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DeepPhospho accelerates DIA phosphoproteome
profiling through in silico library generation
Ronghui Lou 1,2,3,6, Weizhen Liu4,6, Rongjie Li4, Shanshan Li1, Xuming He 4,5✉ & Wenqing Shui 1,2✉

Phosphoproteomics integrating data-independent acquisition (DIA) enables deep phospho-

proteome profiling with improved quantification reproducibility and accuracy compared to

data-dependent acquisition (DDA)-based phosphoproteomics. DIA data mining heavily relies

on a spectral library that in most cases is built on DDA analysis of the same sample.

Construction of this project-specific DDA library impairs the analytical throughput, limits the

proteome coverage, and increases the sample size for DIA phosphoproteomics. Herein we

introduce a deep neural network, DeepPhospho, which conceptually differs from previous

deep learning models to achieve accurate predictions of LC-MS/MS data for phosphopep-

tides. By leveraging in silico libraries generated by DeepPhospho, we establish a DIA work-

flow for phosphoproteome profiling which involves DIA data acquisition and data mining with

DeepPhospho predicted libraries, thus circumventing the need of DDA library construction.

Our DeepPhospho-empowered workflow substantially expands the phosphoproteome cov-

erage while maintaining high quantification performance, which leads to the discovery of

more signaling pathways and regulated kinases in an EGF signaling study than the DDA

library-based approach. DeepPhospho is provided as a web server as well as an offline app to

facilitate user access to model training, predictions and library generation.
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Protein phosphorylation is a widespread post-translational
modification (PTM) that regulates essentially all cellular sig-
naling networks1. Mass spectrometry (MS)-based phospho-

proteomics has become the method of choice for the genome-wide
study of protein phosphorylation and dynamic cell signaling2.
However, conventional phosphoproteomics based on data-dependent
acquisition (DDA) often suffers from limited throughput and low
reproducibility due to the current MS sequencing speed and semi-
stochastic sampling of DDA3. With the advent of data-independent
acquisition (DIA) to enable proteome profiling of large cohorts of
samples with superior quantification accuracy and reproducibility4,5,
DIA-based phosphoproteomics has emerged as a powerful technol-
ogy for cell signaling study6, proteogenomic characterization of
clinical cancer tissues7 and anti-viral drug discovery8. Importantly, a
benchmark study by Olsen J et al. has demonstrated that DIA
phosphoproteomics achieves a larger dynamic range, higher repro-
ducibility of identification, and improved sensitivity and accuracy of
quantification than DDA phosphoproteomics3.

However, the current DIA phosphoproteomic workflow faces a
significant limitation which is the need of a high-quality spectral
library to be constructed prior to data processing. In almost all
reported DIA phophoproteomic analysis, a project-specific DDA
library was built through DDA analysis of extensively pre-
fractionated or repeatedly injected samples3,6–9. Although
project-specific DDA libraries afford a higher proteome coverage
(i.e., covering a larger number of protein and peptide identifica-
tions) than other experimental libraries, they are built at the
expense of time, sample, and considerable efforts with pre-
fractionation10. Alternatively, the previous elegant study showed
it is feasible to build a direct DIA library from DIA data alone for
deep phosphoproteome profiling. But in that case, the DIA library
was constructed based on data acquisition from an unusually
large sample cohort (186 DIA runs)3.

Apart from the experimental DDA and DIA libraries, in silico
libraries can be generated through predictions of fragment ion
intensity and retention time for given peptide sequences using deep
learning or traditional machine learning-based methods11–14.
Recently developed deep neural networks have been implemented to
generate in silico libraries for DIA data analysis in global proteomics,
which resulted in a whole-proteome coverage nearly equivalent to or
even higher than experimental DDA libraries10–12,14. We also
reported the construction of a protein family-targeted in silico library
with deep learning tools so as to deepen the sub-proteome coverage
of a selected protein family15. In spite of these promising applications,
the in silico library approach has never been explored in DIA
phosphoproteomic data mining. Furthermore, the existing deep
learning methods mostly adopting a single LSTM or RNN archi-
tecture employ a linear embedding of amino acids, followed by a
convolutional or recurrent neural network that extracts peptide fea-
tures for the prediction. Such a strategy, however, is often limited by
the restrictive structural assumption on the designed deep networks,
which may cause difficulty in handling peptides of variable lengths or
capturing their rich structural properties such as PTMs.

In this study, we first developed a deep learning framework,
termed DeepPhospho, to achieve highly accurate predictions for
phosphopeptides. Through designing and evaluating a series of in
silico libraries generated by DeepPhospho, we demonstrated that
DeepPhospho predicted libraries outperform the benchmark
experimental DDA library and accomplish faster and deeper DIA
phosphoproteome profiling.

Results
Principle of DeepPhospho. The key ingredient of DeepPhospho
is the learning of a gradually richer peptide representation, which
allows for better capturing the local and global structure of a

peptide for fine-grained prediction. In contrast to prior methods,
we adopted a hybrid network design that integrated two types of
network architectures to encode different aspects of the peptide
structure.

To this end, we developed a modular deep network consisting
of three main sub-networks: a recurrent network for encoding
peptides, a Transformer network for refining the peptide
representation, and a regressor network for predicting fragment
ion intensities or indexed retention time (iRT) (Fig. 1a,
Supplementary Fig. 1a). The main modules of our network were
organized in a sequential manner and gradually enhanced the
peptide features. Specifically, given the input peptide sequence
and optionally the charge state, we first employed a bi-LSTM
network to compute an initial representation of all the amino
acids in the sequence. The bi-LSTM network embedded each
amino acid into a vector representation, which was then updated
by two layers of bidirectional LSTM units. This produced a
context-aware representation as each amino acid was enriched by
the features of other amino acids in the same peptide. However,
the effective context encoded by the bi-LSTM network is often
limited due to loss of information in its recurrent updates16. To
capture long-range dependency in the peptide sequences, we then
introduced the second module, a Transformer network that
refines the peptide representation generated from the first
module. The transformer network used a multi-head self-
attention to update the features of all amino acids in parallel,
and enabled the model to directly attend to multiple sites of the
peptide even if they were far apart. Finally, the network output a
new representation for the input peptide, which was then fed into
a linear regressor network to generate predictions for RT or ion
intensities.

To tailor DeepPhospho specifically to phosphopeptide predic-
tion, we introduced a set of extra tokens to represent different
phosphorylated amino acids, and learn their embedding jointly
with the base peptides. In addition, for the task of fragment ion
intensity prediction, we designed a modified loss training that
enforced the structural constraints of the corresponding peptides.
In particular, we ignored the loss terms on the phosphate moiety
that cannot exist and filter out the model predictions on
those ions.

To the best of our knowledge, DeepPhospho is the first work to
utilize the Transformer for the prediction of peptide fragmenta-
tion patterns though it has been extensively used in the natural
language processing17,18. To demonstrate the advantage of our
model design, we conducted an ablative study to compare our
model with the bi-LSTM or the Transformer alone, and
combination of CNN with the Transformer using two phospho-
proteomic datasets (Supplementary Data 1). Our hybrid model
consistently outperformed those alternative baselines, indicating
that DeepPhospho is able to learn a better feature representation
for phosphopeptides, and the bi-LSTM and the Transformer are
complementary in learning the peptide representation (Supple-
mentary Fig. 1b, c).

Accurate prediction of fragment ion intensity and retention
time for phosphopeptides. After the model architecture test,
DeepPhospho was pre-trained using four large-scale phospho-
proteomic datasets (details in “Methods”; Supplementary Data 1).
We then used DeepPhospho to make predictions for phospho-
peptides in three other datasets acquired on Q Exactive HF-X and
Orbitrap Fusion Lumos mass spectrometers from two laboratories
(Supplementary Data 1). Two datasets (RPE1 DDA and RPE1
DIA) both collected from RPE1 cells3, one by DDA, the other by
DIA acquisition methods, were searched by MaxQuant and
Spectronaut respectively to yield phosphopeptide identification
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results. These identification output files were then imported into
Spectronaut to generate a DDA library and a direct DIA library
which both contained MSMS spectra, PTM site localization, and
iRT data for identified phosphopeptides in the same format. Data
in each library was split at a ratio of 8:1:1 for model training,
validation and test separately. The trained DeepPhospho model
achieved excellent overall agreement between the experimental
and predicted fragment ion intensities for the test set (median
Pearson correlation coefficient (PCC)= 0.968, median spectral
angle (SA)= 0.881 for RPE1 DDA; median PCC= 0.903, median
SA= 0.791 for RPE1 DIA) (Fig. 1b). Furthermore, DeepPhospho
enabled accurate iRT prediction for both datasets after model
training (median absolute error (MAE)= 1.74 units for RPE1
DDA, 1.86 units for RRE1 DIA) (Fig. 1c, Supplementary Fig. 2a).
For the third dataset (U2OS DIA) which is another DIA library
generated from phosphoproteome profiling of U2OS cells9,
DeepPhospho made equally accurate predictions of fragment ion
intensity and iRT (Supplementary Fig. 2a, b). Evaluation of model
predictions indicated better performance for mono-phosphosite
peptides and for phosphopeptides merely containing pS than the
other categories possibly because of their larger data fractions
available in model training (Supplementary Fig. 2c–e).

We also compared the performance of DeepPhospho in
phosphopeptide fragment ion intensity prediction with three
recently reported models. pDeep2 built on an LSTM model also
allows for transfer learning with a training set19. DeepMS2

initially predicts for non-phosphopeptides and generates in silico
MSMS spectra for the modified peptides using a “budding”
strategy20. MS2PIP predicts fragmentation patterns directly from
phosphopeptide sequences using an XGBoost machine learning
algorithm21. In all cases, DeepPhospho outperformed the
reported models when tested with the same phosphoproteomic
datasets (Fig. 1b, Supplementary Fig. 2b).

Because our major attempt was to enhance DIA data mining,
we looked into a sub-population of phosphopeptides with a
relatively low correlation (PCC < 0.3) between their library
spectra from U2OS or RPE1 DIA data and the predicted spectra
(Fig. 2a upper). To determine which spectrum is more likely to be
correct for a given phosphopeptide, we obtained the reference
spectrum from the profiling results of the same or very similar
phosphoproteome samples analyzed by gold-standard DDA
acquisition methods1,9 (Supplementary Data 1). Notably, the
majority of phosphopeptides (78.6% in RPE1 DIA data, 82.8% in
U2OS DIA data) showed a stronger correlation between the
reference and predicted spectra than between the library and
predicted spectra (Fig. 2a lower). This result suggests that the
fragmentation patterns for these phosphopeptides may be more
accurately predicted by DeepPhospho than experimentally
assigned in the library.

To verify this finding, we synthesized seven phosphopeptides
and acquired the bona fide high-quality MSMS spectra by
targeted MS analysis of the synthetic peptides. All predicted
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Fig. 1 Model architecture and performance of DeepPhospho. a The DeepPhospho deep learning architecture for indexed retention time (iRT) and
fragment ion intensity prediction for any given phosphopeptide. Given a peptide sequence and the precursor charge as input, our model first uses a
bi-LSTM network to compute an initial representation of all the amino acids, which are then refined by a Transformer module. The resulting global features
are fed into a linear regressor network to generate predictions for fragment ion intensity and iRT. b Evaluation of DeepPhospho and three other models
based on the distribution of Pearson correlation coefficient (PCC) and spectral contrast angle (SA) calculated between predicted and experimental MSMS
spectra from two datasets. Median PCC and SA are indicated; n is the number of phosphopeptides in the test set. Boxplot center line, median; box limits,
upper and lower quartiles; whiskers, 1.5× interquartile range. c Evaluation of DeepPhospho based on the correlation of predicted and experimental iRT
values. Correlation coefficient of linear regression (R2) and median absolute error (MAE) are indicated. Source data for this figure are provided as a Source
data file.
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spectra were closely correlated with the bona fide spectra (PCC
0.79–0.97) whereas the DIA library spectra for the same
phosphopeptide sequences showed much lower correlations
(PCC −0.61–0.20) (Fig. 2b). Mirror plots for specific phospho-
peptides also reflected strong agreement between our prediction
and bona fide measurement yet considerable discordance with the
DIA library spectra (Fig. 2c, Supplementary Fig. 3). Taken
together, DeepPhospho enables accurate prediction of fragment
ion intensity for phosphopeptides, which in some cases could
pinpoint possibly false identifications in an experimental library.

Constructing DeepPhospho predicted libraries for DIA phos-
phoproteomics data mining. In routine DIA data analysis, a
project-specific DDA library has to be built based on peptide
identifications from a separate DDA experiment22. Raw DIA data
are then processed for peptide identification and quantification
using a peptide-centric scoring algorithm23 against this experi-
mental DDA library. Particularly, in a DIA phosphoproteomic
experiment, to construct a conventional DDA library, one would
need to go through an extensive procedure of phosphopeptide
preparation, enrichment, pre-fractionation, and LC-MS/MS
analysis which takes weeks to months to complete the data

acquisition (Fig. 3a). Alternatively, a direct DIA library can be
generated by searching the raw DIA data directly and exploited
for DIA data mining. Construction of this DIA library typically
requires single-injection DIA data acquisition which can be fin-
ished within days, thus largely saving instrument time and pre-
cious samples (Fig. 3a). However, up till now, the proteome
coverage of a DIA library still lags behind that of an extensive
DDA library, which greatly limits the depth of proteome profiling
if using the DIA data alone3,5.

To investigate whether and to what extent in silico spectral
libraries can deepen DIA phosphoproteome profiling, we
designed six types of predicted libraries or hybrid libraries to be
assessed in parallel with the project-specific DDA library namely
Lib 1 (Fig. 3b): Lib 2, a predicted DDA library; Lib 3, a hybrid of
the direct DIA library and the predicted DDA library; Lib 4, a
hybrid of the direct DIA library and the predicted library from a
public phosphoproteome database; Lib 5, a hybrid of the direct
DIA library and the predicted library from a public phosphosite
database; Lib 6, a hybrid of the predicted DIA library and the
predicted DDA library; Lib 7, a hybrid of the predicted DIA
library and the predicted library from a public phosphoproteome
database. Of note, all predicted libraries in Lib 2 to Lib 7 were
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Fig. 2 MSMS spectra prediction by DeepPhospho pinpoints possibly false identifications in an experimental library. a Distribution of PCC between
spectra predicted by DeepPhospho vs spectra assigned in the DIA library for two datasets (upper). For phosphopeptides of low spectral similarity (PCC
within −1 to 0.3), their PCC distribution are calculated between predicted spectra vs reference spectra, and between predicted spectra vs DIA library
spectra, and plotted around the diagonal (lower). Reference spectra were obtained by gold-standard DDA analysis of the same phosphopeptide samples. b
Correlation between the predicted spectra and the high-quality spectra of the synthetic peptide, and between the predicted spectra and the DIA library
spectra, for seven selected phosphopeptides. c Spectra mirror plots for phosphopeptides show much higher similarity between the predicted spectra, and
the synthetic peptide spectra than between the predicted spectra and the DIA library spectra. Relative fragment ion intensities in the predicted spectra, the
DIA library spectra and the synthetic peptide spectra are annotated by purple, orange and blue lines. * Indicates the loss of a phosphate. Source data for
this figure are provided as a Source data file.
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generated by DeepPhospho based on the phosphopeptide
sequences and charge states recorded in the corresponding
experimental libraries or databases (Fig. 3a).

Comparison of DeepPhospho predicted libraries with the
project-specific DDA library. To evaluate the performance of
different DeepPhospho yielded libraries, we first implemented

individual libraries in DIA data mining of the U2OS DIA dataset
collected under two conditions (control vs drug-treated, Supple-
mentary Data 1)9. In this experiment, a project-specific DDA
library was built from 20 DDA runs of the same phosphoproteome
samples. After training DeepPhospho with U2OS DIA data, Lib 2
to Lib 7 were generated based on predictions for phosphopeptides
identified in the DDA or direct DIA library, and phosphopeptide
sequences registered in a human phosphoproteome database24
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Fig. 3 Generation of DeepPhospho predicted libraries for DIA phosphoproteomics data mining. a An experimental DDA library or direct DIA library can
be converted to a predicted DDA library or a predicted DIA library by DeepPhospho. A predicted library can be also generated from public
phosphoproteome or phosphosite databases, or external phosphoproteomics data. b Design of seven spectral libraries for the U2OS DIA data analysis.
DDA/dDIA, experimental DDA or direct DIA library; predDDA/predDIA, predicted libraries converted from the DDA and DIA library; hPhosPepDB/
hPhosSiteDB, predicted libraries built from public human phosphoproteome and phosphosite databases. Lib 3 to Lib 7 are comprised of two separate
libraries. c Number of phosphopeptides and phosphosites identified using each library. Percentage of the total phosphopeptide or phosphosite number is
shown for each predicted library relative to the project-specific DDA library (Lib 1). The proportions of shared identifications (IDs), gained IDs, lost IDs, and
gap IDs yielded by Lib 2 to Lib 7 compared to Lib 1 are indicated in different color. Gap IDs are those present in Lib 1 yet absent in the DeepPhospho
predicted libraries, thus they cannot be identified with the latter. d Library-specific FDR assessed using the target-decoy strategy. e % coefficient of
variation (CV) of all phosphopeptide quantification between 10 replicates at each condition. Boxplot center line, median; box limits, upper and lower
quartiles; whiskers, 1.5× interquartile range. Source data for this figure are provided as a Source data file.
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(hPhosPepDB) or computed from a human phosphosite
database25 (hPhosSiteDB) (Fig. 3b and Supplementary Data 2).
Specifically, for hPhosPepDB which records 204,606 human
phosphopeptides identified in various proteomics projects, we
generated 21 predicted libraries depending on the combination of
precursor and fragment mass ranges, peptide length, max phos-
phosite number, and charge state in different values (details in
“Methods”). Then the best combination giving rise to the highest
phosphoproteome coverage was used to generate Lib 4 and Lib 7
(Supplementary Fig. 4). Meanwhile, 350,719 phosphopeptide
sequences were computed through collecting human phosphosites
registered in EPSD database and in silico digestion of the human
proteome, which were used to generate the predicted library in Lib
5. Notably, Lib 4, Lib 5 and Lib 7 comprised of a predicted library
from public databases are of a larger size than the others by one
order of magnitude and contain a unique fraction of phosphos-
peptides not present in Lib 1 (Fig. 3b, Supplementary Fig. 5a, b).
All three predicted libraries consist of peptide precursors with
charges states of 2/3/4 whereas their sequences and phosphosites
are defined by the databases.

Analysis of the U2OS DIA data with each library by
Spectronaut led to varying phosphoproteome coverages (Fig. 3c).
The largest increase of coverage was attained with Lib 7 which
yielded 32,511 phosphopeptide and 26,353 phosphosite identifi-
cations, compared to 25,814 phosphopeptides and 21,400
phosphosites originally identified with Lib 1. All phosphosites
reported in our study required at least 0.75 localization
confidence (Class I sites) as in the previous analyses3,26. Lib 7
was produced by merging a small predicted DIA library with a
large one predicted from hPhosPepDB. It is noteworthy that Lib 7
gained even more identifications than Lib 6, a hybrid of the
predicted DIA and the predicted DDA libraries which also
outperformed Lib 1 by covering 30,552 phosphopeptides and
24,954 phosphosites. Interestingly, data analysis with Lib 5 which
is mainly comprised of a predicted library from hPhosSiteDB led
to no increase of coverage, which underlies the importance of
selecting an appropriate database and optimizing the library
construction parameters in the performance of predicted libraries
built on public databases.

DIA data analysis with two best-performing predicted
libraries Lib 7 and Lib 6 led to identifications of 10,987 and
6453 new phosphopeptides as well as localizations of 9177 and
5390 new phosphosites respectively that were absent in the
analysis with Lib 1 (Supplementary Fig. 5c). The huge gains
prompted us to assess the control of false discovery rate (FDR)
even though <1% FDR was automatically set at both peptide
and protein levels by Spectronaut in all our data searches. For
Lib 1 and three predicted libraries Lib 2, Lib 6, and Lib 7, we
created a reverse library by predicting MSMS fragmentation
pattern and iRT for the reverse sequence of each identified
phosphopeptide in the original library using DeepPhospho.
Searching the same dataset with the original library appended
with the corresponding reverse library allowed us to assess
library-specific FDRs. FDR turned out to be equivalent between
Lib 1 (0.55%) and all three predicted libraries (0.40–0.64%)
(Fig. 3d, Supplementary Fig. 5d). In addition, we created two-
species libraries by merging each predicted library (positive set)
with a predicted Arabidopsis thaliana phosphoproteome library
(negative set), and FDRs were estimated to be 0.85 and 2.05%
for DIA data analysis using Lib 6 and Lib 7 (Supplementary
Fig. 5e). Thus, significant increase of phosphoproteome
coverages by using DeepPhospho predicted libraries did not
compromise the FDR control. Furthermore, reproducibility of
phosphoproteome quantification between replicates was com-
parable among Lib 1 and all six DeepPhospho predicted
libraries (Fig. 3e).

Performance of DeepPhospho predicted libraries in a phos-
phosignaling study. Next we used the RPE1 DIA dataset from a
cell signaling study3 to evaluate whether the advantage of
DeepPhospho predicted libraries in deepening phosphoproteome
profiling can be translated to a more biological scenario. In this
study, RPE1 cells were stimulated with EGF in the absence or
presence of two MEK kinase inhibitors. DIA data from 18 runs
were acquired from the phosphoproteome samples prepared
under six conditions in biological triplicates (Fig. 4a, Supple-
mentary Data 1). In addition, this study recorded a project-
specific DDA library consisting of 89,416 unique phosphopep-
tides identified from 147 DDA runs to analyze extensively pre-
fractionated samples3. After training DeepPhospho model with
RPE1 DIA data, we created five predicted or hybrid libraries
following the design of Lib 2, Lib 3, Lib 4, Lib 6, and Lib 7 as
described above. Lib 5 was abandoned here because of its poor
performance in the previous evaluation. For the construction of
Lib 4, we also compared 21 different combinations of phospho-
peptide and precursor features so as to yield a predicted library
from hPhosPepDB with the highest phosphoproteome coverage
(Supplementary Fig. 6). Both Lib 4 and Lib 7 comprised of the
largest predicted library from hPhosPepDB exceeded Lib 1 in size,
with each having a unique fraction of phosphopeptide identifi-
cations (Supplementary Fig. 7a). Then the RPE1 DIA data were
processed with different libraries to give rise to profiling results.

Given that the biological goal of this study was to map
regulated phosphosites at different conditions so as to character-
ize EGF-dependent phosphosignaling in the context of MEK
inhibition3, we focused on quantifiable phosphopeptides and
phosphosites with ratios measured between any two experimental
conditions. Not surprisingly, all five DeepPhospho predicted
libraries outperformed the extensive project-specific DDA library
(Lib 1) by increasing the total number of quantifiable phospho-
peptides and phosphosites (Fig. 4b). The winner was Lib 6 which
gained 17.9 and 14.9% more quantifications of phosphopeptides
and phosphosites relative to Lib 1 (Fig. 4b).

To further deepen the phosphoproteome coverage especially
for the quantifiable portion, we explored an iterative search
strategy. Phosphopeptides identified from the initial search with a
specific library were selected to build a focused library which was
used to iteratively search the raw DIA data with the same
parameters as the initial search (Fig. 4c). These focused libraries
are 3–14-fold smaller than the initial libraries (Supplementary
Fig. 7b). Remarkably, the iterative search with all focused libraries
significantly increased the coverages of quantifiable phosphopep-
tides whereas the coverages of totally identified phosphopeptides
and non-phosphopeptides remained barely changed (Fig. 4d,
Supplementary Fig. 7c). It suggests the iterative search specifically
expands the fraction of the quantifiable phosphoproteome within
the entire profiled proteome. Relative to Lib 1 which quantified
14,274 phosphopeptides and 12,726 phosphosites, Lib 7 showed
the best performance by quantification of 17,366 phosphopep-
tides (21.7% increase) and 14,994 phosphosites (17.8% increase).
We speculate that the iterative search enhances the sensitivity of
detecting phosphopeptides identified in the initial search, which
results in fewer missing values to facilitate ratio measurement of
more peptides. Notably, the same peptides identified in both
initial and iterative searches were assigned to the same features,
suggested by the perfect correlation of RT measurement between
two searches for all co-identified peptides (Supplementary Fig. 8).

We also assessed the FDR control of both initial and iterative
searches on this dataset using the original-reverse combined
library. Lib 6 and Lib 7 had even smaller error rates (0.29 and
0.41% for initial searches, 0.29 and 0.21% for iterative searches)
than Lib 1 (0.71% for initial search, 0.88% for iterative search)
(Supplementary Fig. 7d). With two-species libraries, FDRs were
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estimated to be 0.06-0.89% for initial and iterative searches using
Lib 6 or Lib 7 (Supplementary Fig. 7e).

To precisely assess the false localization rate (FLR) of phospho-
sites, we further analyzed a DIA data set acquired on 166 synthetic
human phosphopeptides containing 176 clearly defined
phosphosites27. Hybrid libraries were constructed by merging the
synthetic phosphopeptide library with a much larger experimental or
predicted library. DIA data analysis with the hybrid experimental
DDA library gave rise to FLR < 5% in both initial and iterative
searches (Supplementary Fig. 9). While data analysis with the hybrid
predicted libraries based on hPhosPepDB or hPhosSiteDB yielded
FLRs of 6–7% in initial searches, iterative searches with the same
libraries reduced the FLR to 2.9 and 3.5%. In addition, iterative
searches with two hybrid predicted libraries reached the maximal
rate of true phosphosite recovery (94–95%) that could be achieved
with the pure synthetic peptide library (Supplementary Fig. 9).
Analysis of another DIA data set on 300 synthetic yeast
phosphopeptides28 yielded a similar FLR of 3.0% for the iterative
search with the predicted yPhosSiteDB library (Supplementary
Fig. 9). Therefore, the synthetic phosphopeptide data analysis
implied that the FLR control for data search with different predicted
libraries built on public databases is below 5% and comparable to the
FLR control with the experimental DDA library. Taken together, we
demonstrated the application of an iterative search considerably
promotes DIA profiling of the quantifiable phosphoproteome while
not inflating the FDR or FLR in data mining.

Based on our DIA quantification results from the iterative search,
we performed an ANOVA statistical test to identify significantly
regulated phosphosites at EGF or any kinase inhibitor treatment. In
concordance with higher coverages, DIA data analysis with any of the
five DeepPhospho predicted libraries yielded more regulated sites
than Lib 1, with Lib 6 and Lib 7 gaining additional 235 and 212 sites
relative to Lib 1 (Fig. 5a). To address one of the central biological
questions of this study, we performed a Tukey’s range test to identify
EFG-regulated sites (significantly changed at EGF treatment vs
control) with each library which were further divided into MEK-
dependent (changes at EGF treatment reversed by inhibitor
treatment) and MEK-independent sites (changes at EGF treatment
unaffected by inhibitor treatment). All regulated sites uncovered by
different libraries are summarized in Supplementary Data 3. Again,
all DeepPhospho predicted libraries outperformed Lib 1 in regard to
the number of functionally regulated sites in each category (Fig. 5b).
For example, data mining with Lib 6 and Lib 7 uncovered 128 and
122 new EGF-regulated phosphosites that were not revealed with Lib
1 (Fig. 5c). Comparison of these new regulated sites with published
EGF signaling proteomics results further corroborated the regulation
of site-specific phosphorylation uncovered with the predicted libraries
(Supplementary Fig. 10).

Next, we performed bioinformatics analysis based on the
regulated sites to assess how much biological insights into the
phosphosignaling network can be gained by data mining with
DeepPhospho predicted libraries. For two libraries of our most

...
iRT = t4

R
el

at
iv

e 
I

iRT = t5

R
el

at
iv

e 
I

iRT = t6

R
el

at
iv

e 
I

a

b c

d

RPE1 cell line

DIA: 6 cond × 3 rep

DDA: 147 runs

Control EGF Cob-L Cob-H PD-L PD-H

Initial search

Identified phospho-
peptides/sites

Quantified phospho-
peptides/sites

Iterative search

Initial library

DIA data

Remove unidentified entries
in the initial library

DIA data

Focused library

iRT = t1

R
el

at
iv

e 
I

iRT = t2

R
el

at
iv

e 
I

iRT = t3

R
el

at
iv

e 
I

...

iRT = t1

R
el

at
iv

e 
I

iRT = t3

R
el

at
iv

e 
I

iRT = t6

R
el

at
iv

e 
I

Cobimetinib
0.5 μM 5 μM

PD-032591
Inhibitor treatment

(30 min)
0.5 μM 5 μM

EGF stimulation
(10 min)

Lib 1

Lib 2 predDDA

Lib 6

Lib 7

Lib 3

Lib 4

dDIA

dDIA

predDIA

predDIA

DDA

predDDA

hPhosPepDB

predDDA

hPhosPepDB

Fig. 4 DIA data analysis with DeepPhospho predicted libraries in a phosphosignaling study. a Design of six spectral libraries as defined in Fig. 3b for the
RPE1 DIA data analysis (left) and experimental design of the EGF signaling study in the context of MEK inhibition (right). b Number of phosphopeptides and
phosphosites that were quantified from the initial search using each library. c Procedure of building a focused library to be used for an iterative search.
d Number of phosphopeptides and phosphosites that were quantified from the iterative search using each library. Percentage of the total quantifiable
phosphopeptide or phosphosite number is shown for each predicted library relative to Lib 1. The proportions of shared identifications (IDs), gained IDs, lost
IDs, and gap IDs yielded by Lib 2 to Lib 7 compared to Lib 1 are indicated in different color. Source data for this figure are provided as a Source data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26979-1 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6685 | https://doi.org/10.1038/s41467-021-26979-1 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


interest (Lib 6 and Lib 7), unsupervised hierarchical clustering of
the ANOVA significant sites identified by each was performed in
parallel to Lib 1, which revealed very similar patterns of
regulation among all stimulation conditions when comparing
Lib 7 with Lib 1 (Fig. 5d) or Lib 6 with Lib 1 (Supplementary
Fig. 7f). Interestingly, signaling pathway analysis based on EGF-
regulated sites revealed 7 additional pathways to be significantly
enriched by results from Lib 6 and Lib 7 than from Lib 1 which
only enriched one pathway (Fig. 5e). The additional pathways
only enriched by DeepPhospho predicted libraries included
mTOR, AKT, PKC, and MAPK pathways which are well known
signaling axes activated by EGF. Consistently, nine regulated
kinases including AKT1, RPS6K, MAPK/MAP2K, and PAK1
were significantly over-represented in results from DeepPhospho
predicted libraries in contrast to three kinases over-represented in
the result from Lib 1 by the kinase-substrate pair enrichment
analysis (Fig. 5f). In summary, bioinformatics analysis of EGF-
regulated sites uncovered by DeepPhospho predicted libraries
recapitulated the known EGF signaling network to a much larger
extent than the project-specific DDA library.

Performance of DeepPhospho predicted libraries in a quanti-
tative two-proteome model. The quality of large-scale phos-
phoproteomic studies depends on not only the proteome
coverage but also the quantification accuracy and reproducibility.
To evaluate the quantification performance of DIA analysis with
our predicted libraries, we used another published dataset
acquired from a standard two-proteome model3 (Supplementary
Data 1). In this model, phosphopeptides enriched from yeast were
diluted at different ratios into a fixed background of HeLa
phosphopeptides, and the mixed phosphoproteome samples at
five serial dilution conditions were individually subjected to DIA
data acquisition each in six injection replicates (30 DIA runs in
total) (Fig. 6a). As a result, the expected ratios of yeast phos-
phopeptides at four conditions relative to the control would
be 0.25:1, 0.5:1, 1.5:1, and 2:1 while human phosphopeptides are
expected to have no changes at any condition. As usual, the
previous study built an extremely extensive project-specific DDA
library consisting of 119,171 phosphopeptide identifications by
acquiring 203 runs of DDA data from yeast or human pre-
fractionated phosphopeptide samples3. We trained DeepPhospho
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Fig. 5 DIA phosphoproteomics with DeepPhospho predicted libraries provides more biological insights than an extensive project-specific DDA library.
aMore significantly regulated phosphosites (ANOVA p < 0.05) were found in the RPE1 cell signaling study by DIA data analysis with five predicted libraries
(Lib 2 to Lib 7) than with the DDA library (Lib 1). This DDA library consisted of 89,416 phosphopeptides identified from 147 DDA runs. b An increased
number of EFG-regulated sites and MEK-dependent or -independent sites were found with predicted libraries compared to Lib 1. c A number of new EGF-
regulated phosphosites were found with predicted libraries (Lib 6 and Lib 7) compared to Lib 1. d Unsupervised hierarchical clustering of significantly
regulated phosphosites identified at different stimulation conditions with Lib 1 or Lib 7. The red rectangle indicates phosphosites co-identified by two
libraries. e, f Enriched Reactome pathways (e) and over-represented kinases (f) based on phosphoproteome profiling results yielded with each library.
Fisher’s exact test (two-sided) was performed and adjusted by the Benjamini–Hochberg procedure. Significantly enriched pathways or kinases (adjusted
p < 0.05) are annotated in a color gradient, and enrichment terms with adjusted p > 0.05 are shown in light gray. Source data for this figure are provided as
a Source data file.
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with the two-proteome DIA data to create six predicted or hybrid
libraries based on predictions for phosphopeptides in the DDA
library, direct DIA library, or phosphopeptide sequences from
two different resources (Fig. 6a, Supplementary Fig. 11a). Driven
by a major attempt to quantify the yeast phosphoproteome with a
maximal coverage, we constructed Lib 4 and Lib 7 based on
predictions for 36,954 yeast phosphopeptides reported in a deep
yeast phosphoproteomic study using various extraction and
enrichment approaches6 (yPhosPepDB) (Supplementary Data 2).
Meanwhile, Lib 8 was built to mainly contain a predicted library
for human phosphopeptides registered in hPhosPepDB.

Iterative search of the two-proteome DIA data with four
DeepPhospho predicted libraries (Lib 3, Lib 4, Lib 6, and Lib 7)
resulted in over 20% increase of quantifiable yeast phosphopep-
tides and phosphosites relative to Lib 1 (Fig. 6b). Remarkably,
compared to 4593 phosphopeptides and 3957 phosphosites
quantified with Lib 1, Lib 6, and Lib 7 yielded quantifications
of 6248 and 6597 phosphopeptides corresponding to 5320 and

5640 phosphosites respectively, both achieving more than 40%
increase of coverage. This result suggested the predicted library
built on a published phosphoproteomics dataset for the same
species in Lib 7 performed very closely to the predicted large-scale
DDA library in Lib 6. As a control, the predicted library built on a
public human phosphoproteome database in Lib 8 failed to
significantly increase the coverage of the yeast phosphoproteome
(Fig. 6b). On the other hand, when comparing the coverage of the
quantifiable human phosphoproteme in the two-proteome model,
we observed 55.1% increase of phosphopeptides and 47.6%
increase of phosphosites with Lib 8 relative to Lib 1, whereas Lib
7 showed no increase (Fig. 6c).

This two-proteome model allowed us to precisely assess the
quantification accuracy for yeast phosphopeptides serially
diluted into a complex phosphoproteome background. DIA data
analysis with each DeepPhospho predicted library from Lib 2 to
Lib 8 yielded as accurate ratio measurement as Lib 1, with their
medians of measured ratios at four dilution conditions very close
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to the theoretical values (Fig. 6d upper). Furthermore, our
assessment of the quantifiable population of human phospho-
peptides as a fixed background revealed equivalent accuracy
achieved by each predicted library and Lib 1, with their medians
of measured ratios at four dilution conditions all around 1:1
(Fig. 6d lower). In addition, box plot analysis of relative errors
between measured and expected ratios demonstrated equally
sufficient quantification accuracy of both yeast and human
phosphoproteomes across all tested libraries (median per cent
relative errors of 7.56–8.18% for predicted libraries and of 7.82%
for Lib 1) (Supplementary Fig. 11b). We further evaluated the
false rate of phosphopeptide quantification (FQR) with experi-
mental vs predicted libraries in the two-proteome model. The
FQR curves closely overlapped between Lib 1 and any predicted
library from Lib 2 to Lib 8 (Supplementary Fig. 11c). Specific
FQRs for yeast and human phosphopeptides at two quantifica-
tion error thresholds (<50% or <30%) were in general similar
among all test libraries (Supplementary Fig. 11d). The equivalent
FQRs between our predicted libraries and the benchmark DDA
library provided additional evidence of the sufficient FDR
control, given that an increase of falsely identified phosphopep-
tides would probably result in inflated FQRs. Finally, quantifica-
tion reproducibility of phosphopeptides between replicates was
highly comparable across all test libraries (median CVs of 9.5%-
10.1% for predicted libraries and of 9.6% for Lib 1) (Supple-
mentary Fig. 11e). In summary, the high accuracy and
reproducibility of DIA quantification results from DeepPhospho
predicted libraries underscores their excellent performance not
only in quantification but also in identification of the mixed
phosphoproteome.

Discussion
In this study, we present a hybrid deep neural network Deep-
Phospho which conceptually differs from all previous deep
learning models for unmodified or modified peptide predictions
in regard to peptide representation learning. Our approach uti-
lizes a multi-module network and self-attention mechanism to
learn a highly expressive peptide representation, yielding more
accurate predictions. When evaluated with multiple phospho-
proteomics datasets acquired by DIA or DDA methods, Deep-
Phospho surpasses existing benchmarks and tools in the
prediction of fragmentation patterns for phosphopeptides. In
certain cases, the large variance between a DeepPhospho pre-
dicted MSMS spectrum and an experimentally assigned spectrum
revealed the latter was a false identification while the predicted
spectrum closely mimics the bona fide spectrum. Moreover,
accurate prediction of chromatographic retention time for any
phosphopeptide sequence is integrated into DeepPhospho, which
allows for convenient construction of in silico spectral libraries to
enhance DIA phosphoproteomics data mining.

Transfer learning is a powerful approach to train deep neural
networks to learn specific features of the experimental conditions
under which a proteomics dataset was acquired19. To generate an
in silico library suitable for DIA data analysis, researchers chose
to train a model such as Prosit and pDeep using data from a DDA
experiment which was performed under nearly identical condi-
tions to the DIA experiment11,19. Unlike previous studies, we
trained DeepPhospho using the exact DIA data to be analyzed
and showed the transfer learning model afforded high accuracy in
prediction of fragment ion intensity and retention time for
phosphopeptides in three separate datasets. In principle, a DIA
data-trained model can precisely capture the DIA experiment-
related parameters that determined the data structure. These
parameters would reflect specific LC and MS conditions that
typically shift more or less in DDA experiments performed in the

same lab on the same instrument due to internal variation of
instruments and the regular change of nanoLC columns. There-
fore, an in silico library generated through predictions with a DIA
data-trained model is expected to perfectly match the DIA data to
be analyzed. As a result, Lib 6, a combination of two predicted
libraries converted from a project-specific DDA library and a
direct DIA library, enabled a substantial increase of the phos-
phoproteome coverage in all three datasets compared to the
original experimental libraries. Notably, we used an experimental
DDA library as the benchmark here to be compared with dif-
ferent predicted libraries. When we built a larger experimental
library by merging the direct DIA and DDA libraries, the
advantage of predicted libraries to increase the phosphoproteome
coverage still remained in all datasets evaluated in this study
(Supplementary Fig. 12).

In our study, we designed and evaluated DeepPhospho pre-
dicted libraries built on phosphopeptide identifications not only
from the experimental DDA or DIA libraries but also from
community resources (Fig. 3a). One evident advantage of training
the model with DIA data alone and building a predicted library
based on public data resources is no need to perform laborious
and time-consuming DDA experiments, which could be a pro-
nounced improvement of the current DIA workflow. However, it
has been recognized that in silico libraries built on public data-
bases especially from proteome-scale prediction face a big chal-
lenge of extensive query space, which would cause reduced
detection sensitivity and increased false positives14. Indeed, Lib 5
generated by whole-proteome computation of phosphopeptides
based on a human phosphosite database had the largest library
size yet the lowest identification rate. In contrast, Lib 4 and Lib 7
both comprised of a predicted library built on phosphopeptides
recorded in a human phosphoproteome database substantially
expanded the human phosphoproteome coverages in three stu-
dies without compromising the FDR control. Most importantly,
data analysis with Lib 7 yields a proteome coverage comparable to
or even higher than Lib 6. Thus, our study established a DIA
workflow for human phosphoproteomics which circumvents the
need of DDA experiments and reaches a maximal proteome
coverage largely exceeding the state-of-the-art DDA library.

In a classical EGF signaling study, we further demonstrated
iterative data search with the best-performing predicted libraries
(Lib 6 and Lib 7) enhanced phosphoproteome profiling to a much
greater depth (21.2% average increase at the phosphopeptide level
and 17.4% average increase at the phosphosite level) than a high-
quality extensive DDA library. Of note, we undertook an iterative
search strategy to reduce the query space for large-size predicted
libraries so as to increase the detection sensitivity and deepen the
proteome coverage. Meanwhile, FDR control, quantification
accuracy and reproducibility for data analysis with predicted
libraries remained as good as, or even better than, the DDA
library. Remarkably, more regulated phosphosites were identified
with Lib 6 and Lib 7, which led to the significant enrichment of a
higher number of EGF signaling pathways and activated kinases
than the DDA library. This has major implications that more
biological insights could be obtained from DIA phosphopro-
teomics analysis if applying our data mining workflow empow-
ered by DeepPhospho.

DeepPhospho is provided as a web server (http://shuilab.ihuman.
shanghaitech.edu.cn/DeepPhospho) as well as an offline app to
facilitate user access to model training, predictions, retention time
calibration, and library generation. The ability of DeepPhospho to
make high-quality predictions for phosphopeptides enables a DIA
phosphoproteomics workflow, in which only single-shot DIA data is
acquired for specific samples and data mining completely relies on
the DIA data itself and a public database without the need of a
project-specific DDA library. For human phosphoproteomics studies,
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we provided a complete phosphopeptide input table (hPhosPepDB in
Supplementary Data 2) to build an in silico library which can be
exploited in other projects. It is noted that the best parameter
combination for the hPhosPepDB library differes from the U2OS and
RPE1 DIA datasets (Supplementary Figs. 4, 6), highlighting the
importance of library parameter optimization. In addition, it awaits
further investigation whether usage of the hPhosPepDB library could
deepen the DIA phosphoproteome profiling for any samples from
human tissues, body fluids, and cell lines.

Given the unique architecture and high performance of
DeepPhospho, we envision it can be modified to make accurate
predictions for non-phosphopeptides as well as peptides of
diverse modifications so as to build efficient DIA workflows for
global proteomics and PTM proteomics. Undoubtedly, such
workflows would accelerate current proteomics research by
enhancing protein/peptide detection as well as reducing sample
size and instrument time investment. In addition, we anticipate
DeepPhospho to be readily applied to the validation of phos-
phopeptide identifications, targeted MS assay development for
selected phosphopeptides in a complex background, as well as
independent assessment of FDR control in DIA analysis. We
believe DeepPhospho and our DIA phosphoproteomics workflow
would benefit proteomics and biological research in various ways.

Methods
Processing of external DDA/DIA MS data. For initial evaluation of the model
architecture, the mouse brain DDA data29 was downloaded from PRIDE with the
identifier PXD006637 and its MaxQuant search output file was directly used. The
yeast R2P2 DDA data6 was downloaded from PRIDE with the identifier
PXD013453, and the raw data were searched against the Uniprot S. cerevisiae
reference proteome (7,500 protein sequences, downloaded in 2020/09) with
MaxQuant30. MaxQuant v1.6.14.0 was used in this work with the following set-
tings: Phospho (STY), Oxidation (M), and Acetyl (Protein N-term) were set as
variable modifications; Carbamidomethyl (C) was set as fixed modification; tol-
erance of first search and main search were 20 p.p.m. and 4.5 p.p.m.; FDR at PSM
level and protein level was set to 0.01; min Andromeda score of modified peptides
was 40. The yeast R2P2 DDA data was also used to evaluate the iRT
prediction model.

For model pre-training, the mouse brain DDA data mentioned above was used
again, together with three other datasets: Vero E6 DIA data8 (downloaded from
PRIDE with the identifier PXD019113), yeast DIA data6 (downloaded from PRIDE
with the identifier PXD013453), and the human phosphopeptide RT data
downloaded from the supplementary data of a published work24 (removing
phosphopeptides with the phosphosite Ascore ≤13). Both DIA data were used to
build direct DIA libraries using the Pulsar search engine in Spectronaut31 v14.5 by
searching against Uniprot C. sabaeus reference proteome (19,136 protein
sequences, downloaded in 2020/04) or Uniprot S. cerevisiae reference proteome
(7500 protein sequences, downloaded in 2020/09). The procedure of building direct
DIA libraries is descried in the session of “Spectral library generation”.

For evaluation of model prediction for phosphopeptides, we downloaded RPE1
DDA and RPE1 DIA data3 from PRIDE with the identifier PXD014525 and U2OS
DIA data32 from PRIDE with the identifier PXD017476. RPE1 DDA data initially
downloaded in a Spectronaut specific.kit library format was transformed to a plain
text file. Then we removed peptide entries with modifications of Deamidation
(NQ) and Gln->pyro-Glu which rarely occur and are not supported in current
DeepPhospho models. RPE1 DIA data and U2OS DIA data were both searched
with Pulsar to generate direct DIA libraries, and Uniport human reference
proteome (UP000005640, 84,823 protein sequences, downloaded in 2020/06) was
used as the sequence database. Reference spectra of phosphopeptides were obtained
from two DDA-based human phosphoproteomic studies: U2OS DDA data32

downloaded from PRIDE with the identifier PXD017476 and U-87 DDA data1

downloaded from PRIDE with the identifier PXD009227.
For evaluation of DeepPhospho predicted libraries, we used U2OS DDA and

DIA data, RPE1 DDA and DIA data as described above, as well as DDA and DIA
data from a human/yeast two-proteome model3 downloaded from PRIDE with the
identifier PXD014525. The yeast DDA library built from the human/yeast two-
proteome model data was also provided in a.kit format and processed the same way
as RPE1 DDA data. Direct DIA libraries were generated from RPE1 DIA data and
U2OS DIA data as described above. In addition, the human/yeast direct DIA
library was generated by Spectronaut using the Uniprot human reference proteome
and Uniprot S. cerevisiae reference proteome as the sequence databases.

All phoshopeptides from the external datasets that were used for model training
and evaluation need to have a phosphosite localization score >0.75 in MaxQuant or
Spectronaut output files (class I sites). Details in the external data source, sample

source, MS instrument condition, and data processing are described in
Supplementary Data 1.

Processing of the phosphoproteome and phosphosite databases. To construct
Lib 4, Lib 5, and Lib 7 in Fig. 3, Lib 4 and Lib 7 in Fig. 4, Lib 4, Lib 7, and Lib 8 in
Fig. 6, we created three databases for generation of predicted libraries: hPhos-
PepDB, hPhosSiteDB, and yPhosPepDB. We built hPhosPepDB based on a pub-
lished human phosphoproteome database24 which recorded the sequences, PTM
sites, charge states and calibrated RT for 204,606 label-free, trypsinized, confidently
localized phosphopeptides (Ascore >13) from 12,228 proteins detected in large-
scale phosphoproteomic experiments from various sources. To find out the best
condition for generation of a predicted library from hPhosPepDB, we restricted
precursor and fragment mass ranges, peptide length, max phosphosite number, and
charge state in specific predicted libraries for performance testing. This was per-
formed to generate the optimized Lib 4 and Lib 7 in both Figs. 3 and 4, and Lib 8 in
Fig. 6.

We then built hPhosSiteDB based on the human protein phosphosites
registered in EPSD database25 and in silico digestion of the whole human
proteome. Specifically, in silico phosphopeptide sequences were computed using
these criteria: trypsin specificity in digestion; peptide length from 7 to 30; no miss
cleavage; adding phosphosites that are registered for specific proteins in EPSD; max
phosphosite number in each peptide is 1. As a result, hPhosSiteDB contained
350,719 unique phosphopeptide sequences. Their charge states were defined as 2,
3 and 4.

The yeast phosphoproteme database yPhosPepDB was built based on 36,954
yeast phosphopeptides detected in a yeast R2P2 phosphoproteomic study using
various extraction and enrichment approaches6. The original charge states assigned
in MaxQuant output files are kept for all phosphopeptides in yPhosPepDB.

More details of the three databases are provided in Supplementary Data 2 and
their data sources are listed in Supplementary Data 1.

DeepPhospho model
Notations and data representation. Each input peptide is represented by a sequence
of amino acid tokens denoted as L, K, M, etc., typically 7–50 in length. For
phosphopeptides, we use 1 to represent the oxidation of methionine (M), and 2, 3,
4 to represent the phosphorylation of serine (S), threonine (T), tyrosine (Y),
respectively. In addition, DeepPhospho supports peptides with an N-terminal
acetyl modification. We use the * symbol to indicate modification and @ to
indicate no modification.

For the task of fragment ion intensity prediction, we denote the model input as
XF :¼ x0; x1; x2; � � � ; xn;þq

� �
, where x0 is the token of * or @, xi i≥ 1ð Þ denotes the

amino acids, n is the peptide length, and +q is the peptide precursor charge. The
output spectrum or the peptide fragmentation pattern y is represented by a matrix
of size L ´ 8 where L is the maximum peptide length in the dataset and each row is
a set of intensity values for different combinations of b/y ions, two charge states
(+1 or +2) and with or without loss of phosphate (-1,H3PO4 or -noloss).
Concretely, the i-th row of the pattern represents the intensities of the following
fragments: bi+1-noloss; bi+2-noloss; bi+1-1,H3PO4; bi+2-1,H3PO4; yi+1-noloss;
yi+2-noloss; yi+1-1,H3PO4 and yi+2-1,H3PO4. Fragment ion intensity values at
impossible dimensions are set to −1 while the rest are normalized to 0; 1½ �.

For the task of iRT prediction, we use the peptide without charges as our input,
denoted as XR :¼ x0; x1; x2; � � � ; xn

� �
, where x0 and xi i≥ 1ð Þ are described above.

The output z is the retention time and is normalized to 0; 1½ � for each dataset.

Model architecture. The DeepPhospho model consists of three main modules,
including an embedding network, a sequence modeling network and a regression
network. The embedding network encodes the input tokens into feature vectors
while the regression network generates output predictions. As the fragment ion
intensity and iRT prediction have different forms of input and output, we adopted
separate designs for the embedding and regression network in those two tasks.

(1) Embedding network. For the fragment ion intensity prediction, we first
embed each amino acid and the charge to vectors of 192 and 64 dimensions
respectively and then concatenate them as inputs to the sequence modeling
module. For the RT prediction, we directly embed each amino acid into a
vector of 256 dimensions.

(2) Sequence modeling network. We adopt a hybrid network for the main
module of our model, which consists of a bidirectional Long Short-Term
Memory (biLSTM)33 subnet and a Transformer34 subnet. Our biLSTM
subnet comprises two stacks of bidirectional LSTM with hidden dimensions
of 512. This module aims to compute an initial representation of the peptide
sequence, which is then fed into the second module, the Transformer
subnet. The Transformer aims to capture long-range dependency in the
peptide sequences with more effective attention mechanism. Our Transfor-
mer subnet stacks multiple Transformer encoders, each of which has 8 self-
attention head. We also use the standard sine and cosine functions as the
position encoding34. More specifically, for the fragment ion intensity
prediction, the Transformer subnet comprises 8 layers of Transformer
encoders. For the iRT prediction, we use an ensemble of networks with 4 to
8 layers of Transformer encoders.
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(3) Regression network. We use a simple linear layer to project the features at
each amino acid site to a vector of 8 dimensions as our output in the task of
fragment ion intensity prediction. For the iRT prediction, we introduce a
linear layer to generate an instance-specific weight for sequence features and
use a weighted average to produce the RT prediction.

Model training. We adopted a transfer learning strategy to train our models. For
the task of fragment ion intensity prediction, we first pre-trained our model on
three datasets (Supplementary Data 1), which provided a good initialization
(Supplementary Fig. 13). We then fine-tuned the pre-trained model on each of
three target datasets (Supplementary Data 1). Specifically, for the pre-training
datasets, we split each of them into a training and a validation set with a 9:1 ratio;
for the three target datasets, we split each of them into training, validation, and test
set with an 8:1:1 ratio. We used the mean squared error (MSE) as our loss function
and the Adam update35 to optimize the loss with learning rate 1e−3 on the first
pre-training phosphoproteome dataset, and 1e−4 on the other datasets. We
decayed the learning rate by 0.1 after pre-defined number of epochs. We tuned the
model hyper-parameters and selected the best model on the validation set. We
reported the result on the test set of the target datasets. For the task of iRT
prediction, the model was initially pre-trained with four datasets (Supplementary
Data 1, Supplementary Fig. 13), in which the RT values were normalized into [0,1]
on all datasets. For the target datasets, we manually set the min(RT) and max(RT)
equals −100 and 200, respectively. We used the root mean square error (RMSE)
loss and applied the same training strategy as in the fragment ion intensity task. In
three DIA phosphoproteomic studies, the pre-trained models were specifically
trained with each DIA dataset to generate trained DeepPhospho models for pre-
dicted library construction.

The models were trained either on 4 TITAN Xp GPUs or 4 GTX1080Ti GPUs.
The training time is related to the size of a dataset. For the fragment ion intensity
model, it took about 12 h for pre-training with a dataset containing 80k precursors,
and about 2 h for fine-tuning with a dataset containing 40k precursors. For the iRT
model, it took about 22 h for pre-training with a dataset containing 180k peptides,
and about 4 h for fine-tuning with a dataset containing 30k peptides.

Metrics. For the task of fragment ion intensity prediction, we compute the Pearson
correlation coefficient (PCC) between the prediction and the ground truth of each
peptide and select the median of those PCCs as the final evaluation metric. In
addition, we follow Prosit11 and use normalized spectral angle (SA) as another
metric, and also report the median of those SAs. The normalized spectral angle is
defined as follows.

SA ŷ; y
� � ¼ 1� 2 � cos

�1 ŷ � y� �

π
ð1Þ

where ŷ; y are two vectors whose L2 norm equals 1. We select the model by the
median PCC metric.

For the task of iRT prediction, we adopt the Δt95% metric as the main metric,
which represents the minimal time window containing the deviations between
observed and predicted RTs for 95% of the peptides:

Δt95% ¼ 2 � z � ẑj j95% ð2Þ
The subscript 95% means the 95% rank of the deviations.

Model architecture validation. To validate our model design, we conducted a set of
ablative study on the model architecture. Specifically, we compared our model with
several alterative model designs, including the biLSTM module only, the Trans-
former module only, and replacing biLSTM with a CNN module (CNN+Trans-
former). We used a variant of ResNet3436 in our setting. We performed the
comparisons on both the fragment ion intensity and iRT prediction benchmarks
(Supplementary Data 1). We split each dataset into training: validation: test= 8:1:1,
and after model selection on the validation set, we reported the results on the test
set. PCC and SA were used to validate the prediction of fragment ion intensity and
median absolute error (MAE) was used to validate the iRT prediction.

Comparison of DeepPhospho with other models. We compared our method with
several published models, including pDeep2, DeepMS2, and MS2PIP on three
datasets: RPE1 DDA, RPE1 DIA, and U2OS DIA. For pDeep2, the source code and
pre-trained model parameters pretrain-180921-modloss.ckpt were downloaded
from their website https://github.com/pFindStudio/pDeep/tree/master/pDeep2,
and transfer learning was performed with the default hyper-parameters. For
DeepMS2 (https://github.com/lmsac/DeepDIA), we used the pre-trained model
parameters epoch_035.hdf5 to make predictions for precursors with 2+ charges
and epoch_034.hdf5 for precursors with 3+ charges. Then we followed the bud-
ding strategy described by the authors20 to generate in silico spectra for phos-
phopeptides with scripts stored at https://github.com/lmsac/DeepMS2-phospho.
For MS2PIP, we directly used the MS2PIP server (https://iomics.ugent.be/ms2pip)
and chose the model HCD (including b++ and y++ ions) for prediction.

Analysis of synthetic phosphopeptides. Seven phosphopeptides were synthe-
sized by GenScript (Nanjing, China). The peptide powders were dissolved in

ultrapure water or DMSO to prepare 5-10 mg/ml stocks. The stock solution was
diluted to 100 ng/μl using 0.1% FA and seven phosphopeptides were mixed toge-
ther before injection into the nanoLC-MS system for DDA and PRM data
acquisition.

The nanoLC-MS/MS analysis was conducted on an EASY-nLC 1200 connected
to QE HF mass spectrometer (Thermo Fisher Scientific, USA) with a nano-
electrospray ionization source. The peptide mixture of 10 ng was loaded in each
replicate and separated on an analytical column (200 mm × 75 μm) in-house
packed with C18-AQ 1.9 μm C18 resin (Dr. Maisch, GmbH, Germany) over a 60-
min gradient from 4 to 45% mobile phase B (0.1% FA in acetonitrile) at a flow rate
of 300 nl/min. In DDA data acquisition, the resolution of Orbitrap analyzer was
60,000 for MS1 and 15,000 for MS2. The AGC target was set to 3e6 in MS1 and 1e5
in MS2, with a maximum ion injection time of 120 ms in both MS1 and MS2. The
isolation window was set to 1.6m/z, and stepped collision energy at 25, 27, and
30%. In PRM data acquisition, the resolution of Orbitrap analyzer was 120,000 for
MS1 and 30,000 for MS2. The AGC target was set to 3e6 in MS1 and 5e5 in MS2,
with a maximum ion injection time of 20 ms in MS1 and 120 ms in MS2. The
isolation window was set to 1.0m/z, and stepped collision energy at 25, 27, and
30%. The inclusion list contained the precursor m/z and RT windows for the seven
phosphopeptides that were detected in the DDA experiment.

Acquired DDA raw data was analyzed using MaxQuant (v1.6.17.0) against the
seven phosphopeptide sequences appended with a contaminant sequence database.
The following search parameters were used: no fixed modification, Phospho (STY)
as variable modification, and trypsin as specific enzyme. The first search tolerance
was set to 20 ppm, main search tolerance to 4.5 ppm, filtered for PSM and protein
FDR of 1%. Then the msms.txt file exported from MaxQuant was imported into
Skyline37 (v20.2.0.343) to build a library. PRM data was analyzed by Skyline with
the major settings: precursor charges 2, ion charges 1 and 2, ion types p, b, y,
product ion selection from m/z > precursor to last ion, library pick product ions 25,
use scans within 30 min. All XICs of selected fragments were manually inspected
and adjusted to ensure proper peak picking and peak integration. An “idotp” value
of each precursor of >0.9 was accepted.

Spectral library generation. The project-specific DDA library used in the U2OS
data analysis was built from 20 runs of DDA data in Spectronaut (version 14.5,
Biognosys AG, Switzerland). The DDA data were imported to Spectronaut to
generate the DDA library by Pulsar with default settings except the addition of
Phospho (STY) as variable modifications, Best N Fragments per Peptide Max set to
25, PTM Min Localization Threshold set to 0.75, and Fragment ions m/z set to
200–2000. The DDA libraries used in the analysis of RPE1 data and the two-
proteome model’s data were provided by previous work3 and downloaded from
ProteomeXchange with the identifier PXD014525. They were initially built from
147 runs of DDA data for RPE1 project and 203 runs of DDA data for the two-
proteome model using Spectronaut (v11.0.15038.19 and v13.0.190309, Biognosys
AG, Switzerland) with default settings except the addition of variable modifications
as Phospho (STY) and Best N Fragments per Peptide Max set to 25.

Direct DIA libraries used in this work were all built from the raw DIA data and
generated with Pulsar in Spectronaut v14.5 with default settings except the
followings: Phospho (STY) as variable modifications as, Best N Fragments per
Peptide Max set to 25, PTM Min Localization Threshold set to 0.75, and Fragment
ions m/z set to 200–2000.

For the generation of predicted libraries, a list of phosphopeptide sequences
collected from the DDA library, the direct DIA library or a specific
phosphoproteme or phosphosite database was input to the trained DeepPhospho
models for the prediction of fragment ion intensity and iRT. In some cases, a direct
DIA library need to be merged with a predicted library to yield a hybrid library. For
any redundant peptides present in both the direct DIA library and the predicted
library, their experimental MSMS spectra and iRT values in the direct DIA library
were retained in the hybrid library. All predicted libraries and hybrid libraries
generated in-house were written in a tab separated value (TSV) file to be processed
by Spectronaut in DIA data analysis.

In the iterative search, we created a focused library corresponding to each
complete library used in the initial search. For Lib 1 and Lib 2 in Figs. 4 and 6, their
focused libraries only contained peptides identified in the initial search. For Lib 3 to
Lib 8, their focused libraries were composed of a DIA library and a predicted
library. While the predicted libraries only contained peptides identified in the
initial search, the experimental DIA library contained all detected peptides.

DIA data analysis and FDR/FLR assessment. Raw DIA data were processed
using Spectronaut v14.5 with default settings. In brief, PTM localization was
activated and site probability score cutoff was set to 0.75, data filtering was set to
Q-value and Normalization Strategy set to Global Normalization. Decoy generation
was set to mutated. Interference correction was enabled and the number of
minimum inferenced ions was 2 and 3 for MS1 and MS2, respectively. Peptide and
protein level Q-value cutoff was set to 1%. In each analysis, a specific experimental
library, predicted library, or hybrid library generated earlier was imported to
Spectronaut. For U2OS DIA data and RPE1 DIA data analysis, Uniprot human
reference proteome (UP000005640, 84,823 protein sequences, downloaded in 2020/
06) was used as the protein sequence database. For the analysis of the two-
proteome model, Uniprot human reference proteome and Uniprot S. cerevisiae
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reference proteome (7500 protein sequences, downloaded in 2020/09) were used.
After DIA data processing, the peptide and protein reports were exported for
further statistics and bioinformatics analysis.

Although Spectronaut automatically set FDRs to be <1% at both peptide and
proteins levels, we employed three additional methods for assessing the library-
specific FDR. First, we created a reverse library for each original library by
reversing the sequences of all peptides in the original library except the C-terminal
residue, and keeping the original charge states. The reversed peptides were
imported to the trained DeepPhospho models for predictions of their fragment ion
intensities and iRT values to generate a reverse library which was then appended to
the original library. Searching DIA data with this original-reverse combined library
provided a rough estimate of FDR for peptide-centric analysis as defined below

FDR ¼ 2 ´
Hitsreverse

Hitsoriginal þHitsreverse
ð3Þ

Second, we created two-species libraries by combining a predicted human
phosphoproteome library and a predicted A. thaliana phosphoproteome library.
This predicted A. thaliana library was generated by predictions for 103,620
precursors corresponding to 34,540 unique phosphopeptide sequences registered in
PhosPhAt database which compiles various DDA-based phosphoproteomics data38.
Searching DIA data with a two-species library yielded the estimated FDR defined as

NormHitsFalse ¼ HitsFalse ´
LibSizeHuman

LibSizeA:thaliana
´

1
1� 0:01

ð4Þ

FDR ¼ NormHitsFalse
HitsTrue þ NormHitsFalse

ð5Þ

where LibSizeHuman is the number of all phosphopeptides in the human sub-library,
and LibSizeA:thaliana is the number of all phosphopeptides in the A. thaliana sub-
library. The constant item 1

1�0:01 is multiplied to offset the inherent error tolerance of
1% FDR for all results. Notably, it is difficult to calculate an accurate FDR using the
entrapment strategy given that it is unlikely to know the exact number of
phosphopeptides in the human sub-library that is not present in the sample. This
metric is provided to roughly estimate and compare the error rates of
phosphopeptide identification when using different libraries.

Last, we calculated the false rate of phosphopeptide quantification (FQR) under
varying thresholds of the quantification error between measured and theoretical
ratios of phosphopeptides identified at all dilution conditions with different
libraries in the two-proteome model. Although the absolute value of FQR cannot
represent that of FDR, its relative comparison under different conditions could
serve as a metric to evaluate whether the FDR of DIA data analysis with any
predicted library is inflated compared to the benchmark DDA library.

Furthermore, we employed a classical approach to estimate the false localization
rate (FLR) of phosphosites using a DIA dataset acquired on 166 synthetic human
phosphopeptides containing 176 clearly defined phosphosites27. We first generated
experimental DDA libraries comprised of the synthetic phosphopeptide data alone
(SynLib) or appended with an extensive human phosphoproteome library (RPE1
DDA). We also generated a predicted library based on the synthetic
phosphopeptide information (predSynLib) and constructed hybrid libraries by
appending predSynLib with a large predicted library built on hPhosSiteDB or
hPhosPepDB. Initial and iterative searches were performed for all hybrid libraries
combining the synthetic phosphopeptide library and a much larger experimental or
predicted library. FLR was calculated based on the false and total phosphosites
identified in the synthetic peptide set.

Statistics and bioinformatics analysis. In the phosphosignaling study with RPE1
DIA data, Spectronaut reports were first modified to be compatible with
PerseusR39, and then transformed into a modification specific peptide-like reports
using Peptide Collapse3, with the target PTM site as the collapse level, localization
cutoff 0.75, and variable PTMs in the order of Phospho (STY), Oxidation (M) and
Carbamidomethyl (C). The reported intensities were log2-transformed and
z-scored. Quantifiable phosphopeptides and phosphosites were selected if their
intensities were measured in all three replicates for at least two different treatments.
One-way ANOVA test was applied to the quantifiable phosphosites to identify
significantly regulated sites (p < 0.05) at EFG or any kinase inhibitor treatment vs
control (Fig. 5a). The Tukey’s range test implemented in statsmodels was then
applied to ANOVA-significant phosphosites to identify the EGF-regulated sites
which were significantly changed at EGF treatment vs control (adjusted p < 0.05).
The EGF-regulated sites were further divided into two classes: one is the MEK-
dependent phosphosite which was also significantly changed according to the
Tukey’s range test at one of the kinase inhibitor treatment with the opposite trend
of regulation to the EGF treatment; the other is the MEK-independent phosphosite
which showed no significant regulation at any kinase inhibitor treatment (Fig. 5b).

The hierarchical clustering was implemented to ANOVA-significant
phosphosites identified at EGF or high-dose inhibitor treatment using Scipy40, with
the metric set to correlation and the method set to average. To fill in the expression
matrix for clustering and heatmap, NA values were imputed by randomly sampling
values from a normal distribution with the mean of −1.5 and standard deviation of
0.5. Heatmaps of all significantly regulated phosphosites were generated by
unsupervised hierarchical clustering.

The kinase-substrate pair enrichment was performed based on the kinase-
substrate relationship downloaded from PhosphoSitePlus41 (access date: 2021/01)
using the fisher exact test implemented in Scipy40. We used all EGF-regulated
phosphosites as the input and all identified phosphosites as the background.
Signaling pathway enrichment was then performed based on the Reactome
pathway data42 (access date: 2021/01) using the fisher exact test. EGF-regulated
phosphosites were first collapsed to the protein level and used as the input while
the background was all identified phosphoproteins. A total of 14 significantly
enriched pathways and 13 significantly enriched kinases (adjusted p < 0.05) were
initially identified using any of the six tested libraries. Eight enriched non-
redundant pathways and nine over-represented kinases that were discovered using
at least two spectral libraries were kept and shown in Fig. 5e, f.

In the quantitative two-proteome model study, the Spectronaut exported
peptide precursor intensities were first de-normalized by dividing reported
intensity values by their normalization factors. The measured ratio of a
phosphopeptide identified at any of the four dilution conditions (0.25:1, 0.5:1, 1.5:1,
and 2:1) were calculated by dividing its intensity measured at that condition by the
intensity measured at the control condition (1:1). Then quantifiable yeast or human
phosphopeptides and phosphosites were selected if they had at least one ratio
measured at any dilution condition relative to control.

Boxplots were created with boxes marking the first and third quartile, a dash the
median, and whiskers the minimum/maximum value within 1.5 interquartile
range. Outliers are not displayed.

Data analysis in this part was performed using python (3.7.9) and the following
packages: numpy (1.19.2), scipy (1.6.0), pandas (1.2.1), and statsmodels (0.12.0).
Visualization was achieved with matplotlib (3.3.2), matplotlib-venn (0.11.5), and
seaborn (0.10.1).

DeepPhospho web server and offline app. We used the open-source web frame-
work Flask and frontend framework Vue.JS for developing the web based live demo. In
the START page, users can make predictions of MSMS spectra and iRT values for either
a single phosphopeptide or a batch of phosphopeptides with defined sequences and
charge states. In the batch mode, after inputting the phosphopeptide information, users
will be able to download a.txt file as a ready-to-use spectral library for DIA data mining.
In this web server we provide four DeepPhospho models trained with specific DDA/
DIA MS datasets that were acquired from different sample sources and under different
LC-MS/MS settings. These trained models can make accurate predictions for phos-
phopeptides analyzed under similar instrument conditions. We also provide an option
for iRT calibration so that the predicted iRT can fit into the experimental RT scale
defined by the user.

For the analysis of data acquired at distinct conditions, we have created an offline
DeepPhospho app for users who need to do transfer learning with their own datasets.
This offline app allows users to directly use the pre-trained model, train a new model, or
fine-tune the model parameters with their own target datasets before making
predictions with a selected model. Using our offline DeepPhospho app, a ready-to-use
predicted spectral library will be generated as an output file. The offline app can be
downloaded from GitHub repository. Alternatively, users can download and explore
our user-friendly DeepPhospho pipeline stored in GitHub repository.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Raw DDA and PRM data from synthetic phosphopeptide analysis, DeepPhospho
generated spectral libraries, and DIA search results have been deposited to the
ProteomeXchange Consortium43 via the iProX44 partner repository with the dataset
identifier IPX0003513000, which is equivalent to PXD028601. Public MS data used in
this work are as follows: PXD006637 (mouse brain DDA)29, PXD019113 (Vero E6
DIA)8, PXD013453 (yeast R2P2)6, PXD014525 (RPE1, two-proteome)3, PXD017476
(U2OS)9, PXD009227 (U-87 DDA)1, PXD019797 (human synthetic phosphopeptide
dataset)27, PXD004573 (yeast synthetic phosphopeptide dataset)28. All MS raw data were
downloaded from PRIDE FTP site via FileZilla (v3.51.0) or from jPOST via Mozilla
Firefox. Databases used in this work are: UniProt45 (https://www.uniprot.org), EPSD25

(http://epsd.biocuckoo.cn), PhosphoSitePlus41 (https://www.phosphosite.org/
staticDownloads), PhosPhAt38 (http://phosphat.uni-hohenheim.de), Reactome42

(https://reactome.org). Source data are provided with this paper.

Code availability
DeepPhospho is written in Python and uses PyTorch to implement deep neural
networks. The source code, documents, and related scripts are stored on GitHub (https://
github.com/weizhenFrank/DeepPhospho) and Zenodo (https://doi.org/10.5281/
zenodo.5594736)46. The DeepPhospho web server is available at http://
shuilab.ihuman.shanghaitech.edu.cn/DeepPhospho.
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