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Abstract

Species occurrence records from a variety of sources are increasingly aggregated into
heterogeneous databases and made available to ecologists for immediate analytical
use. However, these data are typically biased, i.e. they are not a probability sample
of the target population of interest, meaning that the information they provide may
not be an accurate reflection of reality. It is therefore crucial that species occurrence
data are properly scrutinised before they are used for research. In this article, we
introduce occAssess, an R package that enables straightforward screening of spe-
cies occurrence data for potential biases. The package contains a number of discrete
functions, each of which returns a measure of the potential for bias in one or more
of the taxonomic, temporal, spatial, and environmental dimensions. Users can opt to
provide a set of time periods into which the data will be split; in this case separate
outputs will be provided for each period, making the package particularly useful for
assessing the suitability of a dataset for estimating temporal trends in species' dis-
tributions. The outputs are provided visually (as ggplot2 objects) and do not include
a formal recommendation as to whether data are of sufficient quality for any given
inferential use. Instead, they should be used as ancillary information and viewed in
the context of the question that is being asked, and the methods that are being used
to answer it. We demonstrate the utility of occAssess by applying it to data on two
key pollinator taxa in South America: leaf-nosed bats (Phyllostomidae) and hoverflies
(Syrphidae). In this worked example, we briefly assess the degree to which various as-
pects of data coverage appear to have changed over time. We then discuss additional
applications of the package, highlight its limitations, and point to future development

opportunities.
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1 | INTRODUCTION

Species occurrence records comprise information in three basic di-
mensions: taxonomic, geographic, and temporal; that is to say, what
was seen, where was it seen, and when. Humans have been accumu-
lating species occurrence data for centuries: historically as preserved
specimens in museums and herbaria (Newbold, 2010; Spear et al.,
2017) and in written accounts (e.g. Oswald and Preston, 2011); and
more recently through recording for distribution atlases (Preston,
2013) and various other structured and unstructured monitoring
and citizen science initiatives (Boakes et al., 2010; Pescott et al.,
2015; Petersen et al., 2021). Taken together, these data provide an
immense resource documenting species' geographical distributions
and opportunities to investigate how they may have changed over
time. Over the last two decades, species occurrence data have be-
come increasingly accessible, thanks to the digitisation of historic
records and the launch of online data portals such as the Global
Biodiversity Information Facility (GBIF) [Nelson and Ellis (2019)]. A
corollary of this increase in accessibility has been a surge in the use
of species occurrence data for research in biodiversity conservation
and other fields (Ball-Damerow et al., 2019).

Whilst clearly an increasingly important resource for ecologists,
species occurrence data should be used with caution when drawing
inferences about species' distributions and how they have changed
over time. Straightforward inference in statistics is predicated on the
assumption that the data have been sampled randomly from the pop-
ulation of interest [probability sampling; e.g. Krzanowski, 2010). In
many, if not most, cases, species occurrence data available through
aggregated databases do not satisfy this assumption. For example,
data collected through citizen science initiatives tend to be collected
opportunistically (sometimes called convenience sampling), that is,
without a structured sampling plan. In this case, recorders are free to
decide what to record, where, and when. This generally leads to pref-
erential sampling of attractive and accessible locations and to docu-
mentation of interesting (e.g. rare) species (Isaac and Pocock, 2015).
These “sampling biases” give rise to nonprobability samples which are
not representative of the spatial, temporal, and taxonomic domains
of interest. Structured monitoring data tend to more closely resemble
probability samples (although issues like sample dropout and patchy
uptake may still create issues). However, when multiple structured
datasets, with different aims, extents, and sampling protocols, are ag-
gregated (e.g. as on GBIF), the ultimate target population sampled by
these activities is unlikely to be formally identified for inferential pur-
poses. It may be possible to mitigate for biases by modifying the data
(e.g. spatial thinning; Beck et al., 2014) or through the use of statistical
correction procedures (e.g. by modelling the data generation process;
Turner et al., 2009). In order to decide on what mitigating action might
be required, or if the data are simply too unrepresentative for a given
use, it would be helpful to have a set of heuristics that can indicate
the degree to which a dataset might suffer from various forms of bias.

There is a growing literature of studies which take species oc-
currence datasets and screen them for biases (Barends et al.,
2020; Boakes et al., 2010; Meyer et al., 2016; Pescott, Humphrey,

et al., 2019; Petersen et al., 2021; Ruete, 2015; Speed et al., 2018;
Sumner et al., 2019; Troudet et al., 2018); we also note that vari-
ous approaches to visualising the spatial and temporal coverage of
occurrence records across large areas have been commonplace in
national species atlases for some time (e.g. Preston et al., 2002).
Studies of these types provide a template for how to conduct such
assessments and a suite of heuristics which can be deployed in sim-
ilar situations. For example, one could assess data for spatial bias
by comparing the nearest neighbour distances of the occurrence
data with those from a simulated random distribution (Sumner et al.,
2019). The proportion of records identified to species level can be
used as a measure of how taxonomic uncertainty has changed over
time (Troudet et al., 2018). Multidimensional environmental space
can be summarised using principal component analyses (PCAs), or
other ordination techniques, allowing one to map the distribution
of records in environmental space and scrutinise it for bias relative
to the total domain of interest (Pescott, Walker, et al., 2019). Whilst
these metrics are often presented in studies whose primary aim is
to assess datasets for their limitations, we find that they are rarely
presented in studies which use such aggregated species occurrence
data to investigate actual patterns of species' distributions and how
they have changed over time (refer the study by Ball-Damerow et al.,
2019, for a sobering review of the lack of scrutiny where species oc-
currence data are used across research fields more generally).

One way to encourage the proper use of species occurrence
data is to develop software that can facilitate the various tasks in-
volved, thereby easing the burden on researchers' time. Indeed, a
suite of packages have been developed in the R statistical program-
ming environment (R Core Team, 2019) to facilitate the acquisition,
cleaning, and proper acknowledgement of species occurrence data
(Chamberlain et al., 2021; Owens et al., 2021; Zizka et al., 2019).
Recently, Zizka et al., 2021, developed what is, to our knowledge,
the first R package dedicated to quantifying sampling biases in spe-
cies occurrence data. The package, called sampbias, quantifies the
relative strengths of various geographical biasing factors, such as
roads, cities, and airports, in a given dataset. While sampbias pro-
vides useful information on a set of possible geographical biases in
species occurrence data, it is not designed to screen data for biases
in other dimensions (e.g. taxonomic, temporal, and environmental)
and is limited to a specific set of data-biasing mechanisms and the
assumption that data point locations are accurate (rather than, for
example, grid-based summaries). It would be useful, therefore, to
build on the functionality provided by sampbias and develop addi-
tional software that can screen species occurrence data for more
general biases in a range of possible dimensions. Note that we do not
think that bias screening can ever be a completely automatic or easy
task: assessing the great number of things that could go wrong, or
be misinterpreted, between the numerous data collection, collation,
digitisation, and interpretation tasks embodied by the use of any
slice of any aggregated database, for any given inferential purpose,
should humble any scientist (e.g. Pescott et al., 2018). Nevertheless,
making some basic “risk of bias” assessments more straightforward,

and raising their profile, is a step in the right direction for ecology.
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Here then, we present occAssess: an R package for assessing
potential biases in species occurrence data. The package takes a
user-supplied dataset and returns a suite of metrics that have been
used in the literature to assess species occurrence data for com-
mon issues when broad-scale inferences relating to distributions
and their changes may be desired. occAssess is designed primarily
to assess the suitability of species occurrence data for estimating
temporal trends in species' distributions. Nevertheless, the package
should also be useful for those who would like to screen their data
for biases of potential importance when estimating spatial variation
in species' occurrences with no explicit reference to time (e.g. using
static species distribution models). The aim is to enable quick and
easy screening of data for common limitations, thereby enabling re-
searchers to properly scrutinise their data before using it in further
analyses, whatever their inferential goal may be. We start by pro-
viding an overview of the package, what data it requires, and what
outputs it returns. We then provide a worked example using data on
the occurrences of leaf-nosed bats and hoverflies in South America
over the period 1950-2019 and refer the reader to the supporting
information where additional vignettes and tutorials can be found.
Finally, we discuss different ways in which the package can be used,
highlight its limitations, and suggest how it could be improved in

the future.

2 | PACKAGE
2.1 | Package specifications

occAssess is an open-source R (version >= 4.0.0) package (R Core
Team, 2019), built around the existing packages ggplot2 (Wickham,
2016), spatstat (Baddeley et al., 2015), raster (Hijmans, 2019), and
stats (R Core Team, 2019). A stable version (1.3.0) can be found at
https://github.com/robboyd/occAssess/releases, and the develop-
ment version can be found at https://github.com/robboyd/occAs
sess. We provide three vignettes with the package: (1) a tutorial
using the data presented in this article; (2) a second example using
data that are simulated to be unbiased for the purpose of estimating
trends in species' distributions; and (3) a fully-reproducible example
for which all required data are available within the package. Note
that not all required data are provided with vignettes one and two;

they are provided for instruction, rather than reproducible examples.

2.2 | Package structure

occAssess comprises seven discrete functions (Table 1), each of
which is designed to assess a common form of potential bias in spe-
cies occurrence data. The functions each assess species occurrence
data in at least one of the spatial, temporal, taxonomic, and envi-
ronmental dimensions. The user can provide a set of time periods
into which the data will be split, meaning that all functions are to

some extent temporally explicit. For example, one function assesses
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spatial bias in the data, but, if multiple periods are specified, then the
function provides information on temporal variation in spatial bias.
We provide the option to split the data into periods to facilitate as-
sessments of the suitability of data for estimating changes in species
distributions over time. However, in some cases it may be preferable
to specify one time period, perhaps covering the entire temporal ex-
tent of the data. This may be useful for static species distribution
modelling where one simply requires information on, e.g. spatial or
environmental bias in the dataset as a whole. At present the time pe-
riods must be specified in units of years, and the minimum permitted

length for a time period is 1 year (see Section 3 below).

2.21 | Inputdata

For all functions, users must provide their occurrence data and a list
of time periods into which the data should be split. The occurrence
data must be provided as a dataframe object with six fields: species
(species name; note that whilst we use the word “species” here for
convenience, essentially any set of taxonomic levels could be used),
X (x coordinate), y (y coordinate), spatialUncertainty (uncertainty as-
sociated with the x and y coordinates; any units are permitted), year,
and identifier. The column names in the input data need not match
the names of the fields above; rather, the user must pass arguments
to each function indicating what columns in their data correspond to
which field. This ensures compatibility with data standards such as
Darwin Core (https://dwc.tdwg.org/). For example, in Darwin Core,
the spatialUncertainty field would be called coordinateUncertainty-
InMetres, and the user can provide a mapping by specifying spa-
tialUncertainty = “coordinateUncertaintyInMetres”.
We would expect that information on all six required fields would
be provided by any typical species occurrence data aggregator, e.g.
GBIF. Note that users may specify a threshold spatial uncertainty
above which data are dropped before the heuristics are calculated.
This allows users to ask the question “how do the biases in my data
change if | retain only the more precise records?”. Any coordinate
reference system (CRS) may be used. In the spatialUncertainty field,
any units are permitted (e.g. metres for eastings/northings, or deci-
mal degrees for lon/lat) but they must be consistent. The identifier
field is used to group the data; for example, it may denote specific
taxonomic groups, countries, datasets, etc. Where there is no in-
formation available for a field, its values should be set to NA. See
Table 2 for an example set of input data.

2.2.2 | Outputs

Each functionreturns a list with two elements: a ggplot2 (Wickham,
2016) object, and the data that underpin that plot. The ggplot2 ob-
jects generally display the various potential bias metrics for each
level of the identifier field (Table 2) and for each time period speci-
fied. We provide the outputs as ggplot2 objects because these

can be subsequently modified by the user for presentation in e.g.
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TABLE 2 The first six rows of an

. Speci
example dataset as required by occAssess pecies

Anoura caudifer

Carollia perspicillata
Carollia perspicillata
Sturnira erythromos
Platyrrhinus dorsalis

Artibeus lituratus
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y year spatialUncertainty Identifier

-65.4 -17.0667 1993 11,839 Phyllostomidae
-65.5497 -17.1072 1993 1043 Phyllostomidae
-65.4 -17.0667 1993 11,839 Phyllostomidae
-65.8692 -17.2119 1993 1043 Phyllostomidae
-65.5497 -17.1072 1993 1043 Phyllostomidae
-56 -25.4667 1995 11,010 Phyllostomidae

Note: Note that any units are permitted in the spatialUncertainty field (here metres) but they
must be consistent. Also note that the column names in the input data need not match those in
this example: users can provide a mapping between their data and the fields presented here using
arguments to each function.

published articles or supplementary material. The functions do not
provide any formal recommendation as to whether the data are
too biased for any given inferential use; instead, we expect that
the heuristics will be used in combination with researchers' expert
judgement to decide on whether mitigating action must be taken,
and how this might be done (if indeed it is possible at all). In sup-
plementary material 2 we provide the outputs of occAssess as ap-
plied to a simulated dataset that has a random distribution in space
and time and is resolved to species level in all cases; this is taken as
an example of a dataset that is unbiased relative to the inferential
use case of assessing all species' distributions in a region over time.
These outputs can be used as a point of comparison in that they
are likely to provide examples of how the heuristics would appear
if a dataset is unbiased.

2.3 | Worked example

In this section, we provide a worked example of the functionality of
occAssess. We use the package to assess data on the occurrences
of leaf-nosed bats and hoverflies in South America over the period
1950-2019. The data were downloaded from GBIF (GBIF, 2021; DOI
in reference list) and were cleaned for spatial issues (e.g. coordi-
nates matching country centroids, capital cities, biodiversity insti-
tutes, etc.) using the CoordinateCleaner package (Zizka et al., 2019).
We specify seven time periods, each one decade in duration. We
use the identifier field to distinguish between the leaf-nosed bats
(Phyllostomidae) and hoverflies (Syrphidae). We do not provide the
code in the main text; instead, we refer the reader to the vignette in
supplementary material 1 which provides the code for this example.
As we introduce each function, and where applicable, we (1) outline
what form of bias it relates to and in what dimension(s); (2) provide
the theory behind the metric; (3) indicate where additional inputs
- beyond the fields in Table 2 - are required; (4) present the ggplot2
object returned for this case study (noting that the data underpin-
ning these plots are also returned by each function); and (5) give
guidance on how to interpret the outputs. We reiterate here that
these heuristics are designed to be used alongside expert judgement
and careful thought relative to the inferences desired by the analyst

- we do not intend any function to provide a simple binary answer

to the question “are these data biased for answering my question?”.

Biases are challenging!

assessRecordNumber ()

The simplest function in occAssess, assessRecordNumber, pro-
vides a measure of sampling intensity in the domain of interest and
how it changes over time (Figure 1a). Although simple, it is import-
ant to understand the extent to which the quantity of data varies
over time, because a change in the number of records could reflect a
change in recording intensity, which is itself likely to affect the prev-
alence of particular species in the dataset through time in a non-
random fashion (Pescott, Humphrey, et al., 2019).

One problem that may arise when using assessRecordNumber
is that the counts may differ widely between levels of the identi-
fier. This can make it difficult to assess temporal variation in record
counts for the level(s) with fewer records. To circumvent this prob-
lem, we include the option to normalize the counts for each level of
identifier. In this case, the indices for each level of identifier fall on

comparable scales.

assessSpeciesNumber ()

The function assessSpeciesNumber returns a measure of taxo-
nomic coverage and how it changes over time. The function sums
the number of species recorded in each time period and for each
level of identifier and displays the results as time series (Figure 1b).
Of course, changes in the numbers of species recorded could also
reflect true extinction/colonisation events in a dataset, but, for het-
erogeneous, aggregated, data, issues of uneven representativeness
across time are considerably more likely. As with assessRecordNum-
ber, users can choose to normalize the species counts for each level

of identifier for ease of interpretation.

assessSpeciesID()

The function assessSpecieslID provides a measure of taxonomic
uncertainty and how it changes over time. By default the function
displays the proportion of records identified to species level each

year [Figure 1c, as in Troudet et al. (2018) and Zattara and Aizen
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FIGURE 1 ggplot2 objects returned by (a) assessRecordNumber; (b) a

[

ssessSpeciesNumber; (c) assessSpecies|D; (d) assessRarityBias; and

(e) assessEnvBias. Note that the ggplot2 objects can be modified by the user (e.g. colours, axis labels, etc.)

(2021)]. Records are considered not identified to species level if they
take the value NA. The user has the option to substitute proportions
for counts which may be preferable in some circumstances. For ex-
ample, it is feasible that, due to the increase in the number of records
submitted by volunteer citizen scientists over time, the proportion of
records identified to the species level may decrease, but the overall
quantity may show a different trend.

assessRarityBias()

The function assessRarityBias can be used to assess the degree
to which rare species are oversampled relative to commoner spe-
cies and whether this changes over time. The idea is that, was there
no sampling bias, species would be recorded in proportion to their
commonness. Commonness can be defined as local abundance or
regional occupancy (Gaston, 2011). Following Speed et al. (2018), we

define a species' commonness as the number of grid cells on which
it has been recorded - a proxy for regional occupancy. The user may
decide on the spatial resolution of the grid cells, and whether com-
monness is calculated over the entire temporal extent of the data,
or separately for each time period (which could have important im-
plications for the interpretation of discovered patterns, given other
biases in the dataset).

Once the numbers of times species' have been recorded, and
their commonness, have been calculated, assessRarityBias measures
the congruence between these two quantities. The user may decide
on one of two methods that the function will use to do this. The first
option is to regress the number of records on commonness and use
the r? (coefficient of variation) from the fitted model as an indicator
of to what extent the number of records are explained by range size.
This method is an extension of that used by Barends et al., 2020

and Speed et al., 2018 who fitted analogous regression models and
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treated each species' residual as an index of whether they are over-
or under-sampled relative to some wider assemblage. This measure
ranges from O, indicating high bias, to 1, indicating low bias. The sec-
ond option is to use the Pearson's correlation coefficient between
the number of times species' have been recorded and their common-
ness as the measure congruence. This measure ranges from -1 to 1,
with values closer to 1 indicating smaller bias. Whichever method is
chosen, occAssess displays the index for each time period and level
of identifier (Figure 1d). Note that both metrics produced assessRar-
ityBias indicate the strength of the linear relationship between range
size and the number of records; users may wish to inspect the data

for curvillinearity.

assessSpatialCov()

The function assessSpatialCov can be used to assess the extent
to which the data are spatio-temporally biased; that is, the extent to
which the same portion of the geographic domain has been sampled
over time—note that this is likely to be crucial for robust estimates of
temporal distributional change. The function provides this informa-
tion in one of two ways (selected by the user). Both methods begin
by gridding the data at a user-specified spatial resolution. The first
method then returns n ggplot2 objects, where n is the number of
levels in the identifier field. Each ggplot2 object contains N maps
showing the density of records in each grid cell, where N is the num-
ber of time periods. The second method returns one map showing
the number of time periods in which each grid cell has been sam-
pled (Figure 2b,c; see supplementary materials 2 and 3 for examples
using the first method). It is worth pointing out that data originally
provided on a grid are often converted to point format by online data
aggregators (e.g., using cell centroids). For these data, it is possible
that the mismatch between the original grids and the user-specified
grid produced by assessSpatialCov could result in some unexpected
biases.

In some circumstances users will need to pass additional data to
assessSpatialCov to superimpose political/ geographical boundaries
on the resultant plots. This is not required where the data are on the
WGS84 coordinate reference system; in this case, the user must sim-

ply specify the relevant countries, otherwise, a shapefile is required.

assessSpatialBias()

The function assessSpatialBias screens data for geographical
bias, i.e. the degree to which a sample deviates from a random dis-
tribution within the spatial domain of interest. The function is based
on the widely-used nearest neighbour index (NNI) (Clark and Evans,
1954). The NNl is given as the ratio of the average observed nearest
neighbour distances (the Euclidean distance of each data point to its
nearest neighbouring point) to the expected average nearest neigh-
bour distance if the data were randomly distributed. In the standard

NNI, the average expected nearest neighbour distance for arandom

distribution is given by 1/2 4/study area/number of points. However,

in the case of irregularly shaped study boundaries (e.g., political or
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® Phyllostomidae

® Syrphidae

Nearest neighbour index

204
Number of periods sampled

-201

40

-100 75 50
X

(c) Syrphidae

20

Number of periods sampled

-20

-40

100 75 50
X

FIGURE 2 ggplot2 objects returned by assessSpatialBias (a) and
assessSpatialCov (b and c). Note that the user can modify these
plots (e.g., by changing colours, axis labels, etc.)

geographical boundaries), the above formula does not equal the
expected average nearest neighbour distances for a random distri-
bution. To circumvent this problem, assessSpatialBias simulates n
datasets randomly across the study area in equal number to the oc-
currence data. The NNI can then be given as the ratio of the average
observed nearest neighbour distances to the average of the simu-
lated nearest neighbour distances (Figure 2a). Another advantage of
this approach is that, by simulating n (chosen by the user) random
datasets, assessSpatialBias can provide uncertainty associated with
the index (the function will display 90% confidence intervals by de-

fault). The NNI produced by assessSpatialBias can be interpreted as



BOYD ET AL.

16184 WI LEY—ECOIOgy and Evolution

Open Access,

how far the observed distribution deviates from a random distribu-
tion of the same density. Values between 0 and 1 are more clustered
than a random distribution, and values between 1 and 2.15 are more
widely dispersed (i.e., over-dispersed). See Sumner et al. (2019) for a
somewhat similar approach.

It is worth pointing out that the NNI produced by assessSpatial-
Bias is a function of both sampling biases in the data and the true
distributions of the focal taxa. If the function is used to assess data
for one or a small number of species, the NNI will likely indicate a
strong departure from a random distribution. This is to be expected
because the geographical distribution of records will reflect e.g., the
environmental niche of the target taxa. The function is therefore
most appropriate for use with data spanning many species, in which
case a more accurate picture of the distribution of sampling is likely
to be obtained.

assessEnvBias()

The function assessEnvBias can be used to assess species occur-
rence data for two types of environmental bias: unrepresentative
sampling in the environmental space of the domain of interest, and
uneven sampling of environmental space over time. The function
maps the data in environmental space in each user-specified time
period. To do so, additional environmental data are required. As a
minimum users must supply environmental data (this can be many
variables) at the coordinates of the occurrence data. Users may op-
tionally supply a “background” sample of the same environmental
variables; this may be, for example, the environment at random lo-
cations across the domain of interest. Whether or not background
data are supplied impacts interpretation of the assessEnvBias out-
puts. If background data are supplied, then the function maps the
distribution of the occurrence data in the environmental space of
the domain of interest. Otherwise, the data are mapped in the sam-
pled environmental space across all periods. In this example we use
the standard suite of 19 bioclimatic variables from worldclim (Fick
and Hijmans, 2017). These data can be downloaded at https://www.
worldclim.org/data/worldclim21.html or through R using the get-
Data function in the raster package (Hijmans et al., 2019).

assessEnvBias reduces the dimensionality of the environmental
data using PCAs. It then maps the data in two-dimensional environ-
mental space (Figure 1e), enabling the user to assess whether their
data are sampled from the same portion of environmental space
across periods or, if background data are supplied, whether the data
are sampled from a representative portion of environmental space
in the domain of interest. By default, the data are displayed as el-
lipses delimiting 95% of the occurrence data. Strictly speaking, PCAs
assume multivariate normality in the environmental data, and the
ellipses displayed by assessEnvBias assume multivariate normality
among the principal component scores. Users may wish to assess
their data, and the resultant PC scores (which are returned by the
function), for normality. If the data are non-normal, then transfor-
mations can be applied. If the PC scores are non-normal, it is simple

to substitute the ellipses for the actual data points (see s1 for more

details). For similar approaches see Pescott, Walker, et al. (2019) and
Barends et al. (2020). Note that this assessment assumes that the
spatial resolution of the environmental data are relevant to the re-
sponses of the target organism(s) at the spatial scale of the analysis

desired.

3 | DISCUSSION

In this paper, we have introduced a new R package, occAssess,
which enables rapid screening of species occurrence data for bi-
ases of potential importance for drawing inferences about species'
distributions and how they have changed over time. The package
takes a species occurrence dataset as input and returns a number
of metrics relating to common forms of bias in one or more of the
taxonomic, temporal, spatial, and environmental dimensions. None
of the metrics provided in the package are new (although some are
extended and/or modified). However, we hope that in assembling
these metrics in an easy-to-use R package, we will ease the burden
on researchers who would like to scrutinise their data. In turn, we
hope to promote the proper assessment of species occurrence data
before they are used in attempts to answer important research ques-
tions regarding ecological change. The heuristics returned by oc-
cAssess could be provided as, for example, supplementary material
to published articles to provide evidence of the fact that a proper
assessment has been conducted. In general, we would expect such
evidence of assessment to be accompanied by written commentary
interpreting the patterns seen and considering their implications for
any analyses presented.

We have presented a single example of how occAssess may be
used, but it is easy to imagine additional use cases. In our example,
we used the identifier field (Table 2) to split the data by taxonomic
group (Phyllostomidae and Syrphidae). One might instead use the
identifier field to denote specific datasets. For example, one level of
identifier could denote a dataset before some newly-digitized data
were added, and a second could denote the same data with the ad-
dition of the newly-digitized records. It would then be possible to
make an assessment of to what extent the data have improved as a
result of digitization efforts. occAssess could also be used for model-
based data integration (Isaac et al., 2020), where the aim is to exploit
the strengths of multiple datasets, each of which could be specified
in the identifier field. Another possibility is that occAssess could be
used to screen data for single species as opposed to whole taxo-
nomic groups as presented in our worked example. In this case note
that some heuristics would require different interpretations; for ex-
ample, one would expect the data to be biased in the environmental
space relative to the domain of interest because it would reflect a
species' environmental niche. In summary, we feel that occAssess
has the potential to be useful for many applications where species
occurrence data are used.

A key feature of occAssess is the periods argument in each func-
tion, which enables assessment of how the limitations of a dataset

may change over time. We include this feature because a common
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application of species occurrence data is the estimation of temporal
trends in species' distributions (e.g. Outhwaite et al., 2019; Pescott,
Humphrey, et al., 2019; Powney et al., 2019). For some applications,
however, it may be more appropriate to consider an entire dataset as
comprising one time period, thereby removing the temporal dimen-
sion. An obvious example is where data are to be used for species
distribution modelling (SDM). In this case the objective is typically
estimation of spatial variation in species' occurrences with no ex-
plicit reference to time (Guisan, 2017). Where occAssess is used to
screen data for use in SDMs, we suggest that the functions relating
to spatial and environmental bias will be of most importance, namely
assessSpatialBias, assessSpatialCov and assessEnvBias (although the
other functions could still provide important context on the tempo-
ral dynamics of the dataset).

The functions in occAssess provide heuristics relating to the
quality of species occurrence data, but stop short of making a formal
recommendation as to whether the data are of sufficient quality for
any given use. It would not be appropriate to provide such recom-
mendations, because the utility of species occurrence data depend
not only their biases, but also on the question being asked and the
methods used to answer it. For example, it may be possible to obtain
relatively unbiased predictions of species' geographical distributions
using SDMs, even when the data themselves are spatially and envi-
ronmentally biased. Phillips et al. (2009) developed the “target group”
approach whereby background data are generated with similar sam-
pling biases to the occurrence data. This approach helps SDMs to
distinguish between suitable and unsuitable habitats as opposed to
popular and unpopular sampling locations. There have also been at-
tempts to correct for changes in recorder effort statistically, thereby
enabling estimation of how species' distributions have changed over
time from biased data (Franklin, 1999; Hill, 2012; Isaac et al., 2014;
Szabo et al., 2010; Telfer et al., 2002; Van Strien et al., 2013). While
it is not always clear to what extent the above-mentioned methods
achieve the goal of mitigating for sampling biases, the point remains
that relatively informative inferences may still be possible from bi-
ased data where the biases can either be modelled, reduced through
appropriate resolution-based aggregation (Pescott, Humphrey, et al.,
2019), or through more complex methods designed to leverage un-
biased estimates of model parameters from additional probability
samples (e.g. Ahmad Suhaimi et al., 2021). It is for this reason that we
suggest the metrics provided by occAssess be consulted in combina-
tion with other relevant information in order to decide whether or not
a dataset is of sufficient quality for use for a given inferential purpose.

The version of occAssess presented here is not a silver bullet
when it comes to dealing with biases in species occurrence data.
First, the temporal unit is the year, meaning that the package can say
nothing about intra-annual biases (e.g. phenological patterns in the
data). In future versions, it might be feasible to increase the temporal
resolution of the package. Second, it will not always be possible to
tease apart biases from true biological phenomena using the pack-
age alone. For example, assessSpatialBias indicates whether the data

deviate from a random distribution but, particularly where there are
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few species in the dataset, it might not be clear whether this reflects
sampling biases or species' true distributions. To disentangle sam-
pling biases and the biological truth, it will always be preferable to
solicit advice from experts who are familiar with the biology of the
focal taxa - we stress again that our package is a compliment to,
not substitute for, expert knowledge. Third, the package can indi-
cate the potential for bias in species occurrence data, but cannot
determine the exact severity of those biases in relation to any given
research question. One can never know the true extent of any biases
in a dataset without possessing either a complete census, or (ideally
several and large) probability samples; to pretend otherwise would
be a dishonest approach to the very difficult problem of statistical
inference using biased samples (e.g. Greenland et al., 2005). Finally,
whilst occAssess can reveal biases in a dataset, it is up to the user to
decide how to mitigate for those biases. This might include incorpo-
ration of some covariate thought to capture the biasing mechanism
in a hierarchical regression analysis, manipulating the data (e.g. thin-
ning), or simply redefining the target population to match the spatial,
temporal and taxonomic extents of the data (we note that a full re-
view of possible approaches here would really require a book length
treatment). Before implementing bias mitigation measures, however,
one must first understand the potential biases in their data - this is

where occAssess can help.
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