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Single-cell analysis of diverse immune phenotypes
in malignant pleural effusion
Zhong-Yin Huang1,4, Ming-Ming Shao1,4, Jian-Chu Zhang2,4, Feng-Shuang Yi1, Juan Du1, Qiong Zhou2,

Feng-Yao Wu3, Sha Li3, Wei Li3, Xian-Zhen Huang3, Kan Zhai 1✉ & Huan-Zhong Shi 1✉

The complex interactions among different immune cells have important functions in the

development of malignant pleural effusion (MPE). Here we perform single-cell RNA

sequencing on 62,382 cells from MPE patients induced by non-small cell lung cancer to

describe the composition, lineage, and functional states of infiltrating immune cells in MPE.

Immune cells in MPE display a number of transcriptional signatures enriched for regulatory

T cells, B cells, macrophages, and dendritic cells compared to corresponding counterparts in

blood. Helper T, cytotoxic T, regulatory T, and T follicular helper cells express multiple

immune checkpoints or costimulatory molecules. Cell-cell interaction analysis identifies

regulatory B cells with more interactions with CD4+ T cells compared to CD8+ T cells.

Macrophages are transcriptionally heterogeneous and conform to M2 polarization char-

acteristics. In addition, immune cells in MPE show the general up-regulation of glycolytic

pathways associated with the hypoxic microenvironment. These findings show a detailed

atlas of immune cells in human MPE and enhance the understanding of potential diagnostic

and therapeutic targets in advanced non-small cell lung cancer.
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Malignant pleural effusion (MPE) is a common and dis-
abling complication of cancer; it accounts for >125,000
hospital admissions per year in the United States1,2. The

presence of MPE always indicates disseminated or advanced cancer;
consequently, the survival is poor, ranging from a median of
3–12 months depending on tumor factors and individual patients3–5.
It has been documented that the formation of MPE is dictated by a
complex tumor–host interplay that triggers pleural inflammation,
tumor angiogenesis, and vascular hyperpermeability6,7. A large
number of immune cells, including lymphocytes and myeloid cells,
are enriched in MPE, with CD4+ T cells being the dominant cell
type8,9. Previous studies have demonstrated that multiple subsets of
helper T (Th) cells, including regulatory T (Treg), Th1, Th17, Th9,
and Th22 cells, as well as activated naive B cells, play important roles
in the pathogenesis of MPE10–15.

By using single-cell RNA sequencing (scRNA-seq) technique,
the landscape of infiltrating immune cells has been demonstrated
in non-small cell lung cancer (NSCLC)16,17, hepatocellular
carcinoma18,19, head and neck squamous cell carcinoma20, breast
cancer21,22, and other tumors. These studies have shown that the
activation of B cells, increase in Treg cells, decrease in cytotoxic
T cells, and the enrichment of exhausted T cells are the immune
characteristics of the solid tumor microenvironment. However,
most of these studies have been limited to early-stage primary
tumors, and specific aspects of MPE-associated tumor micro-
environments remain unknown. The major objective of this study
was to determine the specific cellular and transcriptional features
in MPE at the resolution of single cells using scRNA-seq.

In this work, we show changes in transcriptional state, reg-
ulatory networks, and intercellular communication between MPE
and matched peripheral blood from the same patients. This study
identifies the cellular and biological features that are specific to
MPE and describes the different immune status from the
primary tumor.

Results
scRNA-seq resolves immune cell types in MPE. To characterize
the immunological features of MPE environment, we performed
droplet-based scRNA-seq to study the transcriptomic profiles of
immune cells in MPE and blood (Fig. 1a). Given that neutrophils
are the predominant type of leukocytes in blood, whereas lym-
phocytes are the predominant type of immune cells in MPE, we
excluded polynuclear cells from our scRNA-seq analysis and
focused on mononuclear cells. After quality filtering of gene
expression normalization for read depth and mitochondrial read
count, 62,382 cells in which 200–6,000 genes could be detected
remained for subsequent analysis. Of these, 33,089 and 29,293
cells originated from MPE and blood, respectively (Fig. 1b and
Supplementary Table 1).

We applied principal component analysis across all cells and
classified them into 19 groups of cell types using graph-based
clustering on the informative principal components (Supplemen-
tary Fig. 1a, b). The 19 expression groups were grouped by
hierarchical clustering, leading to the characterization of major
cellular compartments of T cells, B cells, natural killer (NK) cells,
and myeloid cells, with the most abundant MPE immune cells
being T cells (Fig. 1c–e and Supplementary Fig. 1c). All cell types
were from multiple patients, suggesting that cells were grouped
according to the immune-associated characteristics rather than by
patient specificity.

For the differentially expressed genes of each cell type between
MPE and blood (Supplementary Data 1), we used gene set
enrichment analysis and weighed the gene effect on the gene
ontology to define pathways related to MPE; we found that the
pathways of glycolysis, as well cell proliferation and immune

response signals, were significantly higher in MPE (Fig. 1f and
Supplementary Fig. 1d). Among the immune cell types, T cells
were significantly enriched in MPE, while NK cells were
significantly enriched in blood (Fig. 1g).

Dissection and clustering of T cells in MPE patients. The T cell
subsets according to cell lineage and functional state were iden-
tified as CD4+ T cells (naive CD4+ T cells, Th1/17 cells, T fol-
licular helper [Tfh] cells, and Treg cells); CD8+ T cells (naive
T cells, cytotoxic T cells, and exhausted T cells); and proliferated
T cells, which had both CD4+ and CD8+ T cells (Fig. 2a, b and
Supplementary Fig. 2a–d). In accordance with previous findings
in NSCLC16–18, we also found the depletion of cytotoxic T cells
and the emergence of Treg cells in MPE compared with blood
(Fig. 2c).

To understand the state transitions among T cell subtypes, we
applied Destiny to draw diffusion maps so as to construct the
potential developmental trajectories of T cell subtypes based on
the expression data. The inferred developmental trajectory from
the expression data or marker genes suggested that naive T cells
eventually entered a state of exhaustion through cytotoxic T cells
in CD8+ T cells (Fig. 2d), which is consistent with the previous
studies17. In CD4+ T cells, naive T cells were positioned at the
opposite end from Tfh cells and Treg cells, and Th1/17 cells were
mainly located at the center (Fig. 2e). PDCD1, an important
immune-checkpoint target, was highly expressed in Tfh,
suggesting that Tfh cells might also be one of the effector cells
of PD1 inhibitors in MPE. We next analyzed the transcript
difference between Tfh and Treg cells; we found that metabolism-
related genes TPI1, FTL1, FTH1, PKM, GPI, and SCL16A3 were in
the top 20 differentially expressed genes in Tfh cells, indicating
that Tfh cells may have unique metabolic characteristics
(Supplementary Fig. 2e).

A total of 79.7% CD4+ T cells expressed αβ T cell receptor
(TCR), and the fraction in CD8+ T cells was 78.5%. TCR
clonotypes resided both in MPE and in the corresponding blood
from the given patient (Supplementary Fig. 2f). Among CD8+

T cells, significantly shared TCRs occurred between cytotoxic and
exhausted T cells (Fig. 2f). These shared TCRs were found in each
sample, which indicates that T cell expansion is a common
phenomenon in MPE, rather than a characteristic of certain
cancer patients. We labeled these exhausted T cells expressing
shared TCR with cytotoxic T cells as exhausted-c1 clusters and
the unexpanded exhausted T cells as c2. Exhausted-c1 T cells
accounted for 88.8% of the total exhausted T cells; they expressed
a higher exhausted signature compared with other cell types
(Supplementary Fig. 2g, h). Patients with high exhausted-c1
signature gene expression (after normalizing for cell fractions by
CIBERSORT) showed significantly poorer overall survival (Log-
rank P= 0.032) compared with those with a low expression.
Furthermore, we showed that the combination with Tfh
signature, which was the exhausted cluster in CD4+ T cells,
was able to discriminate the prognosis of patients with high
exhausted-c1 signature (Fig. 2g). Although further studies are
needed, the association of expanded exhausted T cells and
unfavorable clinical features may guide future diagnostic
strategies and treatment.

Dissection and clustering of B cells in MPE patients. We
identified seven subpopulations of CD19+ B cells and four plasma
cell subsets according to the expression and distribution of
canonical B cell markers23. Four B cell subsets highly expressed
IGHD, TCL1A, and IL4R—the hallmark genes of naive cells—and
showed low-to-no expression of CD27; these B cell subsets were
designated as naive B cells. Three B cell subsets highly expressed
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CD24 and CD27 and were designated as regulatory B (Breg) cells.
Plasma B cells expressed immunoglobulin gamma (IGHG) and
XBP1 (Fig. 3a–c and Supplementary Fig. 3a–c). Breg cells were
significantly enriched in MPE, while plasma cells were sig-
nificantly enriched in blood (Supplementary Fig. 3d).

To further investigate differential transcriptomic changes in B
cells, we compared the expression profiles between Breg cells and

naive B cells in MPE. We compared the differential genes of naive
B cells and Bregs in MPE and blood, respectively. We concluded
that top-ranked upregulation of gene expression in naive B cells
and Bregs in MPE was in a similar enrichment pattern. Both
naive B and Breg cells in MPE expressed more glucose
metabolism (PKM, TPI1, ENO1, and LDHA), hypoxia response
(NR4A2, CXCR4, and HIF1A), and cell proliferation (H3F3B,
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MIF, and ZFP36L2) signaling compared with their corresponding
counterparts in blood. TNFRSF13B, ITGB1, and LGALS1 genes
were all significantly highly expressed in Breg cells (Fig. 3d),
indicating that Breg cells have the function of regulating other
important immune cells, such as T cells, through cell-to-cell
interaction. To explore the interaction between Breg cells and
T cells, we examined whether specific ligand–receptor pairs could
inform the interaction between Breg cells and effector T cell
subsets (Th1/17 cells, Treg cells, Tfh cells, cytotoxic T cells, and
exhausted T cells) that drives the adaptive immunity network.
Our data showed that, in MPE, the number of predicted
interactions between Breg cells and CD8+ T cells (both cytotoxic
and exhausted T cells) was strongly reduced, and the cell–cell
communication landscape of Breg cells was dominated by CD4+

T cells, including Th1/17, Treg, and Tfh (Fig. 3e and
Supplementary Fig. 3g).

B cell receptor (BCR) was detected on the surface of 91.4% of B
cells. We first performed B cell Ig isotype analyses. A total of
85.4% of naive B cells expressed IgM, and IgD was expressed in
the rest. The proportion of IgM expressed in Breg cells was <35%,
and the proportion of IgG expression was 41.9%. Almost no IgE+

B cells were detected. Both in total B cells and in three B cell
clusters, the expression ratios of the four Ig isotypes were not
different between MPE and blood (Supplementary Fig. 4a, b). No
significant BCR expansion was found in B cells either in MPE or
in blood, indicating that B cell immune response to tumor might
not be from B cell clonotypic expansion (Supplementary Fig. 4c).

Dissection and clustering of myeloid cells in MPE patients. We
detected canonical marker genes of myeloid cells and identified
clusters in MPE and blood. Seven monocyte/macrophage clusters
were defined by high expression levels of marker genes CD14,
FCGR3A, and CD68. Two dendritic cell (DC) clusters were
designated by high expression levels of CD1C, CLEC10A, and
FCGR1A (Fig. 4a–c and Supplementary Fig. 5a–c).

Macrophages were significantly enriched in MPE and divided
into three subsets, and monocytes were enriched in blood and
were divided into four subsets (Supplementary Fig. 5d). Macro-
phage phenotypes are divided into M1 or M2 subsets with
antitumorigenic and protumorigenic functions, respectively24.
We examined the expression levels of marker genes for M1 (e.g.,
STAT1 and CCL5) and M2 (e.g., MRC1, MS4A4A, IL4I1, and
CD163) states across the macrophage clusters and found that
MPE macrophages highly expressed M2 marker genes (Fig. 4d).
This indicates that the M1/M2 classification had no obvious
relationship with the subclasses of monocyte/macrophages based
on gene expression. The immune response, antigen presentation,
and glycolysis pathway activity of macrophages were significantly
enhanced as compared with monocytes (Fig. 4e). DCs had two
subsets; DC-c7 was significantly enriched in MPE and had higher
levels of immunoactivated genes MIF, ALOX5, CKLF, and CD1s
(Fig. 4f). The activated DC cluster was enriched not only in genes
encoding antigen presentation but also in genes of glycolysis
(Supplementary Fig. 5e). We analyzed the trajectory of MPE
macrophages and blood monocytes; we found that these cells

have their own trajectory states, suggesting that tumor-infiltrating
macrophages are different from monocytes (Fig. 4g).

Cell-type-specific metabolic reprogramming. Our data showed
that immune cells exhibited different metabolic transcriptome
characteristics, among which Treg cells, Tfh cells, cytotoxic CD8+

T cells, exhausted CD8+ T cells, and NK cells had a higher overall
expression of metabolism-related genes, compared with other cell
types (Supplementary Fig. 6a). Such observations suggested that
these immune effector cells had higher metabolic demands.

Compared with blood, the most increased expression of the
metabolic pathways was found in Tfh and macrophages in MPE
(Fig. 5a). Nearly all cell types in MPE upregulated the expression
of metabolic genes involved in glycolysis; this universal metabolic
feature of these immune cell subtypes was in line with the hypoxic
environment in pleural effusion (Fig. 5b). Interestingly, compared
with cells in the blood, Tfh cells in MPE exhibited significant
upregulation of glycolysis, cysteine, and methionine metabolism
in addition to a decrease in the pentose phosphate pathway,
arachidonic acid metabolism, and alpha-linolenic acid metabo-
lism (Supplementary Fig. 6a, b). In the glycolytic metabolism
pathway map drawn with the highly expressed genes in MPE by
Tfh cells, we noticed some rate-limiting genes, such as HK, PFK,
and PK, thereby further confirming that glycolytic metabolism of
Tfh cells is activated in MPE (Fig. 5c). In addition, pentose
phosphate pathway was significantly downregulated, whereas
OXPHOS and fatty acid oxidation were slightly upregulated,
which is consistent with M2 polarization phenotype of macro-
phages in MPE (Fig. 5b and Supplementary Fig. 6b). Taken
together, these metabolic phenotypes of immune cells may help to
establish their functions in interacting with other cell types and
modulating the tumor microenvironment.

Cluster-specific expression of genes associated with disease
risk. Previously, genome-wide association studied (GWASs) have
identified 54 genes associated with susceptibility to NSCLC in the
Chinese population25–28. We further analyzed the expression
levels of these genes across the clusters identified in MPE patients
and found both expected and surprising cluster-specific expres-
sion patterns (Fig. 6). BPTF was highly expressed in NK cells and
T cells, inhibiting NK cell activity and reducing T cell-mediated
antitumor immunity29,30. Among the subgroups of T cells, BPTF
showed the highest expression in Treg cells and exhausted CD8+

T cells (Supplementary Fig. 7a). Specifically, the expression of
BPTF in MPE was significantly higher than that in blood, con-
sistent with the exhaustion state of immune cells in MPE. STAT1,
which participates in interferon (IFN) immune regulation of B
cells31, was highly expressed in all B cell subtypes in MPE
(Supplementary Fig. 7b). IL1B was expressed in myeloid cells
(Supplementary Fig. 7c); it is an important mediator of the
inflammatory response involved in a variety of cellular activities,
including cell proliferation, differentiation, and apoptosis32. Some
susceptibility genes lacking functional research in tumors,
including AFTPH, PRRC2A, HIST1H1E, and MIPEP, were also

Fig. 1 Comprehensive dissection and clustering of single cells from MPE and blood. a The flowchart of the overall study design. scRNA-seq and
expression analysis of malignant pleural effusion (MPE) and blood samples (n= 5) were performed on the 10× Genomics platform. b t-SNE plots within
each sample type, color-coded by cell types. c Average proportion of each cell type derived from each patient, color-coded by cell types. d Canonical
marker genes for the immune cell types defined in Fig. 1b. Data are colored according to expression levels. e Dot plot of average expression of canonical
marker genes for the immune cell types defined in Fig. 1b. f Gene ontology (GO) enrichment analysis using the genes upregulated in MPE compared with
blood for each cell type. The statistical significance was tested by Fisher’s exact test and adjusted by Benjamini–Hochberg correction. g Frequencies of four
immune cell types in MPE and blood according to the t-SNE plot using scRNA-seq data. Data are presented as mean ± SD. Comparisons were made using
two tailed paired Student’s t test. Blood, n= 5 samples, MPE, n= 5 samples.
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highly expressed in immune cells. Our results also showed that
there were changes in the expression of susceptibility genes in the
immune cells of tumor patients, suggesting that these single-
nucleotide polymorphisms and susceptibility genes might affect
the occurrence and development of tumors by regulating the
function of immune cells.

Chemokine signature in macrophages is associated with lung
adenocarcinoma (LUAD) prognosis. Next, we assessed the
contribution of specific immune cell types to MPE formation. In
the pleural cavity, lymphocytes govern the occurrence of
vasoactive events and the development of an MPE by important
signal molecules, such as chemokines, cytokines, and growth
factors6,33,34. Previous studies have revealed several signaling
pathways involved in MPE formation. We considered the gen-
erality and prognostic significance of the key signaling molecules
in individual cellular components. Chemokine signature
(including CCL2, CCL20, CCL22, CXCL1, CXCL2, and CXCL8),
with a higher expression in macrophages, had no association with
the survival of LUAD patients in the Cancer Genome Atlas
(TCGA) cohort. However, after normalization for macrophage
fractions, patients with high expression of the chemokine sig-
nature showed significantly poorer overall survival compared
with those with a low expression (Fig. 7). Although several

molecular mechanism studies on these important signaling
pathways have been investigated in MPE formation, their asso-
ciations with MPE diagnosis and therapy are still controversial.
Our findings provided support for the association of cell-specific
expression of chemokine signatures with the prognosis.

Discussion
In the present study, we provided a detailed molecular description
of immune cells in human MPE at the single-cell level, charting
differences in frequencies and molecular state of immune cells in
MPE and blood. Specifically, we noted the increases in the
numbers of Treg cells, B cells, and macrophages in MPE and
showed transcriptional cell states important to MPE, mainly
including Tfh cells and Breg cells. Moreover, we identified Breg
cell-specific intercellular communication with CD4+ T cells in the
MPE environment. We discovered that glycolytic pathways are
generally upregulated in MPE immune cells.

By using scRNA-seq, Lavin et al. demonstrated that, as early as
in stage I, NSCLC lesions have a strongly reduced CD8+ T
effector/Treg ratio compared with normal tissues16; Zhang et al.
demonstrated that the state of CD8+ T cells in primary NSCLC
appears to be shaped by two distinct processes, the inherent T cell
developmental program and the tumor-induced T cell
exhaustion8. The expression of T cell inhibitory receptors is
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Fig. 3 Dissection and clustering of B cells in MPE patients. a t-SNE plots of B cells within each cell type, color-coded by B cell subsets. b Average
proportion of each cell subset derived from each patient (left panel) and MPE or blood (right panel). c Dot plot of the average expression of canonical
marker genes for B cells. Y-axis: Seurat-clusters in Supplementary Fig. 3a. d Scatter plot of differentially expressed genes of the Breg cells in comparison
with naive B cells in MPE. e Heatmap of cell-to-cell interaction scores between Breg cells and Th1/17 cells, Treg cells, or Tfh cells.
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associated with T cell dysfunction in the tumor environment.
Consistent with previous research35, T cells expressed a higher
level of inhibitory receptors in MPE compared with T cells in
blood. Moreover, Tfh and exhausted-c1 cells expressed the
highest levels of inhibitory receptors in CD4+ T and CD8+

T cells, respectively. We identified the cell cluster with the highest

exhausted score among CD4+ and CD8+ T cells in the MPE
immune microenvironment.

Immunosuppressive signals play important roles in cancer
progression. Previously, we have shown that, compared with
pleural lavage from lung cancer patients without MPE, the
numbers of Treg cells in MPE from lung cancer patients were
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Fig. 5 Metabolic heterogeneity in MPE patients. a Heatmap of the indicated metabolic pathway scores in MPE. The expression value used in the heatmap
is the ratio of the average enrichment scores of the corresponding pathway in MPE and blood. b Distributions of the average enrichment score of the
indicated metabolic pathways in MPE immune cell subtypes. c Map of glycolysis metabolic pathways of Tfh cells. The genes marked in red are upregulated
in MPE vs. blood. n= 5 samples. The box plots were defined by the interquartile range (IQR, the range between the 25% and 75%) and the median,
whiskers represent the upper and lower value within 1.5 times the IQR.
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significantly increased, and these Treg cells interact with other Th
cells and play immunosuppressive roles in the pathogenesis of
MPE10–14. By using scRNA-seq in the present study, we further
found that naive T cells differentiated into Treg cells and Tfh cells
through the intermediate state of Treg cells and that Tfh cells
expressed higher levels of immunosuppressive signals compared
with Treg cells (Supplementary Fig. 2h). In addition, CD16+ NK
cells were strongly reduced in MPE, and the pleural NK cells
expressed poorly cytolytic, and expansion or activation, signaling,
including lower levels of granzyme B and less IFN-γ, compared
with blood NK cells. These findings regarding Tfh and NK cells in
MPE might provide insights into the mechanisms of tumor
immunosuppression in advanced NSCLC.

Compared with T cell subsets, knowledge about the functions
of B cell subsets in MPE progression is still insufficient. Previous
studies have shown a mechanism by which activated naive B cells
promote MPE formation by regulating Th1/Th17 cell
responses15. In line with previous findings, naive B cells were less

abundant in MPE than in blood. More importantly, we identified
three Breg cell subsets, and all three Breg cell subsets were
increased in MPE. Furthermore, we found that both naive B cells
and Bregs showed strong signals of glycolytic, hypoxia response,
and IFN-γ signaling pathways in MPE compared with blood; we
also identified that the interaction between Bregs and T cells
mainly occurred in CD4+ T cells, instead of CD8+ T cells.

It has been shown that the enrichment of macrophage gene
signatures is significantly associated with a survival disadvantage
in lung cancer36,37. Previous study has further demonstrated that
M2 macrophages are remarkably more common in MPE than in
benign pleural effusion and that the number of M2 macrophages
is a helpful index for differential diagnosis of MPE38. A previous
study reported that MPE-Mφ had both M1 and M2 macrophage
gene expression patterns39; likewise, both M1 and M2 signatures
were recorded in macrophages in our sequencing data, but
obviously, the M2 signature was stronger than that of M1.
Looking for an efficient way to reverse the signature of

Fig. 6 The expression of genes determined by genome-wide association studies in MPE and blood. The heatmaps show the average expression levels of
genes previously indicated in genome-wide association studies of non-small cell lung cancer in Chinese Han.

a b

Chemokinehigh

Chemokinelow

TCGA cohort 

TCGA cohort  (normalized with macrophage fraction

Fig. 7 Expression and survival analysis of genes associated with MPE formation. a The heatmap shows the mean expression of genes previously
indicated to be associated with MPE formation. b The Kaplan–Meier overall survival curves of TCGA LUAD patients grouped by the gene signature of
chemokine. The high and low groups are divided by the median value of mean expression of chemokine (upper panel) or with normalization by CIBERSORT
(lower panel). Statistical significance was calculated using two-sided log-rank test.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27026-9 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6690 | https://doi.org/10.1038/s41467-021-27026-9 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


macrophages and increase the M1 macrophage population might
become a direction for tumor therapy. As expected, macrophages
in MPE had distinct cellular and gene expression changes as
compared with monocytes in blood; moreover, MPE macro-
phages highly expressed M2 marker genes, suggesting M2 mac-
rophages as a potential cellular candidate for therapeutic target
of MPE.

Tumor cells undergo metabolic changes in order to adapt to
the tumor microenvironment, and immune cells require complex
metabolic transcriptome heterogeneity to perform their specific
functions. In MPE, several important immune cells, including
Treg cells, Tfh cells, cytotoxic CD8+ T cells, exhausted CD8+

T cells, and NK cells, exhibit a higher overall expression of
metabolic transcriptome characteristics. Specifically, compared
with their counterparts in blood, Tfh cells in MPE exhibited the
significant upregulation of glycolysis, cysteine, and methionine
metabolism in addition to the decrease in the pentose phosphate
pathway, arachidonic acid metabolism, and alpha-linolenic acid
metabolism. Pathway mapping of genes involved in glycolytic
metabolism confirmed that MPE Tfh cells upregulated the
expression levels of rate-limiting steps in the glycolytic metabolic
pathway, such as HK, PFK, and PK.

Although previous studies have shown that CD4+ T cells
exhibited significantly higher levels of OXPHOS compared with
CD8+ T cells40, similar changes were not observed in our study.
Previous studies have also shown that hypoxia activates signal
transduction pathways that induce glycolysis and suppress
mitochondria-associated pathways41,42; therefore, the interaction
between hypoxia, glycolysis, and energy metabolism is highly
dynamic in MPE cells, and the quantitative relationship between
them is at least partially determined by the inhibitory effect of the
hypoxia-inducible factor signaling pathway on oxygen avail-
ability. However, our finding of several immune cells with
increasing glycolytic activity in MPE might be a consequence of
more severe hypoxic environment in MPE than in primary lung
tumor or blood, and these cells may consume more energy to
support their cytotoxic capacity and function in tumor immunity.

By comparing the gene expression profiles of single cells from
MPE and blood, we were able to identify metabolic features
among different subpopulations of immune cells whose meta-
bolism was greatly influenced by the shortage of nutrients in
MPE. We found that some cell subpopulations in MPE, including
Tfh cells, cytotoxic CD8+ T cells, and macrophages, adopted
metabolic phenotypes distinct from those in blood. These results
highlight the tremendous impact of the microenvironment on
cellular metabolism. The differences in the environment cause the
metabolic features of subpopulations of immune cells in MPE to
be different from those in blood, possibly also in primary tumors.

We investigated the relationship between the signature genes of
15 cell clusters identified in MPE and patient survival in all
TCGA LUAD cases or advanced cases (stage III and IV) and
found no signature gene set associated with the patients’ survival
(Supplementary Fig. 8). In addition, we linked the pathologic
stage with cellular subpopulation fraction in the TCGA cohort.
Twenty-two immune cell fractions identified by CIBERSORT
were used as control. We used the marker gene expression pro-
files in the MPE data and in the CIBERSORT algorithm to cal-
culate the proportion of macrophages in TCGA LUAD. The
proportions and the trend of changes with the stage of macro-
phage calculated by these two data sets were consistent, indicating
that the cell proportion of TCGA data calculation using our
expression profile is reliable. The ratio of Th1/17 decreased and
the ratio of exhausted T cells increased, suggesting that these two
cell types might be linked to tumor progression (Supplementary
Fig. 9). Furthermore, combining the results of TCR sequencing,
the exhausted CD8+ T cells were divided into the expanded c1

cluster and the non-expanded c2 cluster. Patients with high
exhausted-c1 signature gene expression (after normalizing for cell
fractions by CIBERSORT) showed significantly poorer overall
survival compared with those with a low expression. Further-
more, we showed that, combined with the Tfh signature, which
was the exhausted cluster in CD4+ T cells, the exhausted sig-
nature was able to discriminate the prognosis of patients with
high exhausted-c1 signature (Fig. 2g). Taken together, we iden-
tified T cell clusters, expanded exhausted T cells, predicting poor
prognosis in advanced LUAD, and the statistical results were
improved when combined with Tfh cells. Signature genes of
expanded exhausted T cells and Tfh cells might serve as potential
clinical biomarkers for advanced LUAD patients.

In conclusion, this study offers a global picture of immune cells
from the complex MPE microenvironment and depicts tran-
scription feature activities of immune cells that are distinct from
those of blood immune cells. Our data can be used as a resource
for follow-up in-depth research to complete deeper biological
exploration and provide therapeutic targets and biomarkers for
the immunotherapy of advanced NSCLC.

Methods
Study patients and sample collection. This study was conducted in accordance
with the approved guidelines of the Institutional Review Boards of Beijing Chao-
Yang Hospital, Capital Medical University; Union Hospital, Tongji Medical Col-
lege; and Nanning Fourth People’s Hospital. Five patients with definite diagnosis of
MPE (4 men and 1 woman; mean age, 65 years [range, 56‒72 years]) were enrolled
in our study (Supplementary Table 1), and all the study participants provided
written informed consent. Pleural fluid samples from each subject were collected in
heparin-treated tubes within 24 h after hospitalization, using standard thoracent-
esis techniques. Approximately 5 mL venous blood was drawn simultaneously. The
pleural effusion (PE) specimens were immediately immersed in ice and were then
centrifuged at 800 × g for 5 min. The cell-free supernatants of PE and sera were
frozen at −80 °C immediately after centrifugation. Mononuclear cells from pleural
fluid and blood were isolated by Ficoll-Hypaque gradient centrifugation (Phar-
macia, Uppsala, Sweden) within 1 h and were resuspended in phosphate-buffered
saline.

Single-cell cDNA library preparation and sequencing. In accordance with the
manufacturer’s instructions (10× Genomics, Pleasanton, CA), single-cell libraries
were constructed using the Single Cell 5′ Library & Gel Bead Kit (1000167), Single
Cell V(D)J Enrichment Kit, Human T Cell (1000005), or Single Cell V(D)J
Enrichment Kit, Human B Cell (1000016). According to the cDNA synthesis and
Chromium Single Cell A Chip Kits (120236, 10× Genomics), cell suspensions (300‒
600 living cells per microliter) were loaded on a Chromium Controller (1000202,
10× Genomics) to generate single-cell gel beads in the emulsion. The cDNA quality
was assessed using an Agilent 4200 TapeStation System (Agilent, Santa Clara, CA).
The cDNA libraries were constructed using the Single Cell 5′ Library Construction
Kit (1000020, 10× Genomics) and i7 Multiplex Kit (120262, 10× Genomics) and
sequenced using a NovaSeq 6000 System (Illumina, San Diego, CA) with a pair-end
150 bp reading strategy. For each sample, at least 220 GB sequencing data were
generated for gene transcriptome sequencing and at least 10 GB of sequencing data
were generated for TCR/BCR repertoires (performed by CapitalBio, Beijing,
China). The data were finally aligned to the GRCh38.93 reference genome with Cell
Ranger (v.3.0.2, 10× Genomics) using “mkfastq” and “count” commands and
default parameters. The results of the Cell Ranger analysis contained the count
values of unique molecular identifiers assigned to each gene in each of the cells for
each individual sample using all mapped reads.

Cell filtering and quality control. The output filtered gene expression matrices
were analyzed by the Seurat software package (v.3.0.0) of R software (v.3.5.3).
Genes with an expression ratio of >0.1% and cells with 200–6,000 detected genes
were selected for further analyses. Low-quality cells with >10% unique molecular
identifiers derived from the mitochondrial genome and doublets identified by
DoubletFinder were removed (Supplementary Table 1).

Cell clustering. Seurat was used to complete the clustering of immune cells. We
used the “NormalizeData” function to normalize and homogenize the data with the
default scaling parameter of 10,000 and used log1p to perform natural logarithmic
conversion. “FindVariableGenes” function was used to identify highly variable
genes with parameters for “mean.function= ExpMean, dispersion.function=
LogVMR, x.low.cutoff= 0.0125, x.high.cutoff= 3, and y.cutoff= 0.5.” We stan-
dardized the data with the “ScaleData” function. After performing PCA analysis
using highly variable genes, the first 20 principal components and a resolution of
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0.8 were selected for the following cluster analysis and visual dimensionality
reduction by t-distributed stochastic neighbor embedding. We used the “FindAll-
Markers” or “FindMarkers” function to determine the marker genes of each cluster
relative to all other clusters or to a specific cluster. The selected parameters of
marker genes were detected in at least 30% of the cells in the target cluster, under P
value of Wilcoxon test <0.05 and the differential expression threshold of 0.25 log
fold change. FeaturePlot, DotPlot, VlnPlot, and DoHeatmap were used for visua-
lization of gene expression levels. We labeled the obtained clusters as T cells, B
cells, NK cells, or myeloid cells through known classic markers (T cells: CD3D,
CD3E, CD3G, CD2, TRAC; B cells: MS4A1, CD79A, CD79B, IGHM, IGHD; NK
cells: NKG7, GNLY, KLRD1, NCR1; myeloid cells: LYZ, CD14, FCGR3A, CD163,
CSF1R) and finally analyzed each of these clusters separately to identify the finer
clusters by repeating the above operations.

Differentially expressed gene and pathway analysis. Expression matrix derived
between sets of cells was analyzed by the differentialGeneTest function of Monocle 3
for differential gene analysis. The gene ontology annotation was also performed by
Monocle 3 with the compareCluster function (fun= “enrichGO”). Significantly dif-
ferent values were determined with an False Discovery Rate-corrected P value < 0.05.
For metabolic analysis, metabolism pathway signature genes were downloaded from
KEGG (Supplementary Data 2) and the average enrichment score was determined
for each cluster.

TCGA data analysis. The gene expression data and the clinical data were
downloaded from cBioPortal (http://www.cbioportal.org/). A total of 406 patients
with survival information and no preoperative treatment were included in the
follow-up analysis. CIBERSORT algorithm was used to calculate the proportion of
immune cell types identified by CIBERSORT or our MPE data43. To eliminate the
influence of different immune cell proportions, for each gene set, we divided the
expression in the TCGA data by the cell fraction estimated by CIBERSORT for
normalization. According to the median of the average expression after normal-
ization of the gene set, the patients were divided into a high expression group and a
low expression group. The Kaplan–Meier survival curve analysis was performed by
“survival” (3.2-10) and “survminer” (0.4.9) packages in R, and it showed the
prognostic results between the high- and low-expression groups. P < 0.05 was set as
the significance threshold.

Signaling score. AddModuleScore function in the Seurat was used for signaling
score calculation. Genes used for exhausted score in CD8+ T cells were: HAVCR2,
CXCL13, CCL3, SIRPG, IFNG, TIGIT, GZMB, PDCD1, PARK7, TNFRSF9, ACP5,
CTLA4, RBPJ, CXCR6, CD27, FKBP1A, BST2, TPI1, MIR155HG, PTTG1, CD63,
SAMSN1, RGS1, ITGAE, HLA-DRA, IGFLR1, KRT86, ENTPD1, DUSP4, SIT1,
TOX, PHLDA1, CCND2, GPR25, LAYN, PRDX5, SARDH, FASLG, ANXA5, CTSD,
PDIA6, RANBP1, COTL1, TNFRSF1B, IDH2, CD38, CD82, LAG3, MIR497HG,
APOBEC3C, ITM2A, COX5A, IFI35, NDFIP2, TNFRSF18, KRT81, DNPH1, RGS2,
HMGN1, DYNLL1, SNRPB, SYNGR2, RAB27A, PSMC3, GALM, FABP5, UBE2L6,
MYO7A, PRDX3, DDIT4, STMN1, CDK2AP2, VCAM1, SNAP47, PSMB3, ISG15,
HLA-DRB5, CKS2, TNIP3, CD7, PSMD4, ATP6V1C2, PSMD817.

Trajectory analysis. Destiny software package (v.2.6.2) was used to perform the
trajectory analysis based on dimensionality reduction using diffusion maps. In each
case, only the cells relevant to the question at hand were analyzed.

Interactions between cell types. Ligand–receptor interactions were determined
based on the expression of ligands by one cell type and corresponding receptors by
another cell type. Ligand–receptor interacting pairs were referenced from Cell-
PhoneDB (www.CellPhoneDB.org, accessed on 10/30/2019). The corresponding
values were used to identify potential cell–cell interactions and significant inter-
actions. Seventy-three ligand–receptor pairs were identified with at least one
comparison with P < 0.05 and visualized as a heatmap using R package.

GWAS-related gene scores. NSCLC-associated GWAS genes are listed in Sup-
plementary Table 225–28. We analyzed the expression patterns of 54 genes pre-
viously reported in the GWAS of NSCLC in Chinese Han. For each gene, we
calculated its average scaling (Z normalized) expression. The average enrichment
score of GWAS genes was determined for each cluster and represented as a
heatmap.

TCR and BCR analysis. Cell Ranger was used for alignment, filtering, barcode
counting, and UMI counting for immune repertoire analysis. Cells with unique
productive TCR a–β pairs or with unique productive BCR H chain were analyzed.
The expanded cells were defined as those with the β chain or H chain shared by at
least two cells.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The raw sequence data and partially processed data have been deposited in Genome
Sequence Archive for Human (HRA000153) and Gene Expression Omnibus database
(GSE185058). The remaining data are available within the article and Supplementary
Information. Source data are provided with this paper.

Code availability
Example scripts to process and analyze data are available at https://github.com/
michellecyyy/scRNAseq_MPE. Detailed information is available from the corresponding
author upon reasonable request.
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