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Abstract
Grey voles (subgenus Microtus) represent a complex of at least seven closely related 
and partly cryptic species. The range of these species extends from the Atlantic to 
the Altai Mountains, but most of them occur east of the Black Sea. Using ancient 
DNA analyses of the Late Pleistocene specimens, we identified a new mtDNA line-
age of grey voles in Europe. Phylogenetic analysis of mitochondrial DNA cytochrome 
b sequences from 23 voles from three caves, namely, Emine–Bair–Khosar (Crimea, 
Ukraine), Cave 16 (Bulgaria), and Bacho Kiro (Bulgaria), showed that 14 specimens 
form a previously unrecognized lineage, sister to the Tien Shan vole. The average 
sequence divergence of this lineage and the extant Tien Shan vole was 4.8%, which 
is similar to the divergence of grey vole forms, which are considered distinct species 
or being on the verge of speciation; M. arvalis and M. obscurus or M. mystacinus and 
M. rossiaemeridionalis. We estimated the time to the most recent common ancestor 
of the grey voles to be 0.66 Ma, which is over twice the recent estimates, while the 
divergence of the extant Tien Shan vole and the new lineage to be 0.29 Ma. Our dis-
covery suggests that grey voles may have been more diversified in the past and that 
their ranges may have differed substantially from current ones. It also underlines the 
utility of ancient DNA to decipher the evolutionary history of voles.
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1  | INTRODUC TION

Climatic and environmental changes in the Pleistocene are widely 
understood to have shaped the species evolutionary history and 
distribution of mammals worldwide (Hofreiter & Stewart, 2009; 
Stuart, 2015). The climatic and environmental processes that oc-
curred during the Late Pleistocene and the onset of the Holocene 
had a profound impact on the extinction and formation of species 
that make up extant mammal faunas (Baca et al., 2017; Cooper 
et al., 2015; Lorenzen et al., 2011; Sommer, 2020). Small mammals 
are an integral component of every biome, and rodents, which are 
well-known arvicolines (subfamily Arvicolinae), are the main com-
ponent of nearly every Late Pleistocene fossil assemblage in the 
Northern Hemisphere. In Europe, aside from lemmings (Dicrostonyx 
and Lemmus), several vole species (from the genera Arvicola, 
Lasiopodomys, Alexandromys, and Microtus) are the predominant type 
of small mammal (Kowalski, 2001).

At present, meadow voles (genus Microtus) encompass nearly 
60  species belonging to several subgenera spread throughout 
the entire Palaearctic and Nearctic (Jaarola et al., 2004; Pardiñas 
et al., 2017). Grey voles (subgenus Microtus) consist of at least 
seven closely related and partly cryptic species, namely, M. arva-
lis (Pallas, 1779), M. obscurus (Eversmann, 1841), M. mystacinus (de 
Filippi, 1865), M. rossiaemeridionalis Ognev, 1924 (= M. levis Miller, 
1908; sensu Golenishchev et al., 2019), M. transcaspicus Satunin, 
1905, M. kermanensis Roguin, 1988, and M. ilaeus Thomas, 1912; 
these species are often referred to as the ‘M. arvalis species group’ 
(Mahmoudi, Darvish, et al., 2017) and distributed in Europe and 
Western and Central Asia. The specific status of members of this 
group remains a matter of taxonomic debate. For example, some 
authors consider M. arvalis and M. obscurus as separate species 
(Tougard et al., 2013), whilst others consider them chromosomal 
races of the single species (Golenishchev et al., 2019; Sibiryakov 
et al., 2018). Similarly, the taxonomic status of the 54-chromosome 
forms of grey voles, that is, M. rossiaemeridionalis and M. mystaci-
nus, is ranked differently. Some authors treat these chromosomal 
forms as the single species M. mystacinus (e.g., Mahmoudi, Darvish, 
et al., 2017), whilst others reserve this species name only for the 
Iranian clade and classify European populations to the separate 
cryptic species M. rossiaemeridionalis (Golenishchev et al., 2019). In 
the Late Pleistocene of south-eastern Europe, only two species of 
the arvalis group are recognized, namely, the common vole (M. ar-
valis), which has been detected in the Balkans and Pannonian Basin 
(e.g., Bogićević et al., 2017; Luzi et al., 2019; Mauch Lenardić, 2007; 
Popov, 2018) but is absent in the western and northern fringes of 
the Black Sea (Krokhmal & Rekovets, 2010; Petculescu & Ştiucă, 
2008), and M. obscurus, which has been detected only in Crimea 
(Markova, 2011; Ridush et al., 2013).

The species determination as M. arvalis based on morphology 
has recently been confirmed by genetic studies of sub-fossil spec-
imens from different parts of Europe (Baca et al., 2020; Lemanik 
et al., 2020). Given the morphological and morphometric uniformity 

of molars of species from the arvalis group (Kochev, 1986; Markova 
et al., 2010), the timing of evolutionary events within the subge-
nus is based on molecular data. However, estimates of divergence 
times vary considerably depending on the calibration method used. 
The age of the most recent common ancestor of grey voles was 
estimated to be between 1.2  Ma, as determined using fossil cali-
bration (Thanou et al., 2020), and 0.315  Ma, as determined using 
ancient DNA-based calibration (Mahmoudi, Darvish, et al., 2017). 
Unfortunately, the remarkable variation in the estimates of species 
divergence prevents the accurate association of evolutionary events 
with biogeographic or climatic data and the reconstruction of the 
evolutionary history of this group.

The current study presents the results of ancient DNA analyses 
of Microtus s. str. from areas adjacent to the Black Sea. Amongst the 
sub-fossil specimens from Bulgaria and Crimea described as M. arva-
lis or M. obscurus, we found specimens forming a divergent lineage 
of M. ilaeus.

2  | MATERIAL S AND METHODS

2.1 | Samples

We investigated 47 specimens (Table S1) from various layers of three 
sites, namely, Emine–Bair–Khosar (Crimea, Ukraine), Bacho Kiro 
(Bulgaria), and Cave 16 (Temnata–Pochorna cave system, Bulgaria). 
We sampled isolated molars or mandibles with molars identified as 
M. arvalis or Microtus sp. on the basis of morphology. To increase the 
number and temporal range of radiocarbon-dated specimens, we in-
cluded two common vole mandibles, one from Obłazowa cave (WE) 
and another from Obłazowa 2 in Poland. Finally, we extracted DNA 
from ethanol-preserved tissue fragments of four Tien Shan voles 
collected by JZ in the early 1990s in Kyrgyzstan and stored at the 
Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, 
Czechia (Table S1).

2.2 | Morphometric analyses

The morphological characteristics and general taxonomy of the 
fossil specimens, including those belonging to the newly identified 
mtDNA lineage (n = 14), were identified using linear measurements. 
The nomenclature and measurements of the first lower molar, total 
length (L), and length of the anteroconid complex (A) were conducted 
according to the methods proposed by van der Meulen (1973). La/
Li indices were calculated to quantify the degree of asymmetry be-
tween triangles T4 and T5 according to the method prescribed by 
Nadachowski (1984a) and modified by Cuenca-Bescós and Laplana 
(1995). This morphometric parameter is useful to distinguish vole 
species with an arvaloid morphology (e.g., Bogićević et al., 2012; 
Luzi & López-García, 2019; Luzi et al., 2019; Nadachowski, 1984a, 
1984b).
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2.3 | DNA extraction, enrichment, and sequencing

The samples were processed in a clean laboratory at the Laboratory 
of Paleogenetics and Conservation Genetics, Centre of New 
Technologies, University of Warsaw. The pre-PCR laboratory has 
separate rooms designated for specimen preparation, DNA extrac-
tion, and library preparation. There is an increased air pressure to 
enforce unidirectional airflow toward the exterior of the laboratory, 
and the rooms were UV irradiated after each use. No modern tis-
sues of any species have ever been processed in this laboratory. The 
post-PCR laboratory is physically separated from the pre-PCR one. 
Prior to DNA extraction, each tooth was rinsed with ultrapure water 
and crushed with a pipette tip. DNA was extracted using a protocol 
optimized for the retrieval of ultrashort DNA sequences (Dabney 
et al., 2013). Each batch of extractions was accompanied by blanks 
to monitor possible contaminations. A fraction of the extract was 
converted into double-stranded, double-indexed Illumina libraries 
following the protocol of Meyer and Kircher (2010) with minor modi-
fications (Baca et al., 2019). After the fill-in reaction, each library was 
amplified for 19 cycles in three replicates by using AmpliTaq Gold 
360 DNA polymerase (Applied Biosystems). To enrich the mtDNA 
libraries, we performed two cycles of in-solution hybridization fol-
lowing the protocol by Horn (2012).

The hybridization bait was composed of mtDNAs from M. arva-
lis, M. agrestis (Linnaeus, 1761), Lasiopodomys gregalis (Pallas, 1779), 
Alexandromys oeconomus (Pallas, 1776), and Clethrionomys glareolus 
(Schreber, 1780) to enrich the mtDNA of various Microtus species ef-
ficiently. The libraries were hybridized in pools of five. Each cycle of 
hybridization was conducted for 22–24 h, and the library pools were 
amplified in three replicates for 12–15 cycles after each round of hy-
bridization by using Herculase II Fusion DNA Polymerases (Agilent). 
After hybridization, the libraries were quantified, pooled, and se-
quenced on the NextSeq550 platform (2 × 75 bp, MID output).

DNA from modern specimens was extracted in a laboratory that 
was physically isolated from the ancient DNA and post-PCR labora-
tories by using a DNeasy blood & tissue kit (QIAGEN®) following the 
manufacturer's recommendations. A fraction of the DNA extracts 
was converted into sequencing libraries and subjected to in-solution 
target enrichment by using the same protocols conducted to obtain 
libraries from the ancient DNA except that the new libraries were 
amplified for 12, instead of 19, cycles and only one round of hybrid-
ization was performed.

2.4 | Sequencing read processing

Sequencing reads were demultiplexed using bcl2fastq (Illumina). 
Adaptors and low-quality nucleotides were removed, and overlap-
ping reads were merged using AdapterRemoval v.2 (Schubert et al., 
2016). Filtered reads were mapped to the mtDNA sequences of 
various Microtus species using bwa mem (Li, 2013). Here, only reads 
longer than 30 bp and MapQ >30 were retained. Putative PCR du-
plicates were removed with the samtools rmdup command (Li et al., 

2009). Comparison of mapping statistics with different mtDNA ref-
erences enabled the preliminary species assignment. Variants were 
called using the bcftools mpileup and call commands, and alignments 
were visually inspected in Tablet (Milne et al., 2013). A list of regions 
with a coverage of <3 was generated using the bedtools genomecov 
command (Quinlan & Hall, 2010), and these regions were subse-
quently masked with N. Consensus was called using the bcftools 
consensus command. The mtDNA genome of extant M. ilaeus was de 
novo assembled using NOVOplasty (Dierckxsens et al., 2017).

2.5 | Phylogenetic analyses

Phylogenetic reconstruction was conducted based on a sequence of 
the mtDNA cytochrome b (1143 bp). We used a dataset of 152 se-
quences that included all species of Microtus (s. str.), as well as spe-
cies from the subgenera Sumeriomys (social voles) and Terricola (M. 
subterraneus (Selys-Longchamps, 1836)). We used two sequences 
of field vole (M. agrestis) and another two sequences of European 
snow vole (Chionomys nivalis (Martins, 1842)) as out-groups (Table 
S2). We accepted only sequences covering over 70% of the mtDNA 
cytochrome b. To include also available genetic information from 
M. ilaeus igromovi, a vicariant population of M. ilaeus classified as a 
subspecies (Golenishchev et al., 2019), additional analysis was per-
formed using short cytochrome b fragment (341 bp).

The best-fitting substitution model was revealed by jModelTest2 
(Darriba et al., 2012) to be TrN+I+G. Bayesian phylogeny was recon-
structed using MrBayes 3.2.7a (Ronquist et al., 2012). We conducted 
two independent runs with four coupled chains each for 5×106 gen-
erations sampled every 500 generations. A maximum likelihood tree 
was reconstructed using IQtree (Nguyen et al., 2014) with 1000 ul-
trafast bootstrap replicates to assess branch support. In both analy-
ses, the data were partitioned into three codon positions.

We used the Bayesian approach implemented in BEAST 1.10.4 
(Suchard et al., 2018) to estimate divergence times within the 
Microtus subgenus. In this analysis, we used only sequences with 
known sampling times (n = 95; Table S2). To calibrate the molecular 
clock, we used 12 sequences obtained from directly radiocarbon-
dated specimens. Nine of these sequences originated from M. ar-
valis and have been previously reported (Baca et al., 2020). Three 
other dated sequences, that is, two from M. arvalis and one from 
the new mtDNA lineage, are reported here for the first time (Table 
S4). To increase the number of sequences from the newly re-
ported mtDNA lineage for divergence dating analysis, we used the 
sequences of two specimens from layer G in Emine–Bair–Khosar 
dated to the post-LGM period (Doan et al., 2018) and assigned 
them a sampling time of 15 cal ka BP. We used the Bayesian eval-
uation of temporal signal (BETS) (Duchene et al., 2020) to check 
whether sufficient temporal resolution is available within our 
dataset to calibrate the molecular clock. We compared the sup-
port for the four models; in two of them, we assigned real sampling 
times to the sequences (heterochronous analysis) and then used 
either strict clock or uncorrelated relaxed lognormal clock. In the 
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two other models, we used the same sampling time (i.e., isochro-
nous analysis) for all sequences and applied either strict clock or 
uncorrelated relaxed lognormal clock. We applied a constant pop-
ulation size tree prior for all analyses and a CTMC rate reference 
prior for the heterochronous datasets (Ferreira & Suchard, 2008). 
Each analysis was run for 20  million generations sampled every 
2000 generations. We then estimated the log marginal likelihoods 
(MLE) of each model by using the generalized stepping-stone (GSS) 
sampling approach (Baele et al., 2016). The MLE calculation com-
prised 50 path steps, each of which was run for 106 iterations. We 
performed two replicates of each BEAST analysis. Convergence 
and stationarity were inspected in Tracer 1.7 (ESS  >  200 for all 
parameters), and trees from the two runs were combined in log-
combiner and summarized in treeannotator.

The mean divergence (Dxy) between mtDNA lineages was calcu-
lated in MegaX (Kumar et al., 2018) by using the TrN substitution 
model with uniform rates across sites and 100 bootstrap replicates 
to determine the variance. Both transitions and transversions were 
included, and pairwise deletion was employed in case of missing 
data.

2.6 | Radiocarbon dating

Three vole mandibles, one each from Obłazowa WE, Obłazowa 
2, and Bacho Kiro Cave, were pre-treated for radiocarbon dating 
at the Department of Human Evolution, Max Planck Institute for 
Evolutionary Anthropology (MPI-EVA, Leipzig, Germany), following 
the protocol for <100 mg bone samples described in Fewlass et al. 
(2019). The quality of the collagen extracts was assessed based 
on the yield as a percentage of the original bone weight (minimum 
requirement, 1%). The elemental and isotopic ratios of the extracts 
(~0.5  mg) were measured on a Thermo Finnigan Flash elemental 
analyzer coupled to a Thermo Delta Plus XP isotope ratio mass 
spectrometer. If sufficient collagen was extracted, the collagen was 
graphitized using automated graphitization equipment (Wacker, 
Němec, et al., 2010) at the Laboratory of Ion Beam Physics, ETH-
Zurich (Switzerland) and dated on a MIni CArbon DAting System 
(MICADAS) accelerator mass spectrometer (Wacker, Bonani, et al., 
2010) (Laboratory Code: ETH). If the extracted collagen yield was 
insufficient for graphitization, it was combusted to CO2 and meas-
ured directly using a gas interface system coupled to the gas ion 
source of the MICADAS (Wacker et al., 2013) following the pro-
tocol described in Fewlass et al. (2018, 2019). Radiocarbon dates 
were calibrated in OxCal v4.4 (Bronk Ramsey, 2009) by using the 
IntCal20 (Reimer et al., 2020) calibration curve.

3  | RESULTS

Although we enriched our libraries for the whole mtDNAs, in nu-
merous specimens, we encountered a mixture of at least two se-
quences spanning usually the first ca. 11 kb or, much less often, 
a larger portion of the mtDNA genome; thus, reliable consensus 
calling could not be achieved. The contaminating sequences were 
likely to be nuclear sequences of mitochondrial origin (numts). The 
presence of numts in mtDNA assemblies was previously reported 
for various Microtus species (Barbosa et al., 2018; Duckett et al., 
2021; Triant & DeWoody, 2008), and their presence are especially 
expected in the case of the assemblies based on mtDNA-enriched 
libraries. Therefore, we called consensus sequences only for 
mtDNA fragments where numts were not present, and this was 
either whole mtDNA, ca. 4.3 kb of mtDNA (12,001–16,267 accord-
ing to NC_038176.1) or only the cytochrome b sequence (1143 bp) 
(Table S1). In the case of several specimens, the presence of sec-
ond sequence prevented reliable consensus calling even for the 
cytochrome b fragment and such specimens were discarded (Table 
S1). We recovered at least the cytochrome b sequence of 22 speci-
mens from the three investigated caves and the two common vole 
specimens from Poland. All the specimens yielded a damage pat-
tern and length distribution of DNA molecules characteristic of 
ancient DNA (Table S1).

3.1 | Phylogenetic analysis and 
divergence estimates

The phylogeny based on the mtDNA of cytochrome b recovered 
all main mtDNA lineages of grey voles with high support (Figures 
1 and S1). One specimen from Bacho Kiro cave was revealed to be 
European pine vole (M. subterraneus). Four specimens were clas-
sified as common vole (M. arvalis), two from Bacho Kiro and two 
from Cave 16, another three specimens from Emine–Bair–Khosar 
cave were identified as M. obscurus. A total of 14 specimens, spe-
cifically, eight from Emine–Bair–Khosar, five from Cave 16, and 
one from Bacho Kiro, formed a previously unrecognized, highly 
supported lineage sister to the Tien Shan vole (M. ilaeus; Figures 
1 and S1). The mean divergence (Dxy) of this new lineage and the 
Tien Shan vole was 4.8% ± 0.6%, which is slightly higher than the 
Dxy between M. arvalis and M. obscurus (3.9% ± 0.5%) and simi-
lar to the Dxy of M. mystacinus and M. rossiaemeridionalis (4.8% ± 
0.7%; Table S3). It was also much higher than divergence between 
M. ilaeus and M. ilaeus igromovi (2.6% ± 0.7%; based on 341-bp 
fragment; Table S3).

F I G U R E  1   Bayesian phylogeny of the Microtus subgenus based on the mtDNA cytochrome b sequences (1143 bp). Dots at the main 
nodes indicate bootstrap support from IQtree and posterior probabilities from MrBayes greater than 90 and 0.95, respectively. Haplotypes 
obtained in this study are indicated in boldface. Violet symbols indicate the sampling site of the specimens as indicated in the inlet map. The 
median of the 95.4% calibrated range ages of the directly radiocarbon dated specimens are given in the labels
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3.2 | Estimation of divergence times within the 
subgenus Microtus

The three specimens pre-treated for radiocarbon dating produced 
high-quality collagen in terms of Carbon-to-Nitrogen ratio and yield 
(Table S4; van Klinken, 1999; Talamo et al., 2021). The resulting dates 
were consistent with the stratigraphic position of the specimens 
(Text S1) and used for calibration of the molecular clock. BETS anal-
ysis showed that our dataset contains sufficient temporal signal to 
calibrate the molecular clock. Amongst the models tested, the model 
with a strict molecular clock and correctly assigned sampling times 
produced the highest log MLE and it was highly supported (2lnBF 
= 23.54, 19.52, and 15.09 with respect to models with the correct 
sampling times and an uncorrelated relaxed clock, the model with no 
sampling times and a strict clock, and the model with no sampling 
times and an uncorrelated relaxed clock, respectively; Table S5). The 
validity of our dataset to estimate rates was further supported by the 
results of the date randomization test (Table S6). The maximum clade 
credibility tree obtained in BEAST revealed a topology similar to 
that obtained in MrBayes except for the position of M. transcaspicus, 
which was in a sister position with respect to M. mystacinus, M. ros-
siaemeridionalis, M. obscurus, and M. arvalis, while on the Bayesian 
tree it was a sister lineage to M. obscurus and M. arvalis. However, 
the position of this branch was recovered with low support in all 
approaches employed. The mean substitution rate of the mtDNA of 
cytochrome b was estimated for this dataset to be 1.25 × 10−7 sub-
stitutions/site/year−1 (95% highest posterior density interval (95% 
HPD): 7.24 × 10−8–1.82 × 10−7). The age of the crown of the Microtus 
subgenus was dated to ca. 0.66 Ma (95% HPD: 1.00–0.38 Ma). The 
divergence of M. ilaeus and the newly discovered lineage was es-
timated to be 0.29 Ma (95% HPD: 0.46–0.16 Ma), which is slightly 
earlier than the divergence of M. arvalis and M. obscurus (0.22 Ma 
(95% HPD: 0.36–0.13 Ma)) and the divergence of M. mystacinus and 
M. rossiaemeridionalis, (0.22 Ma (95% HPD: 0.36–0.13 Ma) (Figure 2).

3.3 | Morphometric features of the new 
mtDNA lineage

Measurements were performed on all 23  specimens that yielded 
mtDNA sequences. We also calculated the La/Li index of subset 
specimens from Bacho Kiro and Cave 16 because this parameter 
has not been reported in original publications describing the as-
semblages of small mammals from these sites (Nadachowski, 1984b; 
Popov, 2000). The tooth size of specimens from the newly identified 
lineage was between 2.53 and 3.31 mm  ± SD, 2.92 ± 0.24; Figure 3; 
Table S7). The teeth of specimens from Bulgaria were significantly 
larger (xL = 3.16, n = 6) than those from Crimea (xL = 2.71, n = 7; 
T-test, p < .005; Figure 3). In Bulgaria, specimens from the new line-
age were larger than those of M. arvalis and exceeded the size range 
of M. agrestis (Figure 3), but this result must be treated with caution 
because only very small number of individuals were measured. The 
La/Li index varied between 61.4 and 85.7 (x  ±  SD, 72.55 ± 6.61; 

n = 14) and were within the range recorded for M. arvalis, that is, 
generally exceeded 65.0 (Nadachowski, 1984a; Figure 3; Table S7). 
The La/Li index for a random subset of specimens from Bacho Kiro 
(x ± SD, 67.98 ± 7.41; n = 84) and Cave 16 (x ± SD, 71.18 ± 6.75; n = 
60) also yielded values in the range of species from the arvalis group 
(Figure 3). The anterioconid complex of M. ilaeus, especially the an-
terior cap, was highly variable, and no morphological features that 
could clearly distinguish M. ilaeus from M. arvalis and/or M. obscurus 
were found (Figure 4).

4  | DISCUSSION

4.1 | Characterization of the newly discovered 
lineage

Investigation of ancient DNA from Late Pleistocene vole specimens 
from three cave sites located in the Black Sea area revealed the 
existence of a Microtus species previously unknown in Europe and 
representing a divergent mtDNA lineage of the Tien Shan vole (M. 
ilaeus).

The known range of the newly characterized lineage is, at this 
point, limited to area around the Black Sea, over 2000 km from the 
range of the extant M. ilaeus igromovi, which is currently limited to 
the small area east of the Aral Sea and more than 3500 km from the 
main species range in Central Asia. However, given the early diver-
gence of this species in the history of the subgenus, it is probable 
that the ranges of this species were larger earlier in the Pleistocene. 
In both localities in Bulgaria, M. ilaeus specimens belonging to the 
new mtDNA lineage co-occurred in the same layers with M. arvalis; 
in Crimea, M. ilaeus and M. obscurus were found together in layer G. 
Although we cannot be certain, the population of M. ilaeus appears 
to have lived with M. arvalis and M. obscurus in sympatry.

Investigation of tooth morphology revealed no clear differ-
ences between the newly discovered lineage and other species from 
Microtus s. str. (Figure 4, Table S7). The size of the teeth (L) of the new 
species was highly variable but remained within the range of tooth 
sizes reported for other species from the subgenus (Mahmoudi, 
Kryštufek, et al., 2017). Differences in tooth size between M. ilaeus 
from Bulgaria and Crimea and M. ilaeus and M. arvalis from Bulgaria 
may reflect partitioning into different ecological niches; the current 
data, however, are too limited to build any definite conclusions.

The difference in size between M. arvalis and M. ilaeus from 
Bulgaria may have, however, some implications for understand-
ing of paleontological small mammal assemblages from the area. 
Amongst rodents from the late Middle and Late Pleistocene of 
Bulgaria, voles with the arvaloid m1  morphology were found in 
11  sites (Popov, 2018). These voles are most often referred to as 
Microtus ex gr. arvalis/agrestis (Nadachowski, 1984b; Popov, 2000, 
2018; Popov & Marinska, 2007) or Microtus ex gr. arvalis (Ivanova 
et al., 2016; Popov, 1994). Because of the large variability and range 
of the m1 length of specimens with arvaloid morphology from Bacho 
Kiro and Cave 16, these specimens were previously suggested to 
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belong to two species: the smaller M. arvalis and the larger M. agres-
tis (Nadachowski, 1984b; Popov, 2000). Considering the genetic and 
morphometric data obtained in this study, these species may be con-
sidered to actually be two species from the arvalis group, namely, 
the smaller M. arvalis and the larger M. ilaeus, not M. agrestis, espe-
cially because the latter species does not occur in Bulgaria today 
(Shenbrot & Krasnov, 2005) and was not indisputably found in the 
Late Pleistocene (Popov, 2018).

In contrast to other species of the subgenus Microtus, the 
newly described mtDNA lineage of M. ilaeus most probably did 
not survive into the present time; however, the exact timing and 
causes of its extinction remain unclear. Specimens from Cave 16 
were obtained from layers below the Campanian Ignimbrite tephra 
dated to ca. 40  ka (Giaccio et al., 2008; Popov, 2018), which is 
slightly older than the age of the specimen from Bacho Kiro. The 
distribution of large (L > 3.1  mm) teeth at both Bulgarian sites, 

F I G U R E  2   Maximum clade credibility phylogeny of the subgenus Microtus. The phylogeny was reconstructed in BEAST and is drawn to 
a timescale. Black dots indicate nodes with >0.95 posterior probability. The estimated divergence times with their 95% highest posterior 
density intervals are indicated next to the nodes leading to the main lineages. The median of the 95.4% calibrated range ages of the directly 
radiocarbon dated specimens are given in the labels
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which were previously considered M. agrestis and now may be at-
tributed to M. ilaeus, may provide more detailed insight into the 
chronology of this form. In Cave 16, such large teeth were found 
nearly exclusively in layers 9 and 8, both of which date to over 
40 kya (Popov, 2000; Text S1). In Bacho Kiro, the same-size teeth 
occurred in multiple layers, with a noticeable peaks in layers 13 and 
6b–7, and disappeared in layer 3. The new radiocarbon chronology 

of the site suggests that layer 13 dates to more than 51  ky BP, 
while the layers 6b and 7 to 43–36 ka cal BP (Fewlass et al., 2020). 
There are no radiocarbon dates from layer 3 but based on small 
mammal assemblage it was dated to the LGM (Kozłowski, 1982; 
Nadachowski, 1984b). Specimens belonging to the new mtDNA 
lineage from Emine–Bair–Khosar were distributed across layers 
H and G between depths of 4.8 and 1.9  m. Layer H is dated to 

F I G U R E  3   Morphometric characteristics of the newly identified mtDNA lineage of Microtus ilaeus. The boxplots summarize the variations 
in length (L) and La/Li index of the arvaloid m1s from the three studied sites. L is given according to Nadachowski (1984b) and Popov (2000). 
The box extends from 1st to 3rd quartile, while the whiskers extend to the data points within 1.5 times the interquartile range (IQR) from 
the ends of the box, values outside this range are denoted with circles. Vertical lines denote medians, whilst crosses denote mean values. 
The colored symbols represent individual measurements of specimens assigned to species using mtDNA sequences. The reference ranges 
for M. arvalis (ARV) and M. agrestis (AGR) are based on modern specimens according to Nadachowski (1984a)
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the older part of MIS 3 (between >50 and 36 ka cal BP) (Ridush 
et al., 2013). The youngest specimens come from the uppermost 
part of layer G. This layer is attributed to MIS 2, most probably 
the post-LGM or even the Late Glacial period (Ridush et al., 2013). 
These findings suggest that the extinction of the newly described 
mtDNA lineage may have been caused by environmental and cli-
matic changes associated with the Pleniglacial to the Late Glacial 
or the Late Glacial to the Holocene transitions.

4.2 | Molecular rates and dating of divergences 
within subgenus Microtus

The investigated dataset enabled the calibration of the molecular 
clock and estimation of the divergence time of the newly identi-
fied mtDNA lineage and extant M. ilaeus, as well as other species 
and forms within subgenus Microtus. The estimated substitution 
rate of the mtDNA of cytochrome b (1.25  ×  10−7  substitution/
site/year−1) was ca. three times slower than the rates estimated 
previously for M. arvalis (3.27  ×  10−7) (Martínková et al., 2013) 
and M. agrestis (3.89  ×  10−7; Herman & Searle, 2011), likely be-
cause of the time dependence of the molecular rates of mtDNA. 
Estimates of evolutionary rates are known to scale negatively 
with the age of calibration (Ho et al., 2011; Molak & Ho, 2015). 
In previous studies, very recent calibration points were used to 
estimate rates; in the case of M. arvalis, these points were se-
quences from specimens radiocarbon-dated to no more than 
6 kya. In the case of M. agrestis, the calibration points employed 
were biogeographic events younger than 10 kya. The substitution 
rates obtained from such calibration are more suitable for the es-
timation of recent, intraspecific rather than interspecific events. 
In the present work, we used calibration specimens dated up to 
40 kya to estimate interspecific divergence times. Consequently, 
our estimates were nearly two times older than those proposed 
by Mahmoudi, Darvish, et al. (2017), who based their calculations 
on the substitution rate of Martínková et al. (2013). Our estimates 
are also nearly two times younger than the estimates based on 
fossil calibration (Thanou et al., 2020). Our estimate of the age 
of the crown of the Microtus subgenus (0.66 Ma (95% HPD 1.00–
0.38 Ma)) was remarkably similar to that obtained by Bannikova 
et al. (2010) (0.54 ± 0.13 Ma), who used fossil calibration (basal 
radiation of the Microtus genus set to 2.2 ± 0.2 Ma) to calibrate 
the molecular clock for the mtDNA cytochrome b phylogeny but 
accounted for the rate decay. These authors assumed that trans-
versions at the third-codon position are only slightly affected by 
rate decay phenomena and used the relationship between the di-
vergence calculated using all positions and that calculated using 
only transversions at the third-codon position to transform node 
heights (Bannikova et al., 2010). The obtained estimation is also 
highly consistent with the first appearance of the M. arvalis group 
in fossil record (MIS 14–11; 0.60–0.45  Ma). Although, the dis-
tinction between species from the arvalis group and M. agrestis 
in fossil record may be difficult as exemplified by our study, the 

appearance of arvalis group around 0.60–0.45 Ma was reported 
independently by multiple authors (Berto et al., 2021; Fejfar, 1965; 
Kolfschoten, 1990; Maul & Markova, 2007). Among others, Berto 
et al. (2021) used morphological features to distinguish M. arvalis 
from M. agrestis and provided the most compelling evidence for 
presence of the former in the Central Europe during at least MIS 
11 and most probably during MIS 14. The consistency of estimates 
based on distinct calibration methods and fossil record indicates 
that the estimated divergence times obtained in this work may be 
close to the real values.

4.3 | Taxonomic status of the newly 
identified lineage

The genetic divergence of the extant M. ilaeus and the newly 
discovered mtDNA lineage is similar to that of M. arvalis and M. 
obscurus and that of M. mystacinus sensu stricto and M. rossiae-
meridionalis; this finding allows for various interpretations. On the 
one hand, the latter forms seem to be on the verge of speciation 
(Barbosa et al., 2018), and their taxonomic status is a matter of 
ongoing debate (Mahmoudi et al., 2014). Recent studies on the 
reproductive isolation and hybrid sterility of the M. mystacinus 
group (i.e., M. mystacinus, M. rossiaemeridionalis, and M. kerman-
ensis) demonstrated the interspecies hybrid sterility of males and 
most females (Bikchurina et al., 2021). Therefore, the taxonomic 
forms identified above should be considered valid species despite 
their low genetic divergence of only 4%–5%. The mtDNA diver-
gence between the newly identified lineage and M. ilaeus is also 
much higher than between the latter and M. ilaeus igromovi, which 
are considered subspecies (Figure S1; Golenishchev et al., 2019). 
This reinforces the interpretation that the newly identified lineage 
represents a distinct species. On the other hand, Allen et al. (2020) 
suggested that interspecific reproductive isolation in mammals 
appears when cytb DNA sequences differ by over 7.2%. Because 
of these differences in interpretation of mtDNA diversity, we do 
not postulate taxonomic changes in the M. arvalis species group. 
Further accumulation of genomic and morphological data will pro-
vide a better understanding of the evolutionary history of this 
lineage.

Overall, our ancient DNA study revealed the existence of a previ-
ously unknown, highly divergent population of the Tien Shan vole (M. 
ilaeus) in the area adjacent to the Black Sea, over 2000 km from the 
extant range of this species. The mtDNA divergence of the European 
population and the extant form was high, similar to other forms within 
the M. arvalis species group, which are considered different species 
or on the verge of speciation. This population lived in sympatry with 
other grey voles and eventually became extinct after the LGM, likely as 
a result of climate changes in the Pleniglacial to the Late Glacial or the 
Holocene transition. This study indicates that species of the Microtus 
subgenera may have been more diverse during the Late Pleistocene 
than previously established and highlights the use of ancient DNA as 
an important tool to decipher this diversity.
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