures; glycans can have various compositions, and even differently-linked isomers with 

identical composition, due to variety in linkage and branching.4–5

These heterogeneous glycans (oligosaccharides) attached on proteins play crucial roles 

in regulating various biological processes such as fertilization,6–7 protein folding and 

stabilization,8–9 cellular recognition, cellular adhesion,10–11 and immune defense.12 In 

addition, glycosylation is considered as a critical quality attribute in biotherapeutics 

production since the glycans attached on proteins greatly affect the safety and the efficacy 

of protein-based drugs. Thus, a minor change in glycosylation profile of these drugs can 

lead to serious conditions, such as adverse immune reactions,13–14 rapid clearance,15–16 

and loss of therapeutic potency. Furthermore, aberrant glycosylation of various endogenous 

proteins have been associated with the progression of diseases, such as cancers,17–19 

kidney diseases20 among others; thus, glycans may serve as clinical biomarkers for disease 

diagnosis and prognosis.21 Therefore, deeper understanding of this complex modification, 

and current glycosylation profiling strategies, is critical, not only to identify sensitive 

biomarkers, but also to provide information necessary to regulate the glycosylation in 

biotherapeutics, so the safety and the activity of glycoprotein-based drugs is ensured. While 

multiple types of glycosylation exist, including lipid glycosylation, glycosaminoglycans, N- 

and O-linked glycosylation on proteins, this review is focused on N-linked glycosylation of 

proteins.

1.1. N-linked Glycosylation

The most commonly studied glycosylation type, N-linked glycosylation, occurs when 

the glycans are attached to the proteins through the amide nitrogen on the side 

chain of an Asn residue. These glycosylated Asn are usually located within a unique 

amino acid sequence: Asn-Xxx-Ser/Thr, where Xxx can be any amino acid except 

proline.1–3, 22 Glc3Man9GlcNAc2 is the common precursor for all the N-linked glycans, 

as shown in Figure 1. This precursor is attached to the protein during the initial phase 

of the glycosylation process. The precursor undergoes many enzymatic trimming and 

monosaccharide addition steps that introduce modifications to the precursor glycan while 

preserving the tri-mannosyl-pentasaccharide core (Man3GlcNAc2).2–3 These modifications 

to the precursor glycan result three major types of N-linked glycan structures; they are 

high-mannose (Man), complex, and hybrid. (See Figure 1.)

The high-mannose type glycans are formed by trimming of monosaccharides from the 

precursor without addition of new monosaccharides, thus leaving only Man residues 

attached to the core structure. In contrast, complex- type glycans are formed by trimming 

monosaccharides of the precursor glycan, followed by addition of new sugars to the terminal 

mannose residues of both arms of the Man3GlcNAc2 core. In complex type structures, 

GlcNAc is the very first monosaccharide unit directly linked to the terminal mannoses 

in the core-structure, and it is further extended with additional monosaccharides; the 
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most common pattern involves attachment of galactose (Gal) units and terminal sialic 

acid (N-acetylneuraminic acid) units. Based on the number of GlcNAc attached to the 

terminal mannose sugars in the core structure of the complex-type glycans, the number of 

branches are defined as bi-, tri- and tetra-antennary. In addition, in complex-type glycans, 

core-fucosylation and/or antennary fucosylation can be observed when the fucose (Fuc) is 

attached to the innermost GlcNAc of the core structure or the GlcNAc at the non-reducing 

end. The hybrid-type glycans, the last glycan category, share the characteristic features of 

both high-mannose and complex-type glycan structures.2–3

1.2. Altered N-linked Glycosylation and Diseases

During the progression of many diseases, alteration of the N-linked glycosylation profile 

is observed. These alterations may include both upregulation and/or downregulation of 

glycans, elevated branching, size increase, and modifications to the core-structure.20, 23–26 

For instance, during colorectal cancer progression, several glycosylation changes were 

observed including: differentially expressed serum IgG N-linked glycans, decreased levels 

of high-mannose structures, reduced core-fucosylation, and less sialylation.23 Decreased 

levels of fully galactosylated N-linked glycan structures were identified in gastric cancers,24 

lung adenocarcinoma tissues,25 and rheumatoid arthritis (RA).27 In addition, significantly 

decreased levels of Man5 and bi-antennary N-linked glycans, along with elevated 

levels of branching, antennary fucosylation, and core-fucosylation were observed in the 

serum glycans of primary epithelial ovarian cancer patients.26 The altered glycans and 

glycosylation patterns that are unique to certain types of diseases may serve as biomarkers, 

and discovery of those biomarkers is important, not only to understand disease pathology, 

but also to perform more selective treatments and disease diagnoses.

In the past few decades, impressive efforts have been made to identify clinically relevant 

glycan biomarkers for diseases. More than 90 potential N-linked glycan biomarkers have 

been identified based on previously published studies, including biomarkers for certain types 

of cancers, such as breast, liver, ovarian, kidney, and pancreatic cancers, as well as for 

Hepatitis B and C, Alzheimer’s disease, and diabetes.28 This large number of potential 

glycan-based biomarkers clearly shows the significance of quantitative glycomic studies 

in discovering selective candidate glycan biomarkers for distinguishing disease states from 

healthy states and also in disease prognosis, diagnosis and/or treatment. While the number 

of potential glycan-based biomarkers is impressive, we are unaware of any of these having 

yet transitioned to clinical diagnostics; undoubtably, part of the reason for this is due to the 

need for even better analysis technologies that can handle large sample sets. The discovery 

of unique biomarkers for various diseases is greatly dependent on not only the availability of 

sensitive and reliable analytical methods but also on careful selection of the most appropriate 

and cost-effective approach for any clinical glycomics study. Thus, in this review, we 

compare the performance of four commonly used quantitative glycomics methods to guide 

the selection of an appropriate analytical strategy for clinical and pre-clinical studies.
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2. GENERAL CONSIDERATIONS

2.1. Glycosylation Analysis

Glycosylation analysis is most commonly performed in two ways: glycopeptide-based 

analysis and glycan analysis.2–3, 29 During glycopeptide-based analysis, the glycans remain 

attached to the glycosylation site, and therefore, retain information about the protein to 

which they are attached and the site of attachment. This information increases the specificity 

of the analysis, but the trade-off is that the analyses are more complex. Site-specific 

glycosylation analysis is used limitedly in the glycan biomarker discovery field,30 due to the 

glycopeptides’ lower abundance, lower ionization efficiency, need of method optimization 

for each glycoprotein,31 and difficulties in data interpretation.32 By contrast, glycan-based 

analysis, where glycans are released from the glycoproteins and then are analyzed, is useful 

for obtaining aggregate information about the total glycan pool. One disadvantage of this 

approach is that a change in glycosylation is hard to interpret: It may be due to changes in 

glycosyltransferase activity or changes in protein expression of certain glycosylated proteins. 

While the method provides substantially less specificity, it is frequently employed in clinical 

glycomics due to the availability of universal and well-established protocols for glycan 

analysis. One way to balance the strengths of both methods is to perform glycan analysis on 

a specific protein target that has been purified from the sample. When the glycoprotein of 

interest can be purified from the matrix, glycan analysis provides information specific to the 

protein of interest, and well-established methods can be used to facilitate quantitation and 

analysis.

2.2. Sample Preparation

Figure 2. shows multiple ways of generating glycans or glycopeptides from complex 

biological samples for glycosylation analysis. Of these sample preparation steps, 

glycoprotein purification at the crude protein mixture level is performed especially 

when targeted quantitation of a specific protein’s glycosylation profile is necessary; for 

example, IgG is affinity purified with protein A or G, prior to the quantitation of IgG 

N-linked glycans associated with cancer in serum samples.23–24 On the other hand, 

glycans can be released directly from the non-enriched biological samples when the 

total glycome pool of a biological matrix is quantified;33 however, the method yields 

limited specificity. In glycopeptide analysis, proteolysis at crude mixture level is performed 

when the targeted glycoprotein is in high abundance;30, 34 but the proteolysis on purified 

glycoprotein(s)32, 35–36 is used more frequently, as it improves the sensitivity of the analysis. 

Once these glycans or glycopeptides are generated, further purification can be performed by 

solid phase extraction-based methods (SPE) with porous graphitized carbon (PGC) 33, 37 and 

hydrophilic interaction liquid chromatography (HILIC),32, 38–39 or by using specific lectins 

for glycopeptides.40

2.3. Quantitation

Glycan abundances from healthy patients versus those of a disease state are compared 

by either absolute4, 37 or relative quantitation;4, 17, 37 relative quantitation is the more 

common choice, since absolute quantitation usually requires glycan standards that are not 

readily available.41 In relative quantitation, the proportion of glycans present in the two 
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sample types (healthy versus disease state) is reported by dividing an individual glycan 

abundance by the total glycan abundance,42–43 or by the abundance of the most intense 

glycan peak,31, 44 or by a peak among the major signals.31 While these methods do not 

report exact glycan concentrations, the ratios are useful for allowing the identification 

of under- or over-expressed glycans between healthy versus disease groups, which is the 

ultimate goal of the analysis.

3. QUANTITATIVE STRATEGIES IN CLINICAL GLYCOMICS

3.1. MASS SPECTROMETRY (MS)-BASED APPROACHES

MS-based approaches are widely used in clinical and pre-clinical glycomic studies. This 

choice is preferred by many researchers because the method is sensitive, and it can be used 

to differentiate species with unique masses. Structural information can also be obtained 

through MS/MS and MSn experiments.45–49 These benefits, especially when coupled 

with separation and enrichment techniques, facilitate the identification and quantitation 

of glycans originating from complex biological matrices. Matrix-assisted laser desorption 

ionization mass spectrometry (MALDI-MS) and electrospray ionization mass spectrometry 

(ESI-MS) are the most common ionization techniques for glycan analysis, and the latter 

may be done in conjunction with widely used separation techniques, such as liquid 

chromatography and capillary electrophoresis, while the former requires offline separation.

3.1.1 MALDI-TOF MS Analysis of Released N-linked Glycans—MALDI-TOF 

MS is widely applied in quantitative clinical glycomics. It is a simple, sensitive, high-

throughput method.20, 23, 33, 37, 50–51 The most common sample preparation procedure for 

glycan analysis by MALDI-TOF MS is the workflow appearing at the top of Figure 2: the 

desired glycoprotein of interest is isolated and purified from the complex biological matrix; 

next, release of N-linked glycans from glycoproteins via PNGase F treatment typically 

follows. The glycans are subsequently purified and labeled20, 23, 33, 37, 51 for MALDI-TOF 

MS analysis.

Figure 3 (A) shows more detail about the MALDI-MS specific sample preparation steps. 

Once the glycans are purified, labeling of released N-linked glycans is usually performed 

to enhance the ionization efficiency of glycans, to improve the sensitivity of the analysis, 

and sometimes to allow simultaneous detection of both neutral and acidic N-linked 

glycans.23, 51 MALDI-TOF MS analysis of permethylated N-linked glycans20, 33, 37, 50 has 

been performed in many clinical glycomics studies. In addition, derivatization of sialic acid 

via methyl esterification43 or ethyl esterification38 is another useful labelling method. Once 

the labeled glycans are purified again, they are prepared for MALDI-TOF MS analysis. 

While permethylation has been the go-to labeling method in the field, many researchers are 

currently taking advantage of the esterification method pioneered by Wuhrer and colleagues, 

due to its dual advantages of stabilizing the sialic acids while also providing linkage 

information.

Another reason to label glycans prior to MALDI-MS analysis is to incorporate a stable 

isotopic label for quantitative purposes. One attractive strategy is dual labeling, which 

enables simultaneous quantification of neutral and acidic glycans.51–53 This approach 
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involves incorporation of isotopic species at both ends of the glycan. Notably, this method 

provides added value through stabilization of sialic acid moieties, simplified sialic acid 

counting, and enhanced ionization.51, 54 Li and colleagues implemented this strategy in 

their mdSUGAR tag, using reductive amination and periodate oxidation to derivatize the 

reducing end and sialic acids, respectively, which introduces a larger mass difference and 

renders this method amenable to lower resolution instruments.55 Isotopic PFBHA and 

isotopic methylamine was used in a similar fashion; this dual labeling strategy also enables 

glycan enrichment via fluorous SPE.54, 56 More traditional methods include enzymatic 18O 

labeling,57 isotopic permethylation,58 and metabolic labeling.59 Sample-matrix preparation 

greatly affects the quality of the resultant MS spectra, as matrix plays a vital role in 

promoting solid phase analytes into the gaseous phase; DHB is the most common matrix 

for glycan analysis by MALDI-MS, although other choices are available and sometimes 

prove to be worth exploring. Prior to MALDI-TOF MS analysis, the labeled glycans are 

mixed in a 1:1 ratio with a matrix, including 2,5-dihydroxy-benzoic acid (2,5-DHB),38, 60 

Super DHB,20 4-chloro-α-cyanocinnamic acid (Cl-CCA),60 2,4,6-trihydroxyacetophenone 

(THAP),60 or 9-Aminoacridine (9-AA),61 followed by spotting the aliquots of the mixed 

sample solutions onto a MALDI plate. Then multiple laser shots are applied on each sample 

spot to ionize the samples, followed by the MS analysis.20, 23, 33, 37, 51 During the analysis, 

reflectron-positive20, 37–38, 62–63 and negative,60 as well as the linear-positive and negative 

ion modes60 are used. Among them, positive-ion mode is more commonly used due to 

higher ionization efficiency and higher S/N ratio reported for labeled glycans.29 However, 

negative ion mode is also used to detect acidic glycans with improved detection sensitivity.60

3.1.2. LC-ESI-MS Analysis of Released N-linked Glycans—ESI-MS is also used 

in quantitative glycomics studies. A general LC-ESI-MS workflow of glycan quantitation 

includes: glycan release, purification, labeling, followed by glycan separation, and ESI-MS 

quantitation. Similar to MALDI-TOF MS, in LC-ESI-MS-based glycan quantitation, glycan 

release is commonly performed at the crude mixture level for total glycome quantitation, 

followed by enrichment of released glycans using SPE,4, 25 but it can also be performed after 

enriching for a target protein.

Figure 3 (B) represents the general workflow for LC-ESI-MS analysis. Once the glycans 

are purified, analysis can be performed on labeled, 33, 48, 64–66 unlabeled,4, 24 or chemically 

reduced25, 67 glycans. Glycan labeling is performed to improve the sample throughput, 

by allowing for multiple, differentially labeled samples to be analyzed together, and to 

enhance the ionization efficiency of the glycans. 68 Isobaric tags or tandem mass tags 

(TMT)48, 64–66 that have identical masses, but with various heavy isotopes distributed 

within the structure, are commonly used in labeling experiments. AminoxyTMT,48, 66 is 

one such tag that allows simultaneous labeling of glycans derived from multiple samples, 

resulting in a single chromatographic peak at the full MS level for various glycans, 

yielding sample-specific reporter ions at the MS/MS level for comparative N-linked glycan 

quantitation. Alternatively, stable isotopic labeling of glycans where small mass differences 

to the glycans derived from multiple samples are introduced through isotopically labeled 

reducing-end labeling agents, or isotopic permethylation, are used to quantify glycans at the 

MS1 level.64 For example, 8-plex quantitative glycan analysis of multiple breast cancer cell 
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lines was feasible through isotopic permethylation performed by using isotopically labeled 

iodomethane during the permethylation reaction.64 Furthermore, metabolic isotope labeling, 

where cells from different samples are labeled isotopically, is also used in quantitative 

glycomics analyses to reliably quantify glycans from different samples while minimizing 

potential sample preparation bias.33 At the end of the appropriate glycan labeling step, the 

samples are purified from the labeling agent and/or biological matrix molecules, and they 

are analyzed by MS. Labeling agent removal is not trivial, and different labeling agents have 

different optimal clean-up procedures.

Glycan separation prior to MS detection facilitates the enrichment of various glycan 

structures derived from complex biological samples, while allowing sensitive detection 

of multiple glycans by MS. Liquid chromatography (LC) is used frequently, due to its 

ability to resolve complex mixtures, its compatibility with MS methods, and its capacity for 

facilitating automation. As compared to traditional LC-ESI-MS or MALDI-TOF MS, nano-

LC-MS is used in many studies, as it significantly improves the detection sensitivity.4 Nano-

LC columns packed with C18
64, 68–69 or PGC-bonded stationary phases66 are frequently 

used to separate permethylated N-linked glycans; PGC is also regularly used for non-

permethylated glycans, while HILIC columns are used to separate more hydrophilic glycans, 

which are often labeled prior to analysis.48 Alternatively, by incorporating a microfluidic 

chip to the nano-LC workflow, a greater retention time reproducibility, better separation, 

and high sensitivity for the glycans can be achieved.4, 24 For example, PGC / nano-LC 

chip-based separation has been used in many quantitative glycomic studies, as PGC is 

capable of separating glycans by their polarity, size, and 3D structure, while exhibiting good 

isomer separation capacity.4, 24–25, 67 Once the glycans are effectively separated, they are 

detected with MS for quantitation.

Electrospray ionization (ESI) is a commonly used ionization technique in quantitative 

glycomics studies because it generates glycan ions without the loss of labile groups; thus, 

it provides complete composition information. In many studies where ESI-MS is used, 

the instrument is operated in a data dependent mode,65–66, 69 acquiring full MS scans 

in an Orbitrap,65, 69 for example, followed by MS/MS scans of the most intense ions. 

Also, in some studies, targeted quantitation is performed using a triple quadrupole mass 

spectrometer operated in multiple reaction monitoring (MRM) mode.69 Once the LC-MS 

data are acquired, they are analyzed by using software tools or by combining both expert 

analysis and automated tools prior to the N-linked glycan quantitation.

3.1.3. LC-MS Analysis of Glycopeptides—LC-MS analysis of glycopeptides is 

another method used in biomarker discovery; this approach provides glycosylation site-

specific information. However, the method is challenging because it involves determination 

of both an unknown peptide and an unknown glycan. The general workflow for glycopeptide 

analysis using LC-MS includes: isolation of desired glycoprotein(s) from the biological 

matrices, glycoprotein denaturation, reduction and alkylation, all prior to the enzymatic 

digestion; then separation of enriched or non-enriched glycopeptides is achieved, usually by 

HPLC, followed by MS analysis.
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In this workflow, isolation of glycoprotein(s) at either the crude mixture level32 or at 

glycopeptide level35–36 is important due to the glycopeptides’ low abundance as compared 

to the non-glycosylated peptides. Of these enrichment methods, lectin-based enrichment, 

where carbohydrate-binding proteins or lectins bind to specific carbohydrate moieties via 

affinity binding, can be implemented for both glycoprotein level70 and glyopeptide level 

enrichment.40, 46, 71 For example, Aleuria aurantia lectin (AAL) 70 and Lens culinaris 
Agglutinin (LCA)46 are two lectins that bind to fucosylated carbohydrate motifs, and 

Sambucus nigra lectin (SNA) is another lectin that binds to carbohydrates that contain sialic 

acids.70 One obvious drawback of using lectins to enrich the glycans is that the lectins will 

differentially enrich certain glycoforms, so this purification strategy can be quite deleterious 

if the goal of the analysis is to capture all glycoforms present at their natural abundance. 

Alternatively, unique antibodies that identify specific epitopes present on protein backbones 

are also used to isolate specific glycoproteins from complex biological samples.32, 72 Anti-

IgA72 and antihuman Haptoglobin (Hp)32 are two such antibodies that have been used to 

isolate IgA and haptoglobin, derived from cancer-associated serum samples. Additionally, 

protein G or protein A-based isolation of IgG72–73 and glycopeptide level enrichment with 

sepharose beads73 are also reported. However, when the targeted glycoprotein is in high 

abundance, such as immunoglobulin G in serum, enrichment steps at either the crude 

mixture level or glycopeptide level can be avoided, while performing proteolytic digestion 

directly on crude biological samples, as shown in Figure 2.30, 34

To generate glycopeptides, the (enriched) samples are subjected to proteolytic digestion. 

Most commonly, site-specific proteases, such as trypsin,30, 74 are usedThese proteases 

produce peptides that can be predicted in advance, and the number of different peptides 

generated per glycosylation site is very limited; often a single unique peptide will be 

generated per glycosylation site. Some researchers, however, are concerned that specific 

proteases limit the number of glycopeptides identified when the resultant glycopeptides 

are multiply glycosylated or miscleaved. They support the use of non-specific proteases, 

which may be better in the specific cases of multiply glycosylated and difficult-to-

digest glycoproteins. This strategy, either on its own, or in combination with specific 

proteases,32, 34, 41 may provide more complete glycopeptide identification in some cases.34 

After protease digestion, the resulting glycopeptide mixture, is subjected to purification/

enrichment35, 71, 74 or not.30, 34 Most commonly, enrichment is not part of the workflow 

prior to LC-MS, but sometimes it proves to be beneficial. After sample preparation is 

complete, the sample can be analyzed by LC-MS, as shown in Figure 4.

Glycopeptide separation prior to MS detection is important because it permits enrichment of 

glycopeptides from peptide counterparts that co-exist in the mixture; those can reduce the 

ionization of glycopeptides if they co-elute. LC is the method of choice for glycopeptide 

separation owing to its MS compatibility, glycopeptide resolving capacity, and ability to 

be automated.3 Reverse phase (RPLC) columns with C18- bonded phases are the most 

popular in glycopeptide separation;30, 36, 40–41, 74–80 these columns separate glycopeptides 

predominantly based on the interactions between the peptide backbone and the hydrophobic 

stationary phase, although the presence of sialic acids also can impact the retention time of 

the glycopeptides, albeit to a lesser degree.
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Once the glycopeptides are separated, they are detected using MS. Multiple reaction 

monitoring (MRM) mode, a targeted mass spectrometry approach, is frequently used for 

quantifying glycopeptides due to its high sensitivity and selectivity.30, 34, 71, 81 Alternatively, 

untargeted approaches are possible; in these cases, glycopeptides can be quantified by their 

high-resolution ESI-MS signal82–83 or by using data-dependent LC-MS/MS.70 ESI with 

positive ionization mode is frequently used, but in some cases, negative ion mode is also 

performed to enhance the ionization of sialylated glycopeptides.40 Finally, the data analysis 

is performed by using either software tools30, 34 or by combining both software tools and 

manual verification.32

3.2. SPECTROSCOPY- BASED APPROACHES

3.2.1. LC/CE-Fluorescence Profiling of Released N-linked Glycans—Another 

widely used method in quantitative clinical glycomics studies is HPLC with fluorescence 

detection. In this case, labeled glycans are analyzed. As with previously discussed 

methods, this one also requires isolation and purification of glycoprotein(s) of interest 

from complex biological samples, prior to sample preparation; see Figure 2. Then the 

isolated glycoprotein(s), which are either denatured84 or non-denatured20 are subjected 

to enzymatic glycan release with PNGase F enzyme, followed by fluorescent labeling 

and glycan purification.20, 85–86 Some common fluorescent labeling reagents include 2-

aminobenzoic acid (2-AA)38 and 2-aminobenzamide (2-AB).20, 43, 85–86 Once the glycans 

are fluorescently labeled, the excess labeling reagent is removed using SPE,31, 43–44, 84 

paper chromatography,85, 87 or size-exclusion chromatography88 and the labeled glycans 

are separated by HPLC. Options include HILIC-LC (hydrophilic interaction liquid 

chromatography),43–44 HPAEC (high pH anion exchange chromatography),20, 86 and NP-

HPLC (normal phase high performance liquid chromatography)42, with the HILIC-LC 

method dominating the field. The separated, derivatized glycans are quantified based on 

their fluorescence signal. See Figure 5 for a representative workflow for this method.

Capillary electrophoresis (CE) separation paired with fluorescence detection is also used 

to profile N-linked glycans in clinical glycomics studies, as the method is high-throughput 

and readily adaptable to microfluidic devices.63, 88–89 The sample preparation for CE and 

HPLC are similar; however, 8-aminopyrene-1,3,6-trisulfonic acid (APTS),20, 31, 43, 85, 90 and 

8-aminonaphthalene-1,3,6-trisulfonic acid (ANTS)91 labels are often used; these labels carry 

three negative charges from sulfonic acids. The charges on the fluorophores increase the 

electrophoretic separation.92 However, when the glycans carry negatively-charged sialic acid 

groups, cleavage of the sialic acids89 or neutralization via chemical modifications such as 

methylamidation63 is typically performed before the APTS labeling step. This modification 

yields glycans all bearing the same charge state, thus, allowing glycans’ electrophoretic 

migrations to be based on their hydrodynamic volumes, resulting in increased migration 

times for sialylated glycans while preserving the efficiency of separation.63 Once the 

glycans are labeled, they are separated by using various CE modes, such as conventional 

CE63, 88 or capillary gel electrophoresis (CGE);43, 85 then they are detected by fluorescence.

Peak assignment for fluorescence-based methods is typically accomplished with the use 

of a glucose unit index (GUI), in which calibration of the system with a standard dextran 
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ladder allows for the normalization of glycans’ retention/migration times by converting 

them to glucose units (GU).85, 93–96 The GU value, determined based on the number 

and linkage types of its constituent monosaccharides,94 is used to determine the elution/

migration positions of individual glycans. A database of normal-phase HPLC elution 

positions for over 350 2-AB labeled glycans based on GU values was previously established 

in an effort to automate the process of glycan identification.94 However, full structural 

characterization of glycans requires additional experiments such as exoglycosidase digestion 

and/or complementary studies with tandem-MS.90, 97–98

4. PERFORMANCE COMPARISON

As described in the previous section, various glycomic analysis and quantitation strategies 

have been developed; each of these methods are currently used in glycomics-based 

biomarker studies. However, each of these methods has differences in their workflows and 

unique advantages and disadvantages. Thus, one must carefully consider when to use a 

particular quantitative strategy for a biomarker study. To assist in this selection process, we 

compared the performance of the four quantitative strategies described above with respect to 

various key figures of merit. Table 1 summarizes the methods’ performance.

4.1. Sample Size

In complex biological mixtures, the glycoprotein(s) of interest are usually present at low 

abundance compared to the non-glycosylated proteins. Therefore, the detection of these low 

abundant glycans/glycopeptides depends on not only the method sensitivity, but also the 

initial sample amount used for the analysis. Table 1. shows the comparison of methods in 

terms of typically used initial glycoprotein amounts for the quantitative glycomics analysis.

Generally, MS-based methods are highly sensitive; they can be implemented with lower 

microgram quantities of glycoproteins to provide reliable quantitative glycomics data. 

When LC-MS-based analysis of glycopeptides/glycans is implemented, higher quantitation 

sensitivity is achieved by using different MS-based strategies, such as targeted multiple 

reaction monitoring (MRM)30, 34, 68 or carefully designed data-dependent scan sequences 

that selectively target glycopeptides;32, 73 these methods permit lower initial sample 

amounts. For examples, two studies performed by Hong et al.30, 34 used MRM-mode to 

quantify immunoglobulin glycopeptides generated from approximately 24 µg of IgG,30, 34 

5 µg of IgA,34 and 3 µg of IgM,34 derived from 2 µL of un-enriched serum samples; 

the glycoprotein amounts indicated here are approximate values calculated based on these 

glycoproteins’ average plasma concentrations reported in the literature.99 In addition, 

MS/MS techniques, such as LC-ESI-MS/MS73 and LC-EThcD MS/MS32 were used to 

quantify glycopeptides of IgG (~24 µg),73 and haptoglobin (3 µg)32 derived from serum 

samples of pancreatic cancer and liver cirrhosis patients, respectively. LC-MS analysis of 

released N-linked glycans is also performed at lower microgram levels;24, 68 one study 

quantified more than 55 permethylated serum N-linked glycans, by using approximately 

0.1 µg of total glycoproteins derived from 0.005 µL of enriched-serum sample injected on 

column;68 yet readers should be aware that the amount of glycoprotein initially subjected 

to sample preparation for these studies was more than 100 times greater than the reported 
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injection amounts. Similar to LC-MS analysis methods, MALDI-TOF MS analysis also uses 

initial glycoprotein amounts ranging from 0.5 – 30 µg, derived from up to 5 µL of biological 

samples for N-linked glycan quantitation.20, 23, 37, 100 The study performed by Gao and 

coworkers100 quantified more than 50 TMPP-Ac-labeled N-linked glycan structures derived 

from approximately 0.5 µg of serum glycoproteins per MALDI spot; however, the starting 

quantity, prior to sample preparation, was 20 times higher.

Compared to all MS-based methods, fluorescence-based methods typically require 

comparatively higher initial glycoprotein amounts, ranging from approximately twenty to 

a few hundred micrograms.84, 88

4.2. Sample Throughput

High-throughput methods that are capable of analyzing glycomic profiles of several 

thousands of biological samples are necessary to perform large-scale clinical studies.42 The 

throughput of MALDI-TOF MS is superior to all other glyco-analytical techniques, and it is 

followed by CE-LIF and HPLC-FLD.39, 43, 85, 90 See Table 1 for an abbreviated comparison.

To assess the throughput of profiling human plasma IgG N-glycosylation of 1201 

individuals, four platforms were compared: MALDI-TOF MS, LC-ESI-MS, and two 

spectroscopic approaches.85 MS analysis was performed on purified tryptic glycopeptides, 

while non-mass spectrometric methods, UPLC-HILIC-FLR and multiplex capillary gel 

electrophoresis-laser induced fluorescence detection (xCGE-LIF), were performed on 2-AB 

and APTS labeled, released N-linked glycans, respectively.85 MALDI-TOF MS proved to be 

far superior, while LC-ESI-MS was the slowest. In another example, HILIC-UHPLC-FLD, 

xCGE-LIF and MALDI-TOF MS approaches were compared for identifying the serum N-

glycome changes associated with rheumatoid arthritis and pregnancy. Again, MALDI-TOF 

MS sample throughput outperformed the spectroscopic methods.43, 85 These studies showed 

that 96–384 samples could be analyzed by MALDI within a single run, providing the 

measurement of a sample at a sub-minute time scale.85, 101

Apart from MALDI-TOF MS, CGE-LIF, when multiplexed, proves to be the method with 

the second-best throughput. It allows for the analysis of thousands of samples within a 

day.43, 85 The typical run time for either the CGE-LIF or HPLC-FLD is approximately in 

40 – 60 min range, but once CGE is multiplexed with up to 96 capillaries in parallel, the 

required analysis time per sample can be reduced to the low minute scale.43 As compared 

with CGE-LIF, the throughput of conventional CE-LIF is lower as it lacks multiplexing 

ability, but the typical run time is generally lower than both CGE-LIF and UPLC-FLR.

UPLC-FLR and LC-ESI-MS show medium throughput;85 the throughput is limited by the 

front-end gradient time. For example, one study quantified total plasma N-linked glycan 

profiles obtained from 2396 individuals by using an HPLC-FLD. The reported total analysis 

time was 106 min per sample.44

While LC-ESI-MS/MS analysis of glycans is one of the slowest methods, sample throughput 

can be improved by using multiplexing agents, such as tandem mass tags (TMT), isobaric 

labels,66 and stable isotopic labels.64 Introducing multiplexing agents is useful not only 
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for improving the reliability of the quantitation, but also for increasing the number of 

samples that can be analyzed within a single LC-MS run, while lowering the analysis 

time per sample.66 Recently, sixplex AminoxyTMT mass tags were used by Merchef and co-

workers66 to reliably quantify serum N-linked glycans derived from individuals with various 

esophageal diseases. They quantified 44 glycans after labeling them with TMT sixplex 

reagents, followed by glycan separation on a PGC column and analysis with nano-LC-ESI-

MS/MS.66 In addition, a recent study performed by Li and coworkers102 presented mass-

defect-based, duplex-dimethyl pyrimidinyl ornithine (DiPyrO) tags with a mass difference of 

45.3 mDa at the MS1 level; these tags were used to quantify N-glycome profile differences 

of human serum samples derived from cancer patients before and after chemotherapy; the 

study permitted quantification of 36 glycans, presented at relatively high abundance in the 

control samples as compared to the samples collected after chemotherapy.102

4.3. Sample Preparation Time

Sample preparation is required for all these methods because of the complexity of the 

sample matrix and the heterogeneity within the sample. Typically, on a glycoprotein, a 

variety of glycans can be attached to either a single glycosylation site or to multiple 

glycosylation sites found on the peptide backbone. This heterogeneity results many 

different protein glycoforms, which are usually in low abundance compared to the non-

glycosylated proteins present in the biological matrix.2–3 Therefore, efficient glycoprotein 

purification and separation at the crude-mixture level or the glycan/glycopeptide level 

is vital in glycomics analysis, as any contaminant present in the sample can affect the 

detection sensitivity, reproducibility, and relative glycan quantitation.84 Therefore, many 

improvements in glycoprotein purification, sample preparation, including release of N-
linked glycans, glycan enrichment, and labeling, have been reported in the literature; these 

methods are described in sections 3.1.1, 3.1.2, 3.1.3 and 3.2.1. However, the complexity 

of these multiple glycan/glycopeptide processing steps directly affects the total sample 

preparation time of the analysis, making it difficult to perform large-scale clinical studies on 

disease-related glycan biomarkers.88

The throughput of preparing samples for HPLC-FLD, CE-LIF and MALDI-TOF MS 

analysis of released N-linked glycans is quite similar.43 All of these methods include 

glycoprotein enrichment, enzymatic N-linked glycan release performed overnight, glycan 

derivatization, and detection of purified glycans. However, the sample preparation 

throughput of MALDI-TOF MS currently surpasses the non-MS based methods. This is 

well-evidenced by two studies performed by Shubhakar et al.50 and Bladergroen et al.;103 

they have presented high-throughput, clinically-feasible, automated sample preparation for 

MALDI-TOF MS analysis; these automated protocols allowed 96 clinical samples to be 

processed and detected within about 7 h for permethylated samples 50 and 3.5 h for samples 

with sialic acids esterified.103 During these studies, the sample preparation workflow was 

expedited through introducing robotic liquid handling systems, which significantly reduced 

the sample preparation time for the analysis. On the other hand, automation of non-MS-

based sample preparation, for example HPLC-FLD, has been also reported; one of these 

studies reduced the sample processing time for 96 2-AB labeled samples from 72 h87 to 

22 h84 by introducing an efficient way to conduct glycan release and derivatization in 
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an automated fashion. Another study done by the same group96 reported processing of 

100 samples within approximately 14 hours, by using the same method, but with some 

modifications that permitted whole serum glycan analysis.

Compared to MALDI-TOF MS and fluorescence-based methods, less effort has been 

directed at speeding up sample preparation for LC-ESI-MS of released glycans and LC-

MS of glycopeptides. In principle, sample preparation for LC-ESI-MS analysis of glycans 

would be approximately equivalent to that of MALDI-TOF MS, since the same types 

of analytes are studied. In contrast to analyzing released glycans, LC-MS analysis of 

glycopeptides requires different sample preparation steps that must be done in advance: 

glycoprotein enrichment, denaturation, reduction, alkylation, and enzymatic digestion. The 

sample preparation time consumes about 3 hours prior to the enzymatic digestion; enzymatic 

digestion is typically performed overnight.32 The time allotted to the LC-MS/MS analysis 

can vary from 20 min34, 81 to a few hours,41 which reduces the analytical throughput of the 

method.

4.4. Number of Structures Identified

Identification of many unique glycan/glycopeptide species present in biological samples is 

important in biomarker research: the more structures quantified, the greater the likelihood 

that researchers will be able to identify glycans whose abundance changes with the disease 

sate.

Among different MS-based methods, LC-MS analysis of glycopeptides is capable of 

identifying the highest number of analytes per analysis. Glycopeptides have diversity in 

both the peptide and glycan portions, resulting in a larger number of possible glycopeptides 

being present than if the glycans alone were analyzed. One recent study quantified more 

than 600 glycopeptides across over 50 serum glycoproteins by implementing a dynamic 

multiple-reaction monitoring (dMRM) method optimized in a UHPLC-QqQ; the study 

permitted quantitation of sialylated and fucosylated glycans, in addition to low abundant 

high mannose-type glycans.41 In another study, Kazuhiro et al.40 identified more than 30 

000 AAL-affinity-enriched glycopeptides derived from serum samples of hepatocellular 

carcinoma (HCC) patients, chronic hepatitis patients, and healthy controls via LC-TOF-MS 

while allowing the identification of multifucosylated glycans of alpha-1-acid glycoprotein 

(AGP), as candidate HCC biomarkers.

LC-ESI-MS analysis of released N-linked glycans, provides the second-best coverage of 

glycosylated analytes. Among many studies where a higher number of glycan identifications 

were reported, PGC-chip-based separation was used. Song et al.67 performed an analysis on 

reduced serum N-linked glycans and identified more than 170 N-linked glycan structures, 

including complete (50) and partially elucidated (100) structures that were included in a 

representative library for serum. Moreover, in another study, out of 115 glycan structures 

identified, 29 were altered in lung adenocarcinoma tissue samples as compared to the 

non-malignant tissues.25

Among all MS-based methods, MALDI-TOF MS shows the lowest coverage of unique 

glycans. However, compared to fluorescence-based methods, MALDI-TOF MS is capable of 
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assigning more glycan compositions, and it provides good separation for more complex tri- 

and tetra-antennary glycan structures.43

In fluorescence-based methods, the number of unique species detected is limited43, 63, 104 

and the assignment of each individual analyte peak requires prior knowledge about the 

retention time or the migration time of the species being analyzed. Table 1 summarizes the 

different methods’ capacities.

4.5. Isomer Separation and Structural Characterization Ability

Glycomics analysis is complicated because of the structural diversity introduced by 

different glycan compositions, linkages, and branching patterns.4–5 Accurate identification 

of numerous glycan compositions, and in-depth structural characterization of different 

glycans or glycopeptides structures, including isomers, is particularly important when 

the goal is to identify the glycan signatures that change during disease progression. As 

indicated in Table 1, LC-MS-based methods are thus far the most informative for structural 

assignment of glycans/glycopeptides; however, both tandem MS techniques and optimized 

separation strategies are required to perform isomer separation and characterization.5

Considerable research has been invested into achieving isomeric separation for released 

glycans, followed by characterization by tandem mass spectrometry. Porous graphitized 

carbon (PGC),4, 105–106 hydrophilic-interaction liquid chromatography (HILIC),107 and 

reversed-phase (RP)-LC69 are potential choices for the stationary phases for isomer 

separation, while tandem MS techniques, such as collision induced dissociation 

(CID)67, 69, 105–106 and higher energy collision dissociation (HCD) 97–98 are main choices 

for glycans’ structural characterization. Two recent studies performed by Yehia Mechref and 

coworkers,105–106 used a PGC-nLC-MS/MS method performed at higher temperature (75 
oC), to effectively separate and characterize permethylated glycans derived from multiple 

cancer cell lines. This study allowed efficient separation of glycan structures including many 

different glycan isomers, such as monosaccharide positional isomers (core- or branched-

fucose and α3- or α6-branched galactose) and linkage isomers; these structures were 

then effectively identified by using specific diagnostic fragment ions or by comparing 

their intensity distributions observed in the resulting tandem MS spectra to that of the 

standards. Overall, these studies allowed identification of more than 100 glycan isomer 

structures derived from less than 50 glycan compositions. Apart from the frequently 

used PGC-nLC-MS/MS, RP-nLC-MS/MS is also used for glycan isomer separation and 

characterization; in one example, permethylated N-linked glycans from HCC patients 

were characterized, and 82 potential isomeric glycans from 52 glycan compositions were 

identified.69 However, use of RP-LC for N-linked glycan isomer separation is limited 

due to the poor resolution observed for permethylated isomeric glycans, and the poor 

retention observed for hydrophilic glycans.105 HILIC is also used to separate N-linked 

glycan isomers, for an example, linkage isomers of ProA-labeled sialylated glycans.107

Isomer separation at the glycopeptide level is also important, as it permits the quantitation 

of site-specific isomeric glycan alterations. Generally, RP-LC is the method of choice 

for glycopeptide separation; it successfully separates multiple glycopetides with different 

peptide backbones, but it poorly resolves the glycan isomers that have a common 
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peptide backbone.108–109 Therefore, RP-LC has been used limitedly in glycopeptides’ 

isomer-specific studies; one such example is the study performed by Yuan et al.;47 they 

used RP-nLC-MRM-MS to quantify linkage-specific fucosylation differences of N-linked 

glycopeptides of seven plasma-derived glycoproteins of liver cirrhosis patients. These 

authors used outer arm fucosylation-specific fragment ion(s) in the tandem MS spectra 

for targeted transitions; they found that increased outer arm fucosylation is related to the 

progression of disease.

Instead of reverse phase chromatography, HILIC separation obtained significant attention 

in recent years because of its glycopeptide isomer separation ability.108–109 Two recent 

studies performed by Huang et al.108 and van der Burgt et al.109 used HILIC-LC in 

combined with targeted MS approaches to separate glycopeptide isomers of human IgG108 

and prostate-specific antigen (PSA);109 both of these studies allowed differentiation of 

linkage-specific sialylated glycopeptides and also resolved galactose position of G1F glycan 

of IgG glycopeptides.108

While glycopeptide-based analysis provides site-specific information, it typically provides 

poor isomer separation ability and limited glycan-specific structural information compared 

to LC-ESI-MS analysis of released N-linked glycans. Therefore, if the goal of the study 

is to obtain comprehensive structural information of various glycans, the best choice 

would be LC-ESI-MS of released glycans, which enables effective separation and in-detail 

characterization of glycan structures including many different isomers.

As compared to LC-MS-based methods discussed in this review, MALDI-TOF MS lacks 

the ability to separate glycan isomers, as the method is not supported by front-end glycan 

separation. As a result, it typically provides glycans’ compositional assignments but not 

isomer-specific information.43 However, MALDI-TOF MS by itself permits sialic acid 

linkage differentiation when the sialic acids are subjected to linkage-specific derivatization 

prior to the analysis.38, 43, 110 For an example, Reiding et al.38 identified 77 plasma N-

linked glycan compositions belonging to 108 glycan structures, after subjecting sialic acid 

α−2,6 and α- 2,3 linkages to ethyl esterification and lactonization, respectively. In another 

study, MALDI-TOF-MS was used to identify differences in sialylation linkages of ethyl 

esterified serum N-linked glycans derived from the samples of normal pregnant individuals 

and those with rheumatoid arthritis.43 Moreover, though MALDI-TOF-MS is useful for 

assigning different glycan compositions, structural elucidation of those compositions 

requires additional tandem capabilities.

Many studies have compared the number of glycans detected byf MALDI-TOF MS 

vs. non-MS-based approaches to demonstrate that other methods are generally more 

appropriate for resolving isomers. Among various methods discussed in this review, CE-

LIF and UPLC-FLR methods also allow for effective separation of N-linked glycans 

while permitting branch-specific information and separation of various isomers.43, 85, 90 

HILIC-FLR and CGE-LIF methods are able to distinguish between the 3-arm and 6-arm 

galactosylation differences in addition to the fucose position (core- or branched-) of 

fucosylated glycans.43, 85 By contrast, during these studies, MALDI-TOF MS analysis was 

not able to provide isomer-specific information for these glycans.
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Fluorescence is not a method that is well-suited to provide structural information about 

the glycans in a sample, as it primarily is used for quantitation. When using fluorescence 

to quantify glycans, other methods or tools need to be paired with it if information 

about the glycan is needed. For example, well-characterized glycan standards can be 

used to match retention times in LC-fluorescence analyses, or additional follow-up MS 

experiments44, 63, 92 could be done, or sequential enzymatic digestion can be used 
39, 42–43, 92 to obtain structural information. These additional methods, which need to be 

done in conjunction with fluorescence-based quantification, introduce limitations when one 

of the researchers’ goals is to identify the structure(s) of the glycan(s) that interest them.

4.6. Differences in Quantitative Data Generation

MS-based approaches used in glycomic quantitation are more complex than LC/ CE-

fluorescence-based methods. In MS-based methods, the glycan response (peak abundances) 

are affected by both structural composition of the glycans as well as the co-eluting 

interferences that suppress the ionization of glycans or glycopeptides (in LC-MS based 

approaches). Therefore, the absolute signal of underivatized glycans or glycopeptides does 

not directly correlate to the glycan’s abundance in the sample. Relative quantitation, or 

comparing ratios of glycans within a sample, is a more reliable quantitative method. 

Some labeling agents correct for these differences in ionization efficiency by dramatically 

improving the ionization of all the glycans to which they attach. In these cases, the intensity 

of the MS signals of the derivatized glycans are comparable to the fluorescence intensity 

of the same derivatized glycans.111 It should be noted, however, that heavily sialylated or 

sulfated glycans may not ionize equivalently to neutral glycans, even with these derivatizing 

agents attached. In LC/CE-fluorescence methods, glycan labeling is stoichiometric and 

is not affected by the nature of the glycan type or composition. In these methods, the 

fluorescent dye is attached only to the reducing end of the glycan, and none of the structural 

differences of N-linked glycans are found at this end.42 Therefore, researchers typically 

assume that all the labeled N-linked glycans fluoresce with a similar quantum yield, 

while allowing reliable quantitation of glycan peak areas in the same sample and between 

samples.42, 85 This aspect makes LC/CE-fluorescence based methods, or MS methods that 

rely on the same derivatizing agents, preferable if the research study requires that the relative 

quantities of glycans within a sample be measured accurately.

4.7. Method Precision

Method precision is an important factor that needs to be considered during quantitative 

clinical glycomics studies where many sample sets are being analyzed. When the method 

is highly reproducible, it permits improved sensitivity, thus, allowing for differentiation of 

minor changes occurring in multiple samples.34

Many studies show that the repeatability of LC-FLD analysis of released N-linked glycans 

is superior to all other analytical methods.43–44, 84 Typically, HPLC-FLD yields lower than 

10% coefficient of variation (CV), especially for major glycan peaks of the sample,43–44, 84 

and even a lower CV value (1.6%) was reported for the 10 most abundant N-linked glycans 

derived from plasma samples of RA patients.43 CE-LIF analysis of glycans is also highly 

reproducible, but it is second to the LC-FLD method.31, 43
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In MALDI-TOF MS, the repeatability is affected by not only the variation of the analyte 

ionization but also the spot-to-spot variation of the laser pulse. Therefore, compared to 

the non-MS based methods, MALDI-TOF MS analysis reported the least precise glycan 

quantitation data in many studies;43, 103 these studies showed that the precision of the 

analysis can be improved when quantifying glycan-derived traits instead of individual 

glycan peaks. Using traits, instead of peaks, can improve quantitative studies of non-

MALDI-based methods as well.

Similar to MALDI-TOF MS, other MS-based methods also show lower repeatability as a 

result of both LC run-to-run variation and the ionization differences that occur during the 

MS analysis.66 Throughout the literature, the use of MS-based methods with sufficient 

repeatability (with Coefficient of Variation, CV, of <15%) for the quantitative clinical 

glycomics analysis have been reported for both LC-MS analysis of glycopeptides and 

released N-linked glycans. Lebrilla and colleagues34, 41 and Shih et al.73 reported a less than 

15% intra-day and inter-day repeatability for serum glycopeptide quantitation. Similarly, 

for LC-ESI-MS N-linked glycan quantitation, sufficient repeatability was reported in many 

studies with lower run-to-run variation and over multiple sample preparations.66–67

4.8. Required Expertise

MS-based methods typically require higher expertise compared to non-MS based methods; 

both the operation of the mass spectrometer and the more complex data analysis require 

significant experience.43, 85 Among the MS-based methods, MALDI-TOF MS is the most 

straightforward, but for LC-ESI-MS analysis of both glycopeptides and released N-linked 

glycans, the required expertise is very high; researchers not only have to have a solid 

command of mass spectrometry, but also HPLC separation. Additionally, ESI data is 

often more complicated to analyze, especially if it is from glycopeptides. In contrast 

to MS-based methods, the primary skill necessary to perform UPLC-FLR and CE-LIF 

methods is expertise in separations. While these methods also require training for sample 

preparation and instrument handling, well-established glycan preparation protocols are 

available; a straight-forward detection method and well-established data bases also simplify 

data analysis for fluorescence-based methods. 43, 84–85

4.9. Cost for Instrumentation and per Sample

Typically, the instrumentation cost for high-resolution LC-ESI-MS is higher than MALDI-

TOF MS, followed by the UPLC-FLR, and the cost for the CE-LIF instrumentation is the 

lowest. In terms of costs per sample, when the analysis is performed in high-throughput 

mode, both CE-LIF and MALDI-TOF MS provide low costs per sample, as they are the 

highest-throughput methods. In contrast, UPLC-FLD can be rather expensive, due to the low 

throughput of the method, and LC-ESI-MS provides the highest cost per sample as a result 

of the cost associated with the instrumentation as well the low throughput of the method.85

5. CONCLUSIONS

Recent advances in quantitative glycomics analytical methods, along with efficient 

glycoprotein purification, glycan labeling, and separation, allow successful application of 
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these analyses in quantitative clinical assays. These different techniques exhibit their own 

strengths, while showing their utility in quantifying glycosylation differences of challenging 

sets of clinical samples. Among the methods described in this review, MALDI-TOF MS 

provides the highest sample throughput; LC-ESI-MS of released glycans is the best method 

for isomer separation, and LC/CE-fluorescence permits superior repeatability and simplicity; 

finally, LC-MS analysis of glycopeptides, the most complicated method, allows for the 

largest number of species to be detected.

There is no “one best method” that can be applied to quantify protein glycosylation of any 

given set of clinical samples, and the selection of an appropriate method depends on the 

specifics of the experiment. Therefore, Table 1 and the additional information included in 

the review provide guidance for selecting the best approach for a variety of circumstances.
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Figure 1. 
Symbolic representation of different N-linked glycans. High mannose, complex and 

hybrid are three major N-linked glycan types; all derived from the common precursor 

Glc3Man9GlcNAc2. These glycans are made of N-acetyl glucosamine (GlcNAc), mannose 

(Man), glucose (Glc), Galactose (Gal), N-acetyl neuraminic acid (Neu5Ac), and fucose 

(Fuc).

Patabandige et al. Page 27

Mass Spectrom Rev. Author manuscript; available in PMC 2023 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Different sample preparation routes for generating glycans and glycopeptides from 

complex biological samples for quantitative glycosylation analysis. In this workflow, for 

glycan profiling: glycans are released from purified glycoprotein(s), or directly from 

the crude biological mixture. Alternatively, glycans can be released from glycopeptides. 

For glycopeptide profiling: glycopeptides that are generated from either the purified 

glycoprotein(s) or directly from complex biological mixtures (for high abundant 

glycoproteins) are subjected to proteolysis; then, the resulting mixture of glycopeptides and 

peptides are subjected to quantitative analysis.
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Figure 3. 
General workflows for Released N-linked glycan quantitation by MALDI-TOF MS (A) and 

by LC-ESI-MS (B). In MALDI-TOF MS analysis, labeled N-linked glycans are mixed with 

a MALDI-matrix and irradiated with laser shots to collect MS data (A). In LC-ESI-MS, 

labeled or unlabeled N-linked glycans are separated by using a liquid chromatography 

method, followed by ESI-MS analysis (B). During LC-MS analysis of labeled glycans, the 

label is most commonly installed at the reducing end. By contrast, a common labeling 

strategy for MALDI-MS involves derivatizing sialic acids, which are at the nonreducing end.
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Figure 4. 
General workflow for LC-MS analysis of glycopeptides. In this workflow, enriched or 

non-enriched mixtures of glycopeptides generated at purified glycoproteins level or at crude 

mixture level are further separated followed by the mass spectrometry detection and analysis 

for glycopeptide identification and quantification.
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Figure 5. 
Workflow for the analysis of released N-linked glycans via liquid chromatography (LC)/ 

capillary electrophoresis (CE)-fluorescence detection. In this workflow, released N-linked 

glycans are labeled at the reducing end with a suitable fluorescence labeling reagent, 

purified, and then are separated by using LC or CE. Finally, the resultant peaks of 

chromatograms or electropherograms are assigned by using established data bases and/or 

follow-up experiments followed by N-linked glycans quantitation.
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Table 1.

Performance Comparison of Four Glycomics Analysis Platforms.

MALDI-TOF MS of Glycans LC-ESI-MS of Glycans Fluorescence Detection of 
Glycans

LC-MS of Glycopeptides

4.1 Initial Sample Amounts

Low µg to ≤ 50 µg Low µg to ≤ 50 µg ~20 µg to a few hundred µg Low µg to ≤ 50 µg

4.2 Sample Throughput

Highest throughput: 96–384 
samples per run

Mid- to low- throughput; limited 
by online separation, can be 
improved with multiplexing 
agents

Mid- to low-throughput; When 
CE-LIF is multiplexed, provides 
the second-best throughput

Mid- to low- throughput; 
limited by online separation

4.3 Sample Preparation Time

Fastest: 96 samples in <4 hours. In principle, equal to that of 
fluorescence detection.

Second-fastest: 96 samples in <8 
hours.

Longest sample prep time.

4.4 Number of Structures Identified

Worst MS method but better than 
LC-fluorescence.

>>100 glycans; lacks site-
specific information

Low performance Up to 30,000 glyccopeptides. 
Both glycan and attachment site 
information

4.5 Isomer Separation and Structural Characterization Ability

No isomer separation; but, sialic 
acid linkages can be identified 
with derivatization.
Intermediate performance in 
structural characterization; 
tandem capabilities are needed 
for structural elucidation.

Superior isomer separation
Superior performance in 
structural characterization; but 
no site-specific information is 
available

Low isomer separation 
Low performance in structural 
characterization; complementary 
methods are needed to obtain 
structural information

Intermediate isomer separation
Intermediate structural 
characterization; site-specific 
information is available

4.6 Differences in Quantitative Data Generation

Ionization differences hinder 
quantification of different glycans 
within a sample

Ionization differences hinder 
quantification of different 
glycans within a sample

Glycans within a sample and 
among different samples can be 
quantified easily

Ionization differences hinder 
quantification of different 
glycans within a sample

4.7 Method Precision

Sufficient repeatability Sufficient repeatability Highest repeatability (<10% CV) Sufficient repeatability

4.8 Required Expertise

Mid-level technical expertise 
required

Highest degree of expertise 
required

Least expertise required Highest degree of expertise 
required

4.9 Cost for Instrumentation and Per Sample

Intermediate cost High cost Lowest cost High cost
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