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Follicular T cells are clonally and transcriptionally
distinct in B cell-driven mouse autoimmune disease
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Pathogenic autoantibodies contribute to tissue damage and clinical decline in autoimmune

disease. Follicular T cells are central regulators of germinal centers, although their con-

tribution to autoantibody-mediated disease remains unclear. Here we perform single cell

RNA and T cell receptor (TCR) sequencing of follicular T cells in a mouse model of

autoantibody-mediated disease, allowing for analyses of paired transcriptomes and unbiased

TCRαβ repertoires at single cell resolution. A minority of clonotypes are preferentially shared

amongst autoimmune follicular T cells and clonotypic expansion is associated with differ-

ential gene signatures in autoimmune disease. Antigen prediction using algorithmic and

machine learning approaches indicates convergence towards shared specificities between

non-autoimmune and autoimmune follicular T cells. However, differential autoimmune

transcriptional signatures are preserved even amongst follicular T cells with shared predicted

specificities. These results demonstrate that follicular T cells are phenotypically distinct in

B cell-driven autoimmune disease, providing potential therapeutic targets to modulate

autoantibody development.
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Autoantibodies are characteristic of many autoimmune
diseases, including Sjogren’s syndrome, Hashimoto thyr-
oiditis, granulomatosis with polyangiitis, myasthenia

gravis, and systemic lupus erythematosus (SLE). These patho-
genic autoantibodies bind self-antigen, forming immune com-
plexes that damage host organs or directly damage host tissues,
leading to organ failure and clinical decline1. Longitudinal studies
of patient sera have demonstrated that the specificity of this
autoimmune response changes over time to react to a changing
set of self-antigens, termed epitope spreading2. Although this
phenomenon is well documented clinically, the molecular origins
of autoantibody responses remain unknown.

Our group has developed a mixed bone marrow chimera model
of autoantibody-mediated disease in mice3. Reconstitution of irra-
diated wild type mice with bone marrow containing a single auto-
reactive B cell clone is capable of initiating multiorgan autoimmune
disease. These mice develop autoantibodies not only against the
initial self-antigen, ribonucleoprotein, but also an array of unrelated
self-antigens such as A proliferation-inducing ligand (APRIL), bac-
tericidal permeability increasing protein (BPI), and glomerular
basement membrane (GBM), leading to glomerular deposition of
autoantibodies. These autoantibodies derive not from the original
autoreactive B cell clone, but from wild type cells which enter
germinal center reactions that eventually become independent of the
original autoreactive B cell. This entry is T cell-dependent, as
administration of anti-CD40L antibodies abrogates recruitment of
wild type B cells to germinal centers. The nature of this T cell help,
in particular the mechanisms by which follicular T cells contribute to
loss of B cell tolerance and clonal evolution towards self-antigens,
remains uncharacterized.

Follicular helper T (TFH) and follicular regulatory T (TFR) cells
are critical regulators of the germinal center reaction, promoting
the somatic hypermutation and class switch recombination
necessary for high affinity antibody responses and B cell memory.
In the light zone of germinal center reactions, TFH cells provide
CD40 and IL-21 stimulation to B cells to selectively expand high
affinity B cell clones, while B cells present antigen and ICOSL
stimulation to TFH cells to stabilize the TFH cell fate, reflected by
expression of Bcl-6, CXCR5, and PD-14–6. TFR cells derive from
natural regulatory T (Treg) cells that have gained expression of
CXCR5 and lost expression of CCR7, leading to entry and par-
ticipation in the germinal center reaction7,8. We hypothesized
that follicular T cells regulate autoantibody development, and in
the presence of a single autoreactive B cell clone adopt a dys-
functional phenotype that permits autoantibody development.

To elucidate possible mechanisms of follicular T cell dysfunc-
tion that permit loss of peripheral B cell tolerance, we isolate and
perform paired single-cell RNA sequencing (scRNA-seq) and T
cell receptor (TCR) sequencing of follicular T cells in a bone
marrow chimera model of autoantibody-mediated disease. Ana-
lysis of gene expression paired with clonotypic identity indicates
distinct patterns of repertoire expansion and accompanying
transcriptional changes in autoimmune mice. Furthermore, pre-
diction of antigen binding using VDJ database annotation shows
that this differential expression is preserved even amongst clo-
notypes with the same predicted specificities. These results
demonstrate that in the presence of an autoreactive B cell clone
follicular T cells adopt a transcriptionally distinct phenotype that
is reflected in the TCR repertoire.

Results
Autoimmune follicular T cells are transcriptionally distinct.
B-cell driven autoimmune disease is established by reconstituting
irradiated wild type mice with congenic wild type (WT) bone
marrow mixed with bone marrow from 564Igi mice3, which have

heavy and light chain knock in of an autoreactive B cell receptor
against ribonuclear complexes9. To better characterize follicular
T cells in this process, we performed paired scRNA-seq and
scTCR-seq on CD4+CXCR5+PD-1+ cells isolated from mixed
564Igi chimeras (n= 5) ten weeks after reconstitution (Fig. 1a).
For non-autoimmune controls, we used WT bone marrow chi-
meras (n= 5) that were immunized with NP-OVA six weeks after
reconstitution to generate germinal centers against a foreign
antigen. After concatenation of data across individual chimeras
and quality control, we retained 13,432 cells with 1,653 median
genes per cell from 564Igi (autoimmune) chimeras and
15,271 cells with 1,624 median genes per cell from non-
autoimmune chimeras (Supplementary Table 1).

We confirmed the follicular T cell identity of sequenced cells by
visualizing expression of canonical markers of TFH and TFR cells,
observing low expression of Ccr7 and widespread expression of
Cd4, Cxcr5, Pdcd1, and Icos (Supplementary Fig. 1). Unsupervised
clustering of the combined samples revealed six conserved
clusters and we visualized expression of the most significantly
differentially expressed genes (DEGs) per cluster (Fig. 1b,
Supplementary Data 1). DEGs assigned follicular T cell clusters
to the known Foxp3+ TFR, Tnfsf8+ activated TFH, and Sostdc1+

TFH subtypes, as well as previously undescribed follicular T cells
subtypes of Sox4+Sell+ central memory TFH, Ccl5+Gzmk+

effector TFH, and Ifit1+ interferon stimulated (ISG) TFH (Fig. 1c).
Each subset was present in every individual chimera and their
relatedness was visualized by hierarchical cluster tree (Supple-
mentary Fig. 1). Pseudotime analysis illustrated potential
developmental trajectories between follicular T cell subsets,
revealing that central memory, effector, and ISG subsets represent
distinct states in pseudotime and in developmental trajectory
represented by a diffusion map (Fig. 1d). Gene-pseudotime
correlation analysis revealed similar patterns of differentiation in
follicular T cells from autoimmune and non-autoimmune
chimeras (Supplementary Fig. 1), with decreasing expression of
Izuom1r and increasing expression of Nkg7 and Klf2 in
pseudotime (Fig. 1e). The distribution of follicular T cells to
individual clusters was similar between autoimmune and non-
autoimmune chimeras, with the exception of a decrease in central
memory TFH cells in autoimmune chimeras (Fig. 1f). We
validated this finding by flow cytometry, observing a decrease
in the frequency of CD44+CD62L+ cells and compensatory
increase in CD62L− cells amongst CD4+CXCR5+PD-1+ folli-
cular T cells in autoimmune chimeras (Fig. 1g).

Although broad changes in cluster frequency were not observed,
differential expression analysis revealed significant transcriptional
changes between autoimmune and non-autoimmune chimeras, both
amongst all follicular T cells and within individual clusters (Fig. 2a,
Supplementary Data 2). Follicular T cells from autoimmune chimeras
increased expression of lymphocyte-antigen 6 (Ly6a), the long non-
coding RNA Gm42031, and the checkpoint receptor Lag3 and
decreased expression of the transcription factor Id3 (Fig. 2b). These
transcriptional changes were validated by sorting CD4+CXCR5+PD-
1+GITR− TFH and CD4+CXCR5+PD-1+GITR+ TFR cells from
autoimmune and non-autoimmune chimeras and performing qRT-
PCR, revealing ~5-fold upregulation of Gm42031 and ~2-fold
upregulation of Ly6a (Supplementary Fig. 2). Differential expression
was confirmed at the protein level by flow cytometry (Fig. 2c, d) and
immunofluorescence (Supplementary Fig. 2), demonstrating
increased expression of Stem Cell Antigen-1 (Sca-1, protein name
for Ly6a) in follicular T cells in autoimmune chimeras. Notably,
follicular T cells from wild type mice exposed to chronic foreign
antigen or isolated from mesenteric lymph nodes also expressed
decreased Sca-1, even after 12 weeks (Supplementary Fig. 2),
suggesting that this difference is due to the autoimmune environment
and not chronic exposure to antigen.
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To test whether the differential expression observed in our
mouse model of B cell driven autoimmune disease is recapitulated
in human disease, we examined scRNA-seq data performed on
CD45+ leukocytes from renal biopsies from SLE patients made
available through the Accelerating Medicines Partnership
(AMP)10,11. T cells were identified by unbiased clustering of all
leukocytes and unbiased clustering was performed again to

identify TFH, effector CD8, Treg, resident memory CD8, central
memory CD8, and interferon stimulated CD4 cells defined by the
expression of canonical markers such as CD40LG, GZMB,
FOXP3, ITGA1, and EOMES (Supplementary Fig. 2). In addition
to an overall increase in the number of kidney-resident T cells,
SLE kidneys had an increased proportion of resident memory and
central memory CD8 cells (Supplementary Fig. 2). Although
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limited by sparse lymphocytic renal infiltration in healthy
controls, differential expression analysis within individual clusters
revealed decreased expression of AIM1 and IL7R and increased
expression of KLF2 in kidney-resident TFH cells from SLE
patients compared to healthy controls, as well as increased
expression of CX3CR1 in kidney-resident CD8 cells (Supplemen-
tary Fig. 2). We supplemented this scRNA-seq analysis with a
second human dataset of bulk RNA-seq performed on CD4+

T cells isolated from peripheral blood mononuclear cells from
SLE patients and healthy controls12. Human gene names
were converted to mouse orthologs using BioMart and DEGs
(absolute log2FC > 0.2, adjusted p-value <0.05) were compared
amongst all three datasets (Supplementary Fig. 2). Correlational
analysis of fold change in gene expression between mouse
and human datasets revealed that Il7r, Id3, and Tnfsf11 are
commonly decreased and Ccl4, Lag3, Ascl2, Nkg7, and Spp1
are commonly increased in SLE and autoimmune chimeras
(Supplementary Fig. 2). Patient stratification using SLE Disease
Activity Index (SLEDAI) scores revealed that decreased ID3 and
increased LAG3 expression is independent of inactive or active
disease states (Supplementary Fig. 2). These data suggest that
human CD4+ T cells are also transcriptionally distinct, albeit with
different patterns of DEGs, in SLE.

To study the biological relevance of the DEGs observed in
autoimmune chimeras, we performed gene ontology analysis on
DEGs between autoimmune and non-autoimmune follicular
T cells. Biological theme comparison revealed an association
between hypoxia and glycolysis related gene sets and autoimmune
chimera DEGs (Fig. 2e). Network visualization revealed this was
due to increased expression of Tpi1, Pkm, and Aldoa (Fig. 2f). In
contrast, follicular T cells from autoimmune chimeras decreased
expression of cell adhesion related genes, including Itgb1, Il7r,
and Thy1 (Fig. 2f). Gene set enrichment analysis confirmed these
associations, finding positive enrichment for a glycolytic module
(M5937) and negative enrichment for cell adhesion
(GO:0034113) in the ranked DEGs from follicular T cells from
autoimmune chimeras (Fig. 2g). These findings suggest that
follicular T cells are transcriptionally distinct in B cell driven
autoimmune disease, with notable changes in metabolic state and
cell–cell adhesion.

Follicular T cell clusters are clonotypically distinct. In parallel
to scRNA-seq, we performed scTCR-seq on follicular T cells
isolated from autoimmune and non-autoimmune chimeras. Of
the 134,614 reads recovered, 85,955 (64%) represented full length
and productive VDJ sequences, defined by an open reading frame
spanning the entire VDJ sequence. These reads belonged to
43,896 unique cells, 33,833 (77%) of which had paired full length
TCRα and TCRβ chains. Clonotypes were defined by identifying
all cells with identical CDR3α and CDR3β amino acid sequences.
After filtering, we retained 15,565 cells representing 6,745 unique
clonotypes from autoimmune chimeras and 18,268 cells repre-
senting 8,871 unique clonotypes from non-autoimmune

chimeras. Repertoire-wide CDR3 length and consensus sequences
(Supplementary Fig. 3) were not significantly different in auto-
immune and non-autoimmune chimeras, and unbiased hier-
archical clustering of variable gene usage was unable to
distinguish autoimmune follicular T cells (Supplementary Fig. 3).

Unweighted network analysis of expanded clonotypes revealed
limited clonotypic sharing amongst individual samples (Fig. 3a).
Of the 15,608 unique clonotypes identified, only eight were
identified in both autoimmune and non-autoimmune mice
(Fig. 3b). Given the limited number of clonotypes shared between
autoimmune and non-autoimmune mice, we first sought to
examine if the TCR repertoire in its entirety could be used to
distinguish autoimmune and non-autoimmune follicular T cells.
We performed variable autoencoder (VAE)-based featurization of
the TCR repertoires of individual chimeras to train an unbiased
neural network using DeepTCR13 (Supplementary Fig. 3).
Although autoimmune repertoires are somewhat distinguishable
based on Kullback–Leibler divergence (Fig. 3c), the unsupervised
classification algorithm was unable to distinguish repertoires
based on autoimmunity as assessed by area under the curve
(AUC, Fig. 3d). UMAP visualization of TCR repertoire
featurization confirmed an inability to distinguish clonotypes
based on autoimmune condition (Supplementary Fig. 3). These
results suggest that entire follicular T cell repertoires are not
intrinsically distinct in autoimmune chimeras. However, given
the presence of sparse clonotypes shared amongst individual
chimeras, we next examined whether these public clonotypes
might be capable of distinguishing autoimmune and non-
autoimmune follicular T cells. Adapting non-metric multidimen-
sional scaling (NMDS) analyses typically used to distinguish
ecological communities using shared species, we compared
similarities amongst individual chimeras using shared clonotypes,
observing that public clonotypes are capable of separating
chimeras on the basis of autoimmunity (Fig. 3e). This was
confirmed by unbiased hierarchical clustering of public clono-
types (Fig. 3f), revealing similarity in sample distribution amongst
clonotypes from autoimmune chimeras. Together these findings
suggest that although entire follicular T cell repertoires are not
distinguishable between autoimmune and non-autoimmune
chimeras, public clonotypes are preferentially shared amongst
follicular T cells from autoimmune chimeras.

To examine whether clonotypic expansion is altered in
autoimmune chimeras, we compared the geometric means of
clone sizes calculated as the number of individual cells identified
within that clonotype. No significant differences were observed in
clone size between autoimmune and non-autoimmune chimera
follicular T cells (Fig. 3g). Clonal expansion within individual
clusters determined by scRNA-seq was also broadly similar
between autoimmune and non-autoimmune chimera follicular
T cells (Fig. 3h). Clonotypes were largely restricted to individual
clusters, and NMDS analysis revealed that central memory TFH

cells were the most clonotypically distinct subset (Supplementary
Fig. 3). When clonotypes were shared amongst follicular T cell

Fig. 1 Identification of six follicular T cell clusters by scRNA-seq. a Schematic of experimental design to generate autoimmune bone marrow chimeras
and isolate follicular T cells, followed by generation of 10X Gel Bead-In Emulsions (GEM) and single cell next-generation sequencing (NGS) to generate
paired gene expression (GEX) and VDJ sequences. b Heatmap of individual cell’s (columns) expression of the top eight differentially expressed genes
(rows) for each cluster (top colors). Log-normalized expression scaled for each gene. c Gene expression of cluster-defining genes projected onto UMAP
(top) or within individual clusters (bottom) identified by scRNA-seq and unbiased clustering of follicular T cells. d Pseudotime projected onto UMAP (left)
and diffusion map of diffusion component (DC) embeddings of cells colored by clusters (right). e Dot plots of correlation between pseudotime and gene
expression of cells colored by cluster. f UMAP visualization of follicular T cells colored by unbiased cluster assignment (left) and stacked bar graph of
percent of cells belonging to each cluster between wild type (WT, n= 5) and autoimmune (564Igi, n= 5) chimeras (right). g Flow cytometry contour plots
(left) and quantification (right) of central memory frequency amongst CXCR5+PD-1+ cells from wild type (WT, n= 6) and autoimmune (564Igi, n= 7)
chimeras. Data are represented as mean ± SEM. P-value computed using two-tailed Student’s t-test. Source data are provided as a Source data file.
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clusters they nearly always belonged to one predominant cluster,
with the notable exception of clonotype sharing between activated
and Sostdc1+ TFH cells (Supplementary Fig. 3). These findings
suggest that in addition to their transcriptional differences, the
follicular T cell clusters we identified by scRNA-seq are also
clonotypically distinct. We performed rarefaction analysis to
quantify diversity within each cluster of follicular T cells (Fig. 3i),
observing similar levels of clonality between autoimmune and

non-autoimmune chimera follicular T cells. Together, these data
suggest that follicular T cells do not have altered levels of
expansion or clonality in autoimmune chimeras.

To investigate the transcriptomic differences associated with
expanded clonotypes, we paired gene expression data with
clonotype identity from individual cells using cell barcodes. From
our filtered populations of scRNA-seq barcodes, 10,478 cells
(78%) from autoimmune chimeras and 11,267 cells (74%) from
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WT chimeras had matching full-length and productive sequences
for both TCRα and TCRβ chains. Mapping clone size onto
UMAP visualization of gene expression data revealed differential
distributions of clonotype expansion amongst transcriptomic
space in autoimmune mice (Fig. 4a), although this was largely due
to the largest clones and not generalizable amongst individual
chimeras (Supplementary Fig. 4). Comparison of clonotype sizes
amongst autoimmune or non-autoimmune chimeras confirmed
limited clonotype sharing between chimeras and allowed us to
identify clonotypes preferentially expanded in autoimmune or
non-autoimmune chimeras (Fig. 4b). We observed unique CDR3
motifs and a preference for shorter CDR3β sequences (Supple-
mentary Fig. 4) amongst clonotypes preferentially expanded in
autoimmune chimeras. Clone size comparison between TFR and
TFH clusters confirmed limited clonotype sharing between
follicular T cell subsets, as well as differences in CDR3 motifs
and length amongst clonotypes preferentially enriched in each
cluster (Supplementary Fig. 4). These data suggest that although
differences in CDR3 structure were not appreciated at the
repertoire level, physical differences are apparent amongst
condition or cluster-enriched clonotypes. Differential expression
analysis of expanded clonotypes revealed similar transcriptional
differences as seen amongst all follicular T cells, including
increased expression of Gm42031 and decreased expression of Id3
and Itgb1 amongst clonotypes expanded in autoimmune chimeras
(Fig. 4c, d). These data indicate that expanded clonotypes are
transcriptionally distinct in autoimmune chimeras.

We next asked whether clonal expansion itself is associated
with differential gene expression. Using clone sizes determined
from scTCR-seq, we correlated expression of each gene with
clone size across all follicular T cells (Fig. 4e), observing known
genes positively associated with clonal expansion such as Pdcd1
(ρ= 0.17, P= 2.41 × 10−126 by Spearman) and negatively
associated with clonal expansion such as Sell (ρ=−0.16,
P= 1.78 × 10−122 by Spearman). Individual clusters had unique
patterns of gene expression correlation with clonal expansion,
such as negative association between Foxp3 expression and
activated TFH clone size, and positive associations between Ikzf2
and Tigit expression and TFR clone size (Supplementary Fig. 4).
Patterns of gene expression and clonal expansion correlation were
largely similar between autoimmune and non-autoimmune
chimera follicular T cells (Fig. 4f), with the notable exceptions
of a greater negative correlation between Selplg and Ifngr
expression and clone size in non-autoimmune follicular T cells,
and a positive correlation between Tcf7 expression and non-
autoimmune follicular T cell clone size despite a negative
correlation between Tcf7 expression and autoimmune follicular
T cell clone size (Fig. 4g). Amongst TFR cells, Cd74 was strongly
associated with clonal expansion only in autoimmune chimeras
(Fig. 4f). These findings indicate that although transcriptional
changes associated with clonal expansion are largely conserved,

there is a subset of genes that are distinctly positively or
negatively correlated with clonal expansion in autoimmune
follicular T cells.

Predicted specificity of autoimmune follicular T cells. To probe
the antigen specificity of unknown TCRs, we applied the group-
ing of lymphocyte interactions by paratope hotspots (GLIPH2)
algorithm14 to our scTCR-seq data. GLIPH2 is capable of effi-
ciently analyzing millions of CDR3 sequences and grouping them
according to their predicted antigen specificity based on local
motifs and global similarity (Fig. 5a). From our input of 18,517
unique clonotypes and a mouse CD4 reference dataset, GLIPH2
clustered 14,964 (81%) unique clonotypes into 6,177 specificity
groups (Supplementary Data 3). To ensure high fidelity of antigen
prediction, we filtered for specificity groups with at least four
unique clonotypes from at least three samples with significant
V-gene bias (P < 0.05 by GLIPH2) and significant final score
(P < 1 × 10−5 by GLIPH2), leaving 159 specificity groups repre-
senting 1,349 unique clonotypes. These specificity groups were
cross-referenced against our scRNA-seq and scTCR-seq datasets
based on clonotype CDR3αβ sequences, allowing us to predict the
specificity of 988 cells (7.4%) from autoimmune chimeras and
1,291 cells (8.5%) from non-autoimmune chimeras.

Specificity group membership size, determined by the total
number of cells belonging to a given group, was uniformly
distributed in UMAP space and between autoimmune and non-
autoimmune chimeras (Supplementary Fig. 5). Surprisingly,
comparison of specificity group sizes between autoimmune and
non-autoimmune chimeras revealed most specificity groups were
highly and equally expanded in autoimmune and non-
autoimmune chimeras (Fig. 5b). Indeed, the largest specificity
groups, such as GLIPH_506, were prevalent amongst both
autoimmune and non-autoimmune follicular T cells (Fig. 5c).
NMDS analysis was unable to distinguish autoimmune and non-
autoimmune chimeras based on specificity group distributions
amongst individual chimeras (Supplementary Fig. 5), reflecting
the degree of antigen specificity convergence amongst follicular
T cells. These findings suggest that most follicular T cells share
antigen specificities in autoimmune and non-autoimmune
chimeras. Specificity groups were also highly concordant between
TFR and TFH clusters, and the specificity groups included
clonotypes from distinct clusters with few specificity groups
observed in only one cluster (Supplementary Fig. 5). These results
suggest that although TFR and TFH cells might be clonotypically
distinct, they are likely capable of binding similar antigens.

Despite the prevalence of specificity groups sharing between
autoimmune and non-autoimmune chimeras, some specificity
groups were preferentially expanded in a given condition, such as
GLIPH_4117 and GLIPH_4448 (Fig. 5b, c). CDR3 motif analysis
identified unique motifs in both shared and condition-specific
specificity groups (Fig. 5d) that are predicted to be contact

Fig. 2 Autoimmune follicular T cells express increased Sca-1 and glycolytic genes. a Volcano plots of differentially expressed genes between mixed
autoimmune (564Igi) versus wild type (WT) chimera follicular T cells (CXCR5+PD-1+, top left) or within assigned clusters. Adjusted P-value < 0.01 and absolute
log2FC > 0.2 shown in red. Differential expression computed by MAST and adjusted for multiple comparison based on Bonferroni correction. b Expression level of
select differentially expressed genes projected onto UMAP (left) or within individual clusters (right) betweenWT (gray) or mixed 564Igi (red) chimeras. c Gating
strategy to identify T follicular helper (TFH) cells and T follicular regulatory (TFR) cells from bone marrow chimeras. d Flow cytometry histograms (left) and
quantification (right) of Sca-1 expression in TFH and TFR cells from WT (black, n= 9) or mixed 564Igi (red, n= 10) chimeras. e Biological theme comparison of
annotated gene sets betweenWT and mixed 564Igi chimera follicular T cells. Size represents gene ratio and color represents P-value. f Network plot of five most
significant gene sets enriched in differentially expressed genes between mixed 564Igi versus WT chimera follicular T cells. Gray circles represent gene sets,
colored dots represent genes colored by log fold change in mixed 564Igi compared to WT chimera follicular T cells. Arrow identifies leukocyte adhesion module
(GO:0007159) and arrowhead identifies glycolytic module (M18792). g Gene set enrichment plot of indicated gene module against genes ranked by fold
enrichment in mixed 564Igi chimera follicular T cells. Data are represented as mean ± SEM. P-value computed using two-tailed Student’s t-test. Source data are
provided as a Source data file.
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residues by antigen-specific paratope convergence15. To better
understand the clonotypic composition and relationships between
these shared and condition-specific specificity groups, we
performed unweighted network analysis of the largest specificity
groups and specificity groups preferentially expanded in auto-
immune or non-autoimmune chimeras (Fig. 5e). Public

specificity groups (absolute log2FC < 2.5) were often polyclonal
with limited clonotype sharing amongst specificity groups. In
contrast, condition-specific specificity (absolute log2FC > 2.5)
groups were pauciclonal, sharing clonotypes with public specifi-
city groups but not with each other (Fig. 5b, e). These findings
suggest that non-shared specificity groups represent pauciclonal
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responses that might display limited cross-reactivity with the
dominant antigen-specificities observed amongst most follicular
T cells. To test this hypothesis, we labeled specificity groups based
on preferential expansion (absolute log2FC > 2.5 and total size
>10) to identify condition-specific specificities (Supplementary
Fig. 5). Condition-specific specificity groups had greater average
clone sizes compared to shared specificity groups (Fig. 5f),
consistent with pauciclonal expansion in condition-specific but
not shared specificity groups. Interestingly, pairing GLIPH
analysis with scRNA-seq cluster determination revealed that
autoimmune-specific specificity groups consisted of a greater
proportion of TFR cells than non-autoimmune-specific specificity
groups (Fig. 5f). Rarefaction analysis of all specificity groups
within individual clusters revealed similar levels of diversity
between autoimmune and non-autoimmune chimera follicular
T cells (Supplementary Fig. 5), reinforcing our earlier finding that
follicular T cells do not have altered levels of expansion or
clonality in autoimmune chimeras. Together these results suggest
that most of the follicular T cell repertoire is unexpanded yet
shares antigen reactivities, but in autoimmune or non-
autoimmune conditions a subset of the repertoire participates
in similar degrees of pauciclonal expansion to react to unique
antigens.

Follicular T cell specificity groups are transcriptionally dis-
tinct. Given the phenotypic differences observed between shared
and condition-specific specificity groups, we next asked whether
specificity groups are transcriptionally distinct in autoimmune
disease. Differential expression analysis of condition-specific
specificity groups (Fig. 6a) revealed increased expression of
Rln3, Itgb7, and Gm42031 and decreased expression of Tcf7, Nsg2,
and Asap1 in cells belonging to specificity groups preferentially
expanded in autoimmune chimeras (Fig. 6b, c). Gene ontology
analysis demonstrated the importance of these genes in lym-
phocyte differentiation, activation, and adhesion (Fig. 6d), sug-
gesting that cells undergoing pauciclonal expansion in
autoimmune chimeras towards shared antigens increase expres-
sion of genes related to germinal center trafficking and entry.
Biological theme comparison between shared and non-shared
specificity groups (Fig. 6e) revealed an association between non-
autoimmune enriched specificity groups and naïve (GSE20366)
gene sets, whereas autoimmune enriched specificity groups were
associated with the interferon gamma response (M5913). To pair
these gene expression profiles with antigen specificity, the average
expression of all genes amongst all cells within each individual
specificity group was used to calculate a module score for

lymphocyte differentiation (GO:0030098) and T cell activation
(GO:0042110). Comparison of specificity group size between
autoimmune and non-autoimmune mice coupled with module
scores or gene expression confirmed that cells belonging to spe-
cificity groups enriched in autoimmune chimeras increase
expression of differentiation genes and Itgb7, whereas cells
belonging to shared specificity groups decrease expression of
differentiation genes (Fig. 6f).

Differential expression of T cell activation and adhesion related
genes between autoimmune and non-autoimmune specificity
groups led us to hypothesize that follicular T cells with
autoimmune enriched specificities have altered germinal center
entry and trafficking. Indeed, we observed a ~2.2-fold increase in
PSGL-1loCD62Llo extrafollicular (EFO) CD4+ T cells in auto-
immune chimeras (Supplementary Fig. 6). Increased expression
of PD-1 amongst EFO CD4+ T cells in autoimmune chimeras
(Supplementary Fig. 6) coupled with the positive association
between Selplg expression and autoimmune enriched follicular T
cell specificities (Fig. 6c) suggests that EFO CD4+ T cells bind
shared rather than autoimmune enriched antigens. Together,
these results suggest that follicular T cells undergoing pauciclonal
expansion towards shared antigens modulate expression of
germinal center trafficking genes in autoimmune disease.

As each specificity group consists of multiple clonotypes with
varying levels of expansion (Supplementary Fig. 6), we next
examined whether clonal expansion within specificity groups is
associated with differential gene expression. Clonal expansion
associated gene expression was markedly distinct between
autoimmune and non-autoimmune enriched specificity groups
(Supplementary Fig. 6), suggesting that expansion against
different antigens can drive differential gene expression. Clonal
expansion was associated with increased expression of Malat1,
Hcst, and Ptprc amongst cells with specificities enriched in non-
autoimmune chimeras despite a negative association amongst
cells with specificities enriched in autoimmune chimeras (Fig. 6e).
To test whether the differences we observed between cells
belonging to autoimmune or non-autoimmune enriched specifi-
city groups are recapitulated within a single specificity group, we
examined GLIPH_506, one of the largest shared specificity groups
between autoimmune and non-autoimmune chimeras (Supple-
mentary Fig. 6). Follicular T cells belonging to this specificity
group from autoimmune chimeras expressed increased cytotoxic
effector genes and Gm42031 and Stat1, and decreased Cd4
(Supplementary Fig. 6). These findings suggest that even amongst
follicular T cells with identical predicted specificities, autoimmu-
nity results in differential gene expression.

Fig. 3 Public clonotypes are distinct between autoimmune and non-autoimmune follicular T cells. a Unweighted network analysis of expanded
clonotypes (>10 individual cells) from WT (black) and mixed 564Igi (red) chimeras. Clonotypes are defined by paired full length TCRα and TCRβ
sequences. Individual samples are depicted as colored circles, clonotypes are depicted as gray circles and sized according to number of cells belonging to
given clonotype. Edges represent clonotype membership to individual samples. b Venn diagram comparing number of unique and shared clonotypes
between WT (black) and mixed 564Igi (red) chimeras. c Repertoire dendrogram of variable autoencoder-based featurization of TCR repertoires of
individual samples represented in UMAP space. Dendrogram represents inter-repertoire symmetric Kullback–Leibler divergence computed from sample-
agnostic network-based clustering. Color of node indicates sample condition (gray, WT; red, 564Igi). d Performance of K-nearest-neighbors instance-based
unsupervised classification algorithm applied to TCR repertoire featurization assessed by area under the curve (AUC). Data are represented as mean ± SD.
e Ordinance plot of non-metric multidimensional scaling (NMDS) of clonotype distribution amongst individual samples. Text indicates sample name and
color indicates sample condition (gray, WT; red, 564Igi). Individual clonotypes are depicted as gray circles. f Hierarchical clustering of public clonotypes
based on distribution amongst chimeras (rows). Column colors indicate sample condition of given clonotype (gray, WT; red, 564Igi; light red, both) and
number of individual cells belonging to each clonotype. Columns are labeled with CDR3 sequences from TCRαβ pairings. g Number of individual cells
belonging to each clonotype amongst WT (black) or mixed 564Igi (red) chimeras. h Pie charts of clonal expansion of follicular T cell clusters identified by
scRNA-seq (columns) in WT (top) or mixed 564Igi (bottom) chimeras. Number of cells with both TCRα and TCRβ successfully identified is shown below
each pie chart. For clonotypes expressed by two or more cells, the number of cells expressing that clone is shown by a distinct color. i Rarefaction curves of
clonotype richness within follicular T cell clusters identified by scRNA-seq. Individual samples are depicted by lines and colored by sample condition (black,
WT; red, 564Igi).
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Machine learning predicts follicular T cell reactivities. To reveal
the antigen specificity of unknown TCR sequences, we queried
the VDJdb16, PIRD17, and McPAS-TCR18 databases of known
CDR3β specificities. We compiled all three databases to create a
single reference database consisting of 99,809 unique CDR3β
sequences with annotated specificities for 469 antigens and
482 peptides from 105 different diseases or experiments

(Supplementary Data 4). This database was first used to search for
matching CDR3β sequences between known TCR specificities
and our scTCR-seq data. Amongst the 13,232 unique CDR3β
sequences identified from follicular T cells, 296 (2.23%) matched
CDR3β sequences present in our annotated reference database
with a collective specificity for 61 unique peptides (Supplemen-
tary Fig. 7). Successfully annotated CDR3β sequences represented
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both public and private CDR3β sequences amongst autoimmune
and non-autoimmune chimeras, although the most expanded
CDR3β clones were not matched (Supplementary Fig. 7). The
annotated peptides associated with known CDR3β sequences
preferentially expanded in each condition were used to create a
positional-weighted matrix (PWM) of amino acid preference
scored by clone size and fold-enrichment within a given condi-
tion (Supplementary Fig. 7). To predict novel peptide specificities,
we used these PWMs to perform profile-based scoring of the
mouse proteome using a 9-mer sliding profile-based search. Our
profile-based search of the mouse proteome yielded 1,071 unique
peptides from 1,176 unique antigens using the non-autoimmune
PWM and 47,636 unique peptides from 16,970 unique antigens
using the autoimmune PWM (Supplementary Fig. 7). Notably,
candidate antigens for non-autoimmune follicular T cells were
nearly entirely shared with autoimmune follicular T cells.

To extend our antigen prediction methodology to computa-
tional specificity group predictions, GLIPH2 clustered 19,290
(19%) unique CDR3β sequences from our reference database of
known antigen specificities into 13,695 specificity groups. CDR3β
local-motif patterns identified by GLIPH2 were cross-referenced
to annotate our follicular T cell specificity groups with predicted
antigen specificities extracted from reference databases (Fig. 7a).
Database annotation succeeded in predicting antigen specificities
for 39/159 (25%) of follicular T cell specificity groups, predicting
autoimmune, parasite, cancer, or viral related antigen reactivity
amongst specificity groups shared between autoimmune and non-
autoimmune chimeras, and viral antigen reactivity amongst non-
autoimmune enriched specificity groups (Fig. 7b). Specificity
groups with predicted reactivity for autoimmune related antigens
consisted of clonotypes identified from both autoimmune and
non-autoimmune chimeras (Fig. 7b), possibly reflecting that even
in non-autoimmune chimeras follicular T cells are capable of
binding self-antigens. Annotation of UMAP visualization with
antigen and peptide predictions revealed both local (FIDCYLLAI)
and widespread (NLVPMVATV) distributions of predicted
antigen-specific cells in transcriptional space (Fig. 7c). Together
these data suggest that autoimmune and non-autoimmune
follicular T cells both share reactivities against known foreign
and self-antigens, as well as have condition-specific antigen
enrichment.

To validate these GLIPH2-based findings, we designed a
machine learning approach to predict antigen specificities.
Peptides with known binding to at least 100 unique CDR3β
sequences from our reference database were used for VAE-based
featurization and supervised deep learning using DeepTCR13.
TCR specificity classification was trained and validated using a
Monte-Carlo cross-validation algorithm provided with the
CDR3β sequences and VDJ gene usage of 53,274 unique
clonotypes representing 57 unique peptides, achieving an average
AUC of 0.86 (Fig. 7d). Visualization of VAE-encoded feature

space demonstrated the ability to cluster peptides by unbiased
hierarchy based on TCR featurization alone (Supplementary
Fig. 7). Thus, supervised TCR classification can predict antigen
specificity with high sensitivity and specificity. UMAP visualiza-
tion of clonotype featurization of both training and validation sets
confirmed separation of peptide-specific clonotypes in feature-
space (Fig. 7e). This machine learning algorithm was then applied
to our unknown follicular T cell clonotypes, allowing us to
represent each clonotype in our supervised classification feature-
space. Clonotypes from autoimmune and non-autoimmune
follicular T cells clustered together (Fig. 7f), reinforcing
GLIPH2-based prediction of shared antigen specificities amongst
autoimmune and non-autoimmune follicular T cells. Notably,
follicular T cells from autoimmune and non-autoimmune
chimeras clustered separately from any region in UMAP
space annotated by our supervised classifier (Fig. 7f), suggesting
that the set of possible antigens they respond to is less diverse
compared to the annotated antigens present in our training
dataset.

These computational methods provide a multipronged toolkit
for antigen prediction from paired scRNA-seq and scTCR-seq
data that together ultimately suggest that follicular T cells from
both autoimmune chimeras and non-autoimmune chimeras are
likely to respond to a similar set of antigens.

Discussion
We have used paired scRNA-seq and scTCR-seq to observe that
despite convergence toward shared predicted antigen specificities,
follicular T cells from autoimmune and non-autoimmune chi-
meras remain transcriptionally distinct. We were able to identify
known subsets of follicular T cells, such as TFR, activated TFH, and
Sostdc1+ TFH cells, as well as previously uncharacterized subsets,
such as interferon-responsive TFH cells. Sostdc1+ TFH cells are a
recently characterized subpopulation that appear to be involved
in Wnt-mediated TFR differentiation19. Patients with SLE,
myasthenia gravis, Sjogren’s syndrome, and rheumatoid arthritis
have increased numbers of TFH cells20–31, and altered TFR to TFH

cell ratios have been observed in mouse models of arthritis and
patients with ankylosing spondylitis, Sjogren’s syndrome, myas-
thenia gravis, and multiple sclerosis32–36. Surprisingly we
observed no changes in the relative proportion of TFR, activated
TFH, or Sostdc1+ TFH cells in our mixed autoimmune chimeras,
although a central memory-like CD44+CD62L+ TFH population
was decreased. We show that this might be due to a relative
increase in PSGL-1loCD62Llo extrafollicular CD4+ T cells, which
others have also observed in mouse models of autoantibody-
mediated disease37–39. Notably, the follicular T cells described
here might also represent TFH and TFR cells that are not germinal
center-experienced, such as circulating40, pre-follicular41,42, or
extrafollicular43 TFH cells. Functional differences within TFR, TFH,
and Sostdc1+ TFH cells, rather than differences in the relative

Fig. 4 Distinct genes are associated with clonal expansion in autoimmune follicular T cells. a Clone size mapped onto UMAP visualization of
transcriptomic data of individual follicular T cells from WT (left) or mixed 564Igi (right) mice. Clonotypes are defined by paired full length TCRα and TCRβ
sequences and clone sizes are number of individual cells within a given clonotype. b Scatter plot comparing clone size between WT and mixed 564Igi
chimeras. Clonotypes are colored according to preferential expansion (absolute log2FC > 3 and clone size >10) in WT (black) or mixed 564Igi (red)
chimeras and sized according to number of samples in which the given clonotype is observed. c Volcano plots of differentially expressed genes between
cells belonging to clonotypes preferentially expanded in mixed 564Igi versus WT chimeras indicated in (b). Adjusted P-value <0.01 and log2FC > 0.2 shown
in red. Differential expression computed by MAST and adjusted for multiple comparison based on Bonferroni correction. d Expression of indicated genes in
cells belonging to preferentially expanded clonotypes in WT (gray) or mixed 564Igi (red) chimeras. e Rank order plot of Spearman’s correlation coefficients
of each gene with clone size across all cells. f Scatter plots comparing correlation coefficients of each gene with clone size between WT and mixed 564Igi
chimeras within assigned clusters. Correlation coefficients >0.05 are indicated in black (correlated in both conditions), red (correlated in mixed 564Igi
chimeras only), or red (correlated in WT chimeras only). g Average expression of indicated gene amongst all cells belonging to individual clonotypes
versus clone size. Clonotype color indicates sample condition (black, WT; red, 564Igi).
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frequencies of these subsets, are therefore likely responsible for
the autoimmunity observed in our mixed chimera model of
autoantibody-mediated disease.

Characterization of what makes a follicular T cell dysfunctional
remains unclear. In our bone marrow chimera model, germinal

center dysfunction can be induced by autoreactive B cells in an
otherwise wild type environment, and this dysfunction begets
further loss of tolerance and autoantibody development. We
observed that TFR, TFH, and Sostdc1+ cells from autoimmune
chimeras consistently express increased Ly6a and Gm42031 and
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Fig. 5 GLIPH prediction of TCR specificity shows convergence toward shared specificities in autoimmune and non-autoimmune follicular T cells. a
Schematic of computational pipeline to assign clonotype groups from scRNA-seq data, followed by assigning clonotypes to TCR specificity groups using the
GLIPH2 algorithm. b Scatter plot comparing specificity group size between WT and mixed 564Igi chimeras. Specificity groups are colored according to the
number of unique clonotypes that belong to a given specificity group and sized according to number of samples in which the given specificity group is observed.
Select specificity groups are labeled with their arbitrary name in blue. c Mappings of indicated specificity groups onto UMAP visualization of transcriptomic data
from WT (left) or mixed 564Igi (right) chimeras. d Motif analysis of 14 amino acid long CDR3s of TCRα (left) and TCRβ (right) chains of all cells belonging to
indicated specificity group. e Unweighted network analysis of clonotype assignment to indicated specificity groups. Specificity groups are depicted as blue circles,
clonotypes are colored according to condition (black, WT; red, 564Igi; green, both) and sized according to number of cells belonging to given clonotype. f Scatter
plot comparing TCR specificity group size between WT and mixed 564Igi chimeras and colored according to most prevalent cluster amongst cells belonging to
given specificity group (top left), percentage of cells within given specificity group assigned to the TFR cluster (top right), geometric mean of clone sizes of
clonotypes within given specificity group (bottom left), and Shannon diversity index of clonotype expansion within given specificity group (bottom right).
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decreased Id3 and Lag3. Ly6a is a type I interferon-responsive
gene fundamental for hematopoietic progenitor homeostasis44–48,
although its function on mature lymphocyte populations such as
follicular T cells remains unclear. Upregulation of Sca-1 (protein
name of Ly6a) on T and B cells is observed in the Dnase1l3−/−

model of type I IFN-driven autoantibody disease39,49, suggesting
that type I IFN signaling might be mediating follicular T cell gene
expression changes in our chimeric model of autoantibody-
mediated disease. Gm42031 is a long non-coding RNA (lncRNA)
of unknown significance. LncRNAs are thought to modulate
widespread but low-level gene expression patterns governed by
transcriptional regulators by altering translation or serving as
miRNA sponges50–52. Therefore, Gm42031 might be responsible
for enacting disparate and subtle phenotypic changes in follicular
T cells, such as the alterations in glycolysis pathways we observed
by gene ontology analysis and by others in the B6.Sle1.Sle2.Sle3
model of autoantibody-mediated disease53,54. Id3 is a helix-loop-

helix (HLH) protein that is critical for Treg cell maintenance and
TFR maturation55,56, suggesting that TFR developmental pro-
gression might be impaired in our chimeric model of
autoantibody-mediated disease. We also observed differential
associations between Tcf7, Selplg, and Cd74 expression and clonal
expansion in autoimmune and non-autoimmune chimeras, sug-
gesting that TFH differentiation, trafficking, and macrophage
inhibitory factor (MIF) response are altered in an autoimmune
environment57–60, respectively. These transcriptional differences
might represent follicular T cell phenotypic changes that are
permissive to the autoimmunity observed in our model, might be
consequences of an already autoimmune environment, or might
reflect differences in immune response kinetics between auto-
immune and immunized mice. Future experiments are necessary
to clarify these hypotheses and examine the functional con-
sequences of these genes in follicular T cells. Understanding how
an autoreactive B cell clone might induce these or other
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Fig. 6 TCR specificities enriched in autoimmune disease are transcriptionally distinct. a Scatter plot comparing specificity group size between WT and
mixed 564Igi chimeras. Specificity groups are colored according to preferential expansion (absolute log2FC > 2.5 and total size >10) in WT (black) or mixed
564Igi (red) chimeras and sized according to number of samples in which the given clonotype is observed. b Volcano plots of differentially expressed
genes between cells belonging to preferentially expanded specificity groups in mixed 564Igi versus WT chimeras indicated in (a). Adjusted P-value <0.01
and log2FC > 0.2 shown in red. Differential expression computed by MAST and adjusted for multiple comparison based on Bonferroni correction. c Violin
plots of expression of indicated genes in cells belonging to preferentially expanded specificity groups in WT (gray) or mixed 564Igi (red) chimeras. d Gene
ontology analysis (top) and network plot (bottom) of differentially expressed genes between cells belonging to preferentially expanded specificity groups in
mixed 564Igi versus WT chimeras indicated in (a). Top; size represents gene ratio and color represents P-value. Bottom; gray circles represent gene sets
and colored dots represent genes colored by log2FC in mixed 564Igi compared to WT chimera follicular T cells. Arrow identifies leukocyte cell–cell
adhesion module (GO:0007159) and arrowhead identifies lymphocyte differentiation module (GO:0030098). P-value computed by gene ontology
enrichment analysis and adjusted for multiple comparisons using Benjamini–Hochberg procedure. e Biological theme comparison of annotated gene sets
between cells belonging to specificity groups without a condition preference (public) or preferentially expanded in WT (black) or mixed 564Igi (red)
chimeras. Size represents gene ratio and color represents P-value. P-value computed by gene ontology enrichment analysis and adjusted for multiple
comparisons using Benjamini–Hochberg procedure. f Scatter plot comparing specificity group size between WT and mixed 564Igi chimeras and colored
according to lymphocyte differentiation module score (GO:0030098, top left), T cell activation module score (GO:0042110, top right), and average
expression of Itgb7 (bottom left) and Tcf7 (bottom right). Module scores were calculated using average expression of all genes of cells belonging to each
specificity group.
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phenotypic changes in previously normal TFH cells would reveal a
fundamental step in the march towards loss of peripheral toler-
ance and autoantibody development.

In addition to transcriptional differences, TFH cell dysfunction
might be associated with changes in the TCR repertoire. Patients
with mutations in CD40LG or that lack MHC class II expression

have elevated levels of autoreactive B cells61, suggesting that CD40
and TCR signals serve as checkpoints to maintain peripheral B cell
tolerance. B cell specific deletion of MHC class II in MRL/lpr mice
decreased autoantibody production and TFH cell number62. Recent
studies using HEL3X bone marrow chimeras have demonstrated
that clonal redemption of anergic autoreactive B cells requires high
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density membrane-bound foreign antigen for productive T cell
collaboration, leading to rapid mutation away from self toward
foreign reactivity63. Transgenic mouse models have demonstrated
that autoreactive B cells can present self-antigen to T cells, breaking
tolerance and amplifying autoantibody production independent of
TLR adjuvanticity64–66. However, uncertainty exists over whether
these CD4+ T cells represent TFH cells or an extrafollicular T cell
population37,43,67. Although we did not capture extrafollicular
T cells in our single cell profiling, we use computational prediction
to show that follicular T cells likely possess an autoreactive
repertoire that can participate in these interactions. Recent studies
have found that both TFH and TFR cells have remarkably diverse
but non-overlapping repertoires, and that immunization did not
significantly alter their clonality but rather resulted in non-specific
TFH bystander activation possibly due to TCR cross-reactivity68.
These findings are consistent with our observation of infrequent
clonotype sharing between clusters. We hypothesize that the sur-
prising convergence we observed in predicted specificity groups
between autoimmune and non-autoimmune mice reflects bystan-
der activation due to the highly cross-reactive nature of the
TCR69,70, particularly given the high diversity and small clone size
observed in public specificity groups. It follows that just as dys-
functional TFH cells might help autoreactive B cells overcome
clonal anergy, autoreactive B cells might help autoreactive TFH cells
overcome T cell ignorance.

Whether the TFH cells expanded in autoantibody-mediated
diseases are autoreactive and share specificities with autoreactive
B cells remains unknown. Although autoreactive CD4+ T cells
have been identified in autoantibody-mediated disease and cor-
relate with disease severity71–76, unbiased profiling of CD4+ T
cell specificities in autoantibody-mediated disease has not been
previously performed. Our observed convergence in predicted
specificity might either reflect emergence of autoreactivity fol-
lowing irradiation and immunization with foreign antigen in the
non-autoimmune chimeras, or bystander activation of non-
autoreactive follicular T cells in the autoimmune chimeras77–79.
Notably, interrogation of the minority of specificity groups
enriched in either condition combined with computational anti-
gen prediction identified possible foreign reactivities for non-
autoimmune enriched groups only. Pairing gene expression data
with specificity group prediction revealed that autoimmune
enriched specificity groups modulate their expression of germinal
center trafficking genes such as Itgb7 and Selplg, and that cells
within identical predicted antigen specificity groups had differ-
ential gene expression in autoimmune and non-autoimmune
mice. Therefore, an autoreactive TCR might influence T cell
trafficking, whereas an autoimmune environment might influence
T cell gene expression independent of antigen specificity. Fur-
thermore, our analyses do not address the likely varying affinities

of the many clonotypes within individual specificity groups,
which possibly contributes to or correlates with gene expression
variability. Further validation and peptide binding profiling are
necessary to confirm and discover the predicted autoreactivity
and overall antigen-specificity of the candidate TCRs and speci-
ficity groups we have generated in silico.

Here we present substantial transcriptional and clonotypic
differences in the follicular T cell compartment in a mouse model
of autoantibody-mediated disease. Implication of potential targets
such as lncRNAs, glycolysis, and germinal center trafficking
highlights pathways to prioritize for future therapeutic con-
sideration for B cell driven diseases. Identification of cellular
processes responsible for TFH cell dysfunction not only improves
our understanding of autoimmune disease pathogenesis, but also
establishes potential modulators of B cell anergy and clonal
redemption that might be manipulated to optimize antibody
responses to foreign antigens. While clearly involved in
autoantibody-mediated disease, germinal center evolution is a
fundamental feature of adaptive immunity that has the potential
to impact the many other diseases impacted by insufficient or
overactive germinal center responses, such as vaccine design,
anti-HIV broadly neutralizing antibody development, and mole-
cular mimicry.

Methods
Mice. C57BL/6J and B6.SJL (CD45.1) mice were obtained from Jackson Labora-
tories. 564Igi mice on a C57BL/6 background9 were originally provided by Theresa
Imanishi-Kari (Tufts University) and were maintained in-house. All mice were
bred and maintained in the AAALAC-accredited facility at Harvard Medical
School at ambient temperature and humidity with 12 h light/dark cycles. Mice were
specific pathogen-free (SPF) and maintained under a 12 h light/dark cycle with
standard chow diet. Both male and female mice were used for all experiments, and
mice were gender and age-matched within experiments. Experimental and control
mice were co-housed whenever appropriate. All animal experiments were con-
ducted in accordance with the guidelines of the Laboratory Animal Center of
National Institutes of Health. The Institutional Animal Care and Use Committee of
Harvard Medical School approved all animal protocols (IS111).

Genotyping. 564Igi mice were genotyped using digital droplet PCR (ddPCR). Tail
DNA was isolated and digested with AluI (NEB). Droplets were prepared from a
mix of tail DNA, primers (Supplementary Table 2), and EvaGreen Supermix (Bio-
Rad) using a QX200 Droplet Generator (Bio-Rad). PCR was performed using a
C100 Touch Thermal Cycler (Bio-Rad) and droplets were read on a QX200 Droplet
Reader (Bio-Rad). 564Igi heavy (Hi) and light (Ki) chain copy number was
quantified by comparing to amplification of reference mRPP30 using QuantaSoft
(Bio-Rad). FACStyping of CD45.1 mice and bone marrow chimeras was performed
by bleeding mice retroorbitally using heparinized capillary tubes and collecting into
30 μL of acid-citrate-dextrose solution (Sigma). Stabilized blood was underlayered
with 1 mL of Lymphocyte Separation Medium (Corning) and centrifuged at 400 × g
for 30 min at room temperature. The mononuclear cell layer was aspirated and
processed for flow cytometry as described below using anti-CD45.1 and anti-
CD45.2 antibodies.

Fig. 7 CDR3β database and machine learning-based peptide prediction indicate similar reactivities in autoimmune and non-autoimmune follicular
T cells. a Schematic of computational approach to predict antigen specificity by performing GLIPH analysis on TCR databases of annotated
CDR3 sequences (VDJdb, PIRD, McPAS-TCR), followed by matching follicular T cell clonotypes identified by scRNA-seq to annotated specificity groups via
shared CDR3β sequences. b Scatter plot comparing specificity group size between WT and mixed 564Igi chimeras and colored according to disease class
of predicted antigen. Size of specificity groups represents number of samples in which the given specificity group is observed. c Mapping of predicted
disease category (top), antigen (middle), or peptide (bottom) onto UMAP visualization of transcriptomic data fromWT or mixed 564Igichimeras (left) and
stacked bar graph of number of cells belonging to each prediction between WT and mixed 564Igi chimeras (right). Only the nine most frequent antigens
and peptides are labeled on right. d Receiver operator curve to assess ability of a supervised CDR3β sequence Monte-Carlo cross-validation algorithm to
classify TCR specificity using annotated TCR databases for training. Classification performance assessed by area under the curve (AUC). e UMAP
visualization of variable autoencoder based supervised CDR3β sequence featurization of annotated clonotypes from TCR databases following training and
validation by a Monte-Carlo cross-validation algorithm. Clonotypes are colored according to annotated peptide (ground truth) and only peptides with
AUC > 0.9 were included. Ten most common peptides are labeled on right. f Superimposition of supervised classification algorithm from (e) applied to
CDR3β sequences from scRNA-seq data onto UMAP visualization of peptide specificities from the training and validation datasets. Clonotypes are colored
according to condition (green, both; black, WT; red, 564Igi).
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Tissue collection. Mice were sacrificed by cervical dislocation and blood was
immediately collected via cardiac puncture. Mice were then transcardially perfused
with 15–30 mL PBS and spleens and kidneys were dissected and allocated for
immunofluorescence or flow cytometry. Blood was kept at room temperature for
1 h to promote coagulation, then centrifuged at 500 × g for 10 min at 4 °C to isolate
serum, which was stored at −80 °C.

Bone marrow chimeras. Epitope spreading was induced in an autoreactive B cell
driven model of autoimmunity using mixed 564Igi chimeras as previously
described3. Recipient mice between 8 and 10 weeks old were irradiated with 1100
rads and placed on water with sulfamethoxazole/trimethoprim for 10 days to
prevent opportunistic infections. Femurs and tibia were dissected from 6 to 8-
week-old congenic donor mice and rinsed through three rounds of HBSS sup-
plemented with 10 mM HEPES, 1 mM EDTA, and 2% heat inactivated FBS. Bones
were crushed in a mortar and passed through a 70 μm cell strainer (Corning).
5 × 106 564Igi bone marrow cells and 10 × 106 WT bone marrow cells in 100 μL
were injected intravenously into each irradiated recipient 8–10 h after irradiation.
Six weeks after reconstitution chimerism was verified by FACStyping as
described above.

Immunization. To generate germinal centers in non-autoimmune chimeras, mice
were immunized intraperitoneally with 100 μg of 4-hydroxy-3-nitrophenylacetyl
hapten conjugated to ovalbumin (NP-OVA, Biosearch) in 50 μL HBSS precipitated
in 50 μL of Imject Alum (ThermoScientific) 6 weeks after irradiation and bone
marrow reconstitution. Four weeks after immunization, mice received an intra-
peritoneal booster immunization of 100 μg of NP-OVA in 100 μL HBSS. For
chronic immunization, mice were immunized with intraperitoneal NP-OVA in
alum followed by booster immunization with NP-OVA every 3 weeks for up to
12 weeks total.

Flow cytometry. Spleens and lymph nodes were harvested into ice cold FACS
buffer (PBS with 0.5% heat inactivated FBS and 0.05% sodium azide) and
mechanically digested through a 70 μm cell strainer (Corning). Spleens were
incubated in RBC lysis buffer (155 mM NH4Cl, 12 mM NaHCO3, 0.1 mM EDTA)
for 3 min at room temperature and washed with FACS buffer. Cells were counted
and 1 × 106 cells/well were added to round-bottom 96 well plates and incubated
with 50 μL of staining mix (appropriate antibodies and viability dye in FACS
buffer) for 30 min on ice. The following antibodies were used: anti-CD44 (IM7,
1:1000), anti-CD62L (MEL-14, 1:100), anti-CD45.1 (A20, 1:300), anti-CD45.2 (104,
1:300), anti-CXCR5 (L138D7, 1:200), anti-PD-1 (RMP1-30, 1:200), anti-Sca-1 (D7,
1:300), anti-GL7 (GL7, 1:200), anti-CD3 (500A2, 1:300), anti-CD4 (GK1.5, 1:300),
anti-PSGL-1 (2PH1, 1:200), anti-GITR (DTA-1, 1:200), and anti-FoxP3 (FJK-16s,
1:100). Plates were washed with FACS buffer and for two-step staining procedures
incubated with 50 μL of secondary staining mix (appropriate streptavidin antibody
in FACS buffer) for 15 min on ice. For intracellular staining, cells were fixed with
Fixation/Permeabilization Buffer (eBioscience) for 30 min at room temperature,
washed with Permeabilization Buffer (eBioscience), and incubated with 50 μL of
intracellular staining mix (appropriate intracellular antibody in Permeabilization
Buffer) for 30 min at room temperature. Cells were washed with a final wash of
FACS buffer, resuspended in 150 μL FACS buffer, and read using 3–8 fluorophore
flow cytometry on a FACSCanto II (BD Biosciences) with 488, 405, and 640 nm
lasers using FACSDiva (BD Biosciences). Compensation matrices were determined
using unstained and single fluorophore stained controls. Data was analyzed using
FlowJo (Tree Star).

Cell sorting. Cell suspensions were stained as for flow cytometry and resuspended
in FACS buffer. For quantitative RT-PCR, a two-way semi-purity sort was per-
formed using a SH-800Z (Sony) with 488, 405, 561, and 638 nm lasers. Cells were
categorized as TFH (CD45.2+CD45.1−CD3+CD4+CXCR-5+PD-1+GITR−) or TFR

(CD45.2+CD45.1−CD3+CD4+CXCR-5+PD-1+GITR+). Sorted cells were resus-
pended in TCL (Qiagen) and stored at −80 °C until RNA isolation. For droplet-
based single cell sequencing, CD4+ cells were purified following flow cytometry
staining using MACS CD4+ T Cell Isolation Kit (Miltenyi, 130-095-248) according
to the manufacturer’s protocols. A two-way purity sort was then performed using a
FACSARIA II Special Order system (BD Biosciences) with 355, 405, 488, 640, and
592 nm lasers into PBS with 0.04% BSA. Cells were categorized as follicular T cells
by CD45.2+CD45.1-CD3+CD4+CXCR-5+PD-1+.

Droplet-based single-cell RNA and TCR sequencing. The scRNA-seq and
scTCR-seq libraries were prepared using the 10X Single Cell Immune Profiling
Solution Kit (10X Genomics, #1000006, #1000020, #1000071, #1000152, #120262).
Immediately post-sorting, cells were resuspended to final concentration of 100–800
cells per μL determined by hemocytometer. Cells were captured in droplets at a
targeted recovery of 500–7000 cells and multiplet rate of 0.4–5.4% using a Chro-
mium Controller (10X Genomics), followed by barcoding and reverse transcrip-
tion. Emulsions were broken and cDNA was purified using Dynabeads MyOne
SILANE and amplified by PCR. For gene expression library preparation, 2.4–50 ng
of amplified cDNA was fragmented and end-repaired, double-sided size selected
with SPRIselect beads (Beckman Coulter), PCR amplified with indexing primers,

and double-sided size-selected with SPRIselect beads. For TCR library construc-
tion, TCR transcripts were enriched from 2 μL of amplified cDNA by PCR, and
5–50 ng of PCR product was fragmented and end-repaired, size-selected with
SPRIselect beads, PCR-amplified with indexing primers, and size-selected with
SPRIselect beads. Sequencing of scRNA libraries were performed on a NextSeq 500
(Illumina) to a minimum sequencing depth of 15,000 reads per cell using read
lengths of 26 bp read 1, 8 bp i7 index, 98 bp read 2 for the gene expression library,
or a minimum sequencing of depth of 3000 reads per cell using read lengths of
150 bp read 1, 8 bp i7 index, 150 bp read 2 for the TCR library.

Quantitative RT-PCR. RNA was isolated by incubating cell lysates with 2 vol
SPRIselect RNAClean XP beads (Beckman Coulter) for 10 min at room tempera-
ture. Samples were washed four times for 5 min with 80% ethanol in a magnetic
field. Beads were air dried for 10 min at room temperature then resuspended in
16 μL DEPC H2O for 10 min at room temperature. Beads were returned to the
magnetic field and eluate was collected and quantified on a NanoDrop 1000
(Thermo Scientific). Samples were treated with iScript DNAse (Bio-Rad) and
cDNA was synthesized using the iScript Reverse Transcription Supermix (Bio-Rad)
according to manufacturer’s protocols. Quantitative RT-PCR (qRT-PCR) was
performed using Sso SYBR Green Supermix (Bio-Rad) and primers (Supplemen-
tary Table 3) on a CFX96 Touch Real-Time PCR Detection System (Bio-Rad) using
QuantaSoft (Bio-Rad). All qRT-PCR reactions were performed in 10 μL and per-
formed in duplicate or triplicate. Expression level was analyzed using comparative
Ct and normalized to Ywhaz.

Immunofluorescence confocal microscopy. Isolated organs were individually
perfused with PBS followed by 4% paraformaldehyde (PFA) in PBS. Tissues were
fixed overnight in 4% PFA at 4 °C, cryoprotected with 30% sucrose in PBS for 8 h at
4 °C, perfused with 30% OCT (TissueTek), and embedded in 100% OCT in
Standard Cryomolds (TissueTek) on dry ice and stored at −80 °C. Frozen sections
were cut on a cryostat at a thickness of 16 μm and allowed to dry for 60 min at
room temperature. Sections were fixed with 4% PFA in PBS for 10 min at room
temperature, then permeabilized and blocked with 1% heat inactivated FBS in IF
buffer (PBS with 1% BSA and 0.1% Triton X-100) for 1 h at room temperature.
Slides were stained with primary antibody in IF buffer overnight at 4 °C, nuclei
were counterstained with DAPI (5 μg/mL, Sigma) when indicated, and slides were
mounted using Fluoro-Gel (Electron Microscopy Sciences). Images were acquired
using a Fluoview FV100 inverted confocal microscope (Olympus) and analyzed
using Fiji (ImageJ).

Processing and filtering of scRNA-seq data. The cellranger (10X Genomics,
version 4.0.0) count pipeline was used to align 5’ gene expression reads to the GRCm38
reference genome (mm10). Only barcodes with unique molecular identifier (UMI)
counts that passed the threshold for cell detection were included in gene-barcode
matrices. We obtained reads from 71,231 cells with an average of 1245 genes per cell
and 26,367 reads per cell. Individual sample matrices were loaded in Seurat80 (version
3.1.4) using the Read10X function and filtered for cells with at least 200 genes detected
and genes detected in at least 3 cells using the CreateSeuratObject function, leaving
44,079 cells fromWT chimeras and 27,139 cells frommixed 564Igi chimeras. Individual
samples were merged using the merge function, and S and G2/M cell cycle phase
scoring was assigned using CellCycleScoring. To remove batch effects between samples
associated with a heat-shock gene expression signature, genes annotated with the Gene
Ontology biological process (GOBP) term “cellular response to heat” (GO:0034605) was
used to assign a heat shock score using AddModuleScore. Cells with less than 1000 or
greater than 3500 genes detected, less than 2000 reads detected, greater than 7%
mitochondrial RNA content, greater than 20% ribosomal RNA content, an S phase
score greater than 0.15, or a G2/M phase score greater than 0.15 were excluded from
analysis, with 15,280 cells from WT chimeras and 13,442 cells from mixed 564Igi
chimeras passing the filters. BCR and TCR variable and constant genes were excluded
from scRNA-seq analysis to prevent clustering based on VDJ transcripts. Genes
Gm42418 and AY036118 were also removed, as they overlap the rRNA element Rn45s
and represent rRNA contamination.

Unsupervised clustering of scRNA-seq data. Regularized negative binomial
regression was performed on cells from WT or mixed 564Igi chimeras separately using
the sctransform normalization method81 to normalize, scale, select variable genes, and
regress out mitochondrial RNA content, ribosomal RNA content, number of UMIs, and
heat shock score. WT and mixed 564Igi chimera datasets were then integrated82 using
SelectIntegrationFeatures, PrepSCTIntegration, FindIntegrationAnchors, and Inte-
grateData. Following principal component analysis (PCA), clusters were identified using
FindClusters to apply shared nearest neighbor (SNN)-based clustering using the first 25
principal components with k= 30 and resolution= 0.15. The same principal compo-
nents were used to generate UMAP projections.

Diffusion map and pseudotime analysis. Seurat objects were exported to scanpy
(version 1.5.1) using anndata2ri (version 1.0.2). Partition based graph abstraction
was performed using the PAGA function83 with 15 neighbors and the first 20
principal components. A randomly selected activated TFH cell was used as the root
cell for diffusion pseudotime computation using the first 10 diffusion components.
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Diffusion component coordinates and pseudotime values were added back to the
Seurat object using CreateDimReducObject and AddMetaData, respectively.

Cell cluster annotation. Clusters were annotated based on expression of marker
genes for known populations and differentially expressed genes for novel populations,
including Foxp3 (TFR), S100a6 (activated TFH), Sostdc1 (Sostdc1 TFH), Sell, Slamf7 (TFH-
CM), Ccl5, Gkzmk (TFH-effector), Ifit1, Isg15, and Ifi3 (TFH-ISG). Cluster determination
was confirmed by identifying differentially expressed marker genes for each cluster
using FindAllMarkers with the MAST algorithm84 and comparing to known cell-type
specific marker genes. Cluster names were updated using RenameIdents.

Differential gene expression. Differentially expressed genes between auto-
immune or non-autoimmune chimeras were determined using FindMarkers with
the MAST algorithm across all genes. For differential expression analysis within
individual clusters or clonotypes, Seurat objects were first subset using the subset
function.

Analysis of human scRNA-seq data. Reference scRNA-seq data from human
renal biopsies were obtained from ImmPort (SDY997)10. Raw count matrices were
filtered for cells with at least 200 genes detected and genes detected in at least 3 cells
using the CreateSeuratObject function, leaving 520 cells from healthy controls and
5627 cells from SLE patients. Cells with less than 1000 or greater than 3500 genes
detected, or greater than 30% mitochondrial RNA content were excluded from
analysis, with 162 cells from healthy controls and 2756 cells from SLE patients
passing the filters. Regularized negative binomial regression was performed on cells
from health controls or SLE patients separately using the sctransform normal-
ization method to normalize, scale, select variable genes, and regress out mito-
chondrial RNA content and number of UMIs. Healthy controls and SLE datasets
were then integrated using SelectIntegrationFeatures, PrepSCTIntegration, Fin-
dIntegrationAnchors, and IntegrateData. Following PCA, clusters were identified
using FindClusters to apply SNN-based clustering using the first 25 principal
components with k= 30 and resolution= 0.15. Clusters were annotated based on
expression of marker genes for known populations, including CD3E, CD4 (CD4
T cells), CD8A (CD8 T cells), LYZ (macrophages), KLRF1 (NK cells), MS4A1,
BCL11A (B cells), and IRF8 (monocytes). CD4 and CD8 T cell clusters were subset
using the subset function, leaving 93 cells from healthy controls and 1323 cells
from SLE patients. Normalization and integration were performed as above using
raw counts. Following PCA, clusters were identified using FindClusters to apply
SNN-based clustering using the first 25 principal components with k= 30 and
resolution= 0.7. Clusters were annotated based on expression of marker genes for
known populations, including CD4, CD40LG (TFH), NKG7, GZMH, CD8A (CD8),
TIGIT, IKZF2, FOXP3 (Treg), IL2RB, ITGA1 (CD8-resident memory), GZMK,
EOMES, CCR5 (CD8-central memory), ISG15, MX1, and OAS3 (CD4-ISG). Dif-
ferentially expressed genes between healthy controls and SLE patients were
determined using FindMarkers with the MAST algorithm across all genes. Com-
parison between human and mouse differential expression analysis was performed
by determining the homologs of each gene using getLDS from biomaRt (version
2.24.0). From the 13,517 genes identified by scRNA-seq of mouse follicular T cells
and 17,485 genes identified by scRNA-seq of human renal biopsies, 9576 homologs
were identified in both datasets.

Analysis of bulk human RNA-seq data. Reference bulk RNA-seq data from
human CD4+ PBMCs were obtained from Bradley et al.12. Differentially expressed
genes between healthy controls and SLE patients were determined using DEseq2
(version 1.26.0)85. Comparison between human and mouse differential expression
analysis was performed by determining the homologs of each gene using getLDS
from biomaRt (version 2.42.0)86. From the 13,517 genes identified by scRNA-seq of
mouse follicular T cells and 17,752 genes identified by bulk RNA-seq data of
human CD4+ PBMCs, 10,962 homologs were identified in both datasets.

Gene expression signature scoring. Pathway analysis and gene set enrichment
analysis was performed using clusterProfiler (version 3.14.3)87. Differentially
expressed genes were selected using P-adj < 0.01 and ranked according to log2FC
for enrichment analysis. Ranked gene lists were used to query GOBP88,89 and
MSigDB (version 7.0.1)90,91 signature libraries. Signature scores were assigned to
individual cells, clonotypes, or specificity groups using AddModuleScore and gene
lists from GOBP or MSigDB. For gene ontology analysis and annotation, differ-
entially expressed genes were selected using P-adj < 0.05 and absolute log2FC > 0.1
thresholds.

Data processing of scTCR-seq libraries. The cellranger (10X Genomics, version
4.0.0) vdj pipeline was used to align TCR reads to the vdj-GRCm38 alts ensemble
3.1.0 reference genome (10X Genomics). We obtained reads from 43,896 cells with
an average of 9461 reads per cell. Only TCRs with full length and productive α and
β chain sequences were included in analysis.

TCR clonality analysis. Clonotypes were determined by grouping cell barcodes
that shared the same pair of productive CDR3α and CDR3β amino acid sequences,

and clone size was calculated by the number of unique cell barcodes belonging to
an individual clonotype. Clonality was matched with gene-expression analysis in
Seurat by adding clonality information to the metadata using AddMetaData based
on cell barcodes. Unweighted TCR network analysis between samples and condi-
tions was performed using the qgraph package (version 1.6.5). To evaluate public
clonotype environments, non-metric multidimensional scaling (NMDS) was per-
formed using vegan (version 2.5-6) with k= 2 for comparisons between auto-
immune and non-autoimmune mice and with k= 6 for comparisons between
clusters. Stress < 0.1 was confirmed using a Shepard plot. Clonotype Shannon
diversity calculation and rarefaction analysis was performed using vegan with step
size= 20. Public clonotypes were identified using immunarch (version 0.5.5).

Unsupervised classification of TCR repertoires. TCR repertoires of each indi-
vidual chimera were constructed from CDR3αβ and VDJ gene usage from scTCR-
seq. TCR featurization was performed using a variable autoencoder (VAE) in
DeepTCR (version 1.4.15)13 with 256 latent dimensions, k= 5 for the first con-
volutional layer of the graph, learned latent dimensionality of 64 for amino acids,
learned latent dimensionality of 48 for VDJ genes, latent alpha of 0.001, and three
convolutional layers with 32, 64, and 128 neurons respectively. The VAE was
trained using an Adam Optimizer with learning rate= 0.001 until convergence
criteria of >0.01 decrease in determined interval was met. For sample-agnostic
clustering, a dendrogram was constructed to compare clonotype distribution in
UMAP space and PhenoGraph clustering using Kullback–Leibler divergence. TCR
repertoire classification performance was assessed using a K-nearest neighbor
(KNN) algorithm that was trained and tested following PhenoGraph clustering. K
was varied from 1 to 16 in a 5-fold cross-validation strategy, where the predictive
power was assessed using the left-out fold to calculate area under the curve (AUC).

Clonal expansion and gene expression correlation analysis. Spearman correla-
tions between gene expression and continuous variables such as clonotype size and
pseudotime were calculated across all cells or within individual clusters, as indicated.
Genes were ranked according to correlation coefficients (ρ). To correlate average gene
expression between individual clonotypes or specificity groups, the AverageExpression
function from Seurat was used to calculate average raw counts of each individual gene
across all cells belonging to each individual clonotype or specificity group.

GLIPH2 analysis. The grouping of lymphocyte interaction by paratope hotspots
(GLIPH2) algorithm14 was used to predict TCR specificity groups. GLIPH2 clusters
TCRs based on a global similarity index, determined by CDR3 sequences that differ by
up to one amino acid, and a local similarity index, determined by common CDR3
motifs of two to three amino acids. Global similarity was further restricted to TCR
members of the same length and amino acid differences at the same position based on a
BLOSUM62 matrix. Motifs with N or P encoded amino acids were given extra weight,
and TCRs were allowed to be assigned to multiple clusters. The GLIPH2 mouse CD4
dataset was used for reference. Fisher’s exact test was used to assess the statistical
significance of a given motif, and specificity groups were filtered for clusters from at
least four samples with significant V-gene bias (P < 0.05 by GLIPH2) and significant
final score (P < 1 × 10-5 by GLIPH2). Specificity group prediction was matched with
gene-expression analysis in Seurat using AddMetaData based on clonotype sequences.

CDR3β database construction. To predict antigen specificities, we created a single
reference database of known CDR3β sequences and their cognate antigens by down-
loading published data from VDJdb16, PIRD17, and McPAS-TCR18 (downloaded on
April 8, 2020). Clone metadata including disease relevancy, protein name, peptide
sequence, VDJ gene usage, associated publication, T cell type, and species information
was cleaned to eliminate different conventions in annotation across datasets, and an
additional metadata category of disease class (virus, bacteria, parasite, autoimmune,
cancer, transplant, immunodeficiency, or allergy) was added. CDR3 sequences were
limited to IUPAC letters and any duplicate entries were removed, resulting in a single
reference database consisting of 99,809 unique CDR3β sequences with annotated spe-
cificities for 469 antigens and 482 peptides (Supplementary Data 4). To test whether
TCR sequences identified by scTCR-seq had known antigen specifies, we searched for
the presence of each CDR3β sequence in our reference database. To extend antigen
predictions to CDR3β sequences not found in the reference database, we performed
GLIPH2 analysis on our reference database, identifying annotated antigens associated
with CDR3β local motif patterns. Antigen prediction was matched with gene-expression
analysis in Seurat using AddMetaData based on GLIPH2 local motif predictions.

Profile-based search for autoantigens. To predict antigens using a peptide-
directed approach, we identified all peptides associated with CDR3β sequences
preferentially expanded in follicular T cells from autoimmune or non-autoimmune
chimeras (clone size >3 and positive or negative log2FC). Peptides that were 9
amino acids long were weighted by clone size x fold enrichment and used to create
a positional-weighted matrix (PWM) using 2017PWM92. This matrix represents
the enrichment ratio of each amino acid at a particular position in the peptide.
Each PWM was used to score the mouse proteome (UniProt) using a 9-mer sliding
search. P values and Bonferroni-corrected p values were calculated for each peptide,
representing the probability of randomly selecting a peptide with fitness score as
high as or higher than the scored peptide.
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Supervised classification of TCR sequences. Peptides with at least 100 unique
known CDR3β sequences from our reference database were used for supervised training
using DeepTCR. TCR featurization was performed using CDR3β, V gene, and J gene
usage embedding of a sequence classifier. Supervised training was performed using
5-fold Monte-Carlo cross-validation on the classifier with 5 kernels for the first con-
volutional layer of the graph, learned latent dimensionality of 64 for amino acids,
learned latent dimensionality of 48 for VDJ genes, 12 nodes per fully-connected layer,
and three convolutional layers with 32, 64, and 128 neurons respectively. Training was
conducted on 75% of the data with learning rate= 0.001 and hinge-loss= 0 until
convergence criteria of >0.001 decrease in determined interval was met. Peptide-based
CDR3β classification model performance was assessed on the remaining 25% of data
using a bootstrapping method to sample Monte-Carlo predictions with replacement
5000 times to approximate AUC. Features for all sequences were extracted from the
latent space and used to perform hierarchical clustering of peptide annotations. This
trained sequence classifier was used for sequence inference using CDR3β, V gene, and J
gene usage of clonotypes identified by scTCR-seq. For repertoire-level visualization of
inference, each clonotype was represented in a UMAP representation of the feature
space of the training and validation datasets.

Statistical analyses. All values are expressed as mean ± SEM. We corrected for
multiple comparisons and report adjusted P values using Bonferroni correction. For
pathway analyses, Fisher’s exact test was used with Benjamini–Hochberg correction for
multiple testing. No statistical methods were used to predetermine sample size.

Visualization. Bar graphs were created using ggpubr (version 0.2.5.999) or Prism
(GraphPad), venn diagrams were created using vennDiagram (version 1.6.20), and
correlation vs correlation scatter plots were created using ggplot2 (version 3.3.0). Bio-
logical theme comparisons, network plots, and gene set enrichment plots were gener-
ated using clusterProfiler (version 3.14.3). Heatmaps and hierarchical clustering was
performed using pheatmap (version 1.0.12). UMAP and violin plots comparing gene
expression across samples and clusters were generated using Seurat. Sequence motifs
were created using ggseqlogo (version 0.1). Scatter plots comparing gene expression and
continuous variable were created using FeatureScatter from Seurat. Volcano plots were
generated using EnhancedVolcano (version 1.4.0) and differentially expressed genes
(absolute log2FC > 0.2 and P-adj <0.01) were highlighted in red. Experimental diagrams
and schematics were created with BioRender.com.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All scRNA-seq and scTCR-seq data generated in this study have been deposited in the
GEO database and are available under primary accession number GSE157649. The
following publicly available datasets were used: Immport SDY997, human SLE T cell
RNA-seq12 (https://doi.org/10.1371/journal.pone.0141171.s003), VDJdb, PIRD, McPAS-
TCR, UniProt mouse proteome (https://www.uniprot.org/proteomes/UP000000589),
and GRCm38 reference genome (https://www.ncbi.nlm.nih.gov/assembly/
GCF_000001635.20/). Source data are provided with this paper.

Code availability
Relevant code are available through github (https://github.com/egarren/scTfh).
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