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slow by comparison, resulting in a significant gap in 
knowledge. We developed a software package to help 
address this knowledge gap. The BioAge R package, 
available for download at GitHub (http://​github.​com/​
dayoo​nkwon/​BioAge), implements three published 
methods to quantify biological aging based on analy-
sis of chronological age and mortality risk: Klemera-
Doubal biological age, PhenoAge, and homeostatic 
dysregulation. The package allows users to para-
metrize measurement algorithms using custom sets of 
biomarkers, to compare the resulting measurements 
to published versions of the Klemera-Doubal method 
and PhenoAge algorithms, and to score the measure-
ments in new datasets. We applied BioAge to safety 
lab data from the CALERIE™ randomized controlled 
trial, the first-ever human trial of long-term calorie 
restriction in healthy, non-obese adults, to test effects 
of intervention on biological aging. Results contrib-
ute evidence that CALERIE intervention slowed bio-
logical aging. BioAge is a toolkit to facilitate meas-
urement of biological age for geroscience.

Keywords  Biological age · Geroscience · 
CALERIE · Biomarkers · Aging · Healthspan

Introduction

Biological aging is the gradual and progressive 
decline in system integrity that occurs with advancing 
chronological age [1]. Processes of biological aging 

Abstract  Methods to quantify biological aging are 
emerging as new measurement tools for epidemiol-
ogy and population science and have been proposed 
as surrogate measures for healthy lifespan extension 
in geroscience clinical trials. Publicly available soft-
ware packages to compute biological aging measure-
ments from DNA methylation data have accelerated 
dissemination of these measures and generated rapid 
gains in knowledge about how different measures per-
form in a range of datasets. Biological age measures 
derived from blood chemistry data were introduced 
at the same time as the DNA methylation measures 
and, in multiple studies, demonstrate superior per-
formance to these measures in prediction of healthy 
lifespan. However, their dissemination has been 
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begin with accumulation of cellular level changes that 
increase vulnerability of tissues and organs to loss of 
function, ultimately causing disease, disability, and 
death [2, 3]. Experiments with animals show these 
processes can be modified, extending healthy lifespan 
for worms, flies, and mice [4, 5]. The emerging field 
of geroscience is focused on translating these thera-
pies to extend healthy lifespan in humans [6, 7]. Key 
to these translational efforts is the development of 
biomarkers that can detect effects of treatments that 
slow or reverse biological aging.

Development of biomarkers of aging has a long 
history and remains a work in progress [8]. For gero-
science, aging biomarkers are needed because it will 
take decades to establish whether treatments extend 
healthy lifespan in humans [9, 10]. Biomarker meas-
urements, by contrast, have potential to enable early 
tests of treatment effectiveness over timescales of 
months or years.

There is still no gold standard biomarker of aging. 
Among those showing most promise are a family of 
algorithms applied to DNA methylation data that 
estimate a person’s biological age or mortality risk 
[11–18]. These biomarkers first emerged early in 
the last decade and since then have undergone rapid 
refinement, increasing their reliability and predic-
tive power [19]. Many clinical and cohort studies are 
now conducting DNA methylation analysis of stored 
biospecimens. Using publicly available tools, e.g., 
https://​horva​th.​genet​ics.​ucla.​edu/​html/​dnama​ge/, 
research teams around the world are using these data-
sets to compute DNA methylation measures of aging 
and advance the science.

A second set of promising aging biomarkers con-
sists of algorithms derived from blood chemistries 
and other clinical data. Although these algorithms 
based on clinical parameters are as or more predic-
tive of disease, disability, and mortality as compared 
to DNA methylation measures [20–22] and show evi-
dence of sensitivity to a range of causes hypothesized 
to accelerate aging [23–26], they have received much 
less research attention. One barrier to wider inte-
gration of these clinical data algorithms into aging 
research is a lack of software for computing these 
measures in new datasets. A further barrier is that 
many studies will include several but not all of the 
clinical markers included in a particular algorithm. 
Unlike DNA methylation datasets, which are gener-
ated from a single multiplex array and include the 

same measurements across studies, datasets of clini-
cal markers are assembled from multiple assays. As 
a result, a study may be missing one or another of the 
markers included in an algorithm.

To address these barriers, we present a novel R 
package, “BioAge,” which is currently programmed 
to implement three methods to quantify biological 
aging: Klemera-Doubal method (KDM) biological 
age [27], PhenoAge [13], and homeostatic dysregu-
lation [28]. The package has two sets of functions. 
One set of functions allows the user to develop new 
versions of the KDM biological age, PhenoAge, 
and homeostatic dysregulation measures using bio-
marker sets of their own choosing and data from 
the US Health and Nutrition Examination Surveys 
(NHANES). This set of functions (1) trains new algo-
rithms using data from NHANES III and (2) com-
pares the new algorithms to published versions using 
data from NHANES IV. The second set of functions 
allows the user to train new versions of the algorithms 
and then apply them to test data of the user’s choos-
ing. Together, these functions enable users to develop 
new versions of published algorithms that are cus-
tomized to the biomarkers available within their own 
datasets.

BioAge was designed as an easy-to-use package 
that only requires a set of available clinical markers 
as inputs, enabling researchers to compute the bio-
logical aging measures and evaluate the performance 
of the biological age algorithms. Here, we provide 
an example of BioAge implementation using data 
from a randomized controlled trial, CALERIE. The 
CALERIE trial tested the effects of 2 years of caloric 
restriction in a sample of healthy, non-obese adults. 
We use the BioAge package to compute measures of 
biological aging at pre-intervention baseline and at 
12- and 24-month follow-up assessments. We then 
use the computed measures to evaluate the effect of 
CALERIE intervention on biological aging.

Methods

The BioAge package develops algorithms to measure 
biological aging from a user-specified list of biomark-
ers based on three published methods: the Klemera-
Doubal method biological age (KDM BA) [27], the 
PhenoAge [13], and homeostatic dysregulation (HD) 
[28]. The package utilizes datasets for training and 
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testing algorithms from the US Health and Nutrition 
Examination Surveys (https://​wwwn.​cdc.​gov/​nchs/​
nhanes/​Defau​lt.​aspx). The package is available on 
GitHub (http://​github.​com/​dayoo​nkwon/​BioAge) and 
is licensed under the GNU General Public License 
v3.0.

The package contains two sets of functions. The 
first set of functions (i) applies published methods to 
generate biological age algorithms based on a user-
specified list of biomarkers using the National Health 
and Nutrition Examination Surveys (NHANES) III 
dataset as a training sample and (ii) compares these 
new algorithms to one another and to published algo-
rithms using NHANES IV dataset as a test sample. 
These functions are labeled with the suffix “_nhanes” 
(kdm_nhanes, phenoage_nhanes, hd_nhanes). The 
second set of functions applies published methods to 
generate biological age algorithms based on a user-
specified list of biomarkers using a user-specified 
training dataset and projects these new algorithms 
onto a user-specified test dataset. These functions 
make it possible to train new algorithms using the 
NHANES datasets and then to project these algo-
rithms onto new test datasets. These functions are 
labeled with the suffix “_calc” (kdm_calc, phenoage_
calc, hd_calc).

The following sections introduce the three methods 
of calculating biological age, the NHANES data, and 
the comparative analysis performed in the _nhanes 
functions.

Biological aging measures

The BioAge package calculates biological aging 
measures using three methods: KDM BA, PhenoAge, 
and HD [13, 27, 28]. These biological aging meas-
ures are patient-level measures that combine infor-
mation from multiple clinical biomarkers to quantify 
aging-related deficits in system integrity [27–29]. We 
selected these three methods based on previous litera-
ture and published evidence for links with morbidity, 
mortality, and indicators of healthspan in young and 
older populations [13, 27, 29–33].

KDM biological age

An individual’s KDM BA prediction corresponds to 
the chronological age at which her/his physiology 

would be approximately normal. KDM BA older than 
chronological age indicates an advanced state of bio-
logical aging and increased risk for disease, disability, 
and mortality. KDM BA younger than biological age 
indicates delayed biological aging and reduced risk 
for disease, disability, and mortality.

The KDM BA algorithm [27] is derived from 
a series of regressions of individual biomark-
ers on chronological age in a reference population. 
The equation takes information from n number of 
regression lines of chronological age regressed on n 
biomarkers:

where x is the value of biomarker i measured for 
an individual. For each biomarker i, the parameters k, 
q, and s are estimated from a regression of chrono-
logical age on the biomarker in the reference sample. 
k, q, and s are the regression intercept, slope, and 
root mean squared error, respectively. sBA is a scal-
ing factor equal to the square root of the variance in 
chronological age explained by the biomarker set in 
the reference sample. CA is chronological age. In the 
kdm_nhanes function in BioAge package, the refer-
ence sample is NHANES III nonpregnant participants 
aged 30–75  years. Algorithm parameters are esti-
mated separately for men and women.

PhenoAge

An individual’s PhenoAge prediction corresponds 
to the chronological age at which their mortality 
risk would be approximately normal in a reference 
population. PhenoAge older than chronological age 
indicates an advanced state of biological aging and 
increased risk for disease, disability, and mortal-
ity. PhenoAge younger than biological age indicates 
delayed biological aging and reduced risk for disease, 
disability, and mortality.

The PhenoAge algorithm is derived from mul-
tivariate analysis of mortality hazards [32, 34]. The 
original PhenoAge algorithm was constructed from 
elastic-net Gompertz regression of mortality on 42 
biomarkers in the NHANES III [13]. This analysis 
selected nine biomarkers and chronological age as a 
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parsimonious model. This model is used to compute a 
mortality prediction score (referred to as the “Mortal-
ity Score”; see Eq. 2.1).

where xb represents the linear combination of 
biomarkers from the fitted model. γ is an ancillary 
parameter to be estimated from the data and t denotes 
time (here in units of months). Thus, CDF(t = 120, xi) 
denotes the probability that the ith individual will die 
within the next 120 months.

The mortality prediction score is then converted 
into a biological age value by matching the elastic-net 
model predicted score with mortality scores from a 
univariate Gompertz regression including only chron-
ological age as a predictor:

estimates the probability that the ith individual will 
die within the next 120 months as follows CDF.uni-
variate(120, agei) where agei is the chronological age 
of the ith individual.

Finally, solving the equation

for the variable agei provides the PhenoAge value. 
In other words, the PhenoAge is the chronological age 
at which a participant’s predicted mortality score is 
equal to the average mortality hazard in the NHANES 
reference sample. In the “phenoage_nhanes” func-
tion, a set of biomarkers specified by the users is used 
to form the mortality prediction score in place of the 
original elastic-net model.

Homeostatic dysregulation

An individual’s HD value corresponds to how dif-
ferent their physiology is from a healthy reference. 
Higher values of HD indicate an advanced state of 
biological aging and increased risk for disease, dis-
ability, and mortality. Lower values of homeostatic 
dysregulation indicate delayed biological aging and 
reduced risk for disease, disability, and mortality.

HD is computed as the Mahalanobis distance [35, 
36] for a set of biomarkers relative to a reference 
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sample. The Mahalanobis distance equation [35, 36] 
takes the form:

where x is a multivariate observation (all the bio-
marker values for an individual) and μ is the equiva-
lent length vector of reference sample means for each 
variable. S is the reference sample variance–covari-
ance matrix for the variables. If all variables are 
uncorrelated, then this is equivalent to scaling each 
biomarker by its variance and then summing the 
squared deviance for an observation:

where n is the number of biomarkers and σ2(xi) 
is the variance in the ith biomarker. In the hd_
nhanes function, we specify the reference sample 
to be NHANES III nonpregnant participants aged 
20–30  years for whom all user-selected biomarkers 
fall within the clinically normal range. For analysis, 
all biomarkers are standardized to have mean = 0, 
SD = 1 separately for men and women based on this 
reference sample. This approach computes homeo-
static dysregulation relative to a young, healthy sam-
ple, following the approach we have used previously 
[24, 31, 37].

NHANES

NHANES is an ongoing nationally representative, 
cross-sectional survey conducted by the US Centers 
for Disease Control and Prevention. NHANES admin-
isters questionnaires during in-home interviews and 
conducts health examinations, including blood draws, 
in a mobile examination center. Details of recruitment 
procedures and study design are available from the 
Center for Disease Control and Prevention (https://​
www.​cdc.​gov/​nchs/​nhanes/​index.​htm). We compiled 
demographic, socioeconomic, and functional perfor-
mance; biomarker; and mortality data from adults 
aged 20–90  years participating in the NHANES III 
(1988–1994) and IV (1999–2018).

For analysis, we excluded biomarker outliers by 
computing sex-specific mean of standard deviations 
and dropping values more than five standard devia-
tions from the sex-specific mean. Biomarkers with 
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skewed distributions were log-transformed. Details 
on biomarker measurements are available from 
the NHANES website (https://​www.​cdc.​gov/​nchs/​
nhanes/​index.​htm).

For several biomarkers, measurement meth-
ods changed during the 1999–2016 interval when 
NHANES IV data used by the package were col-
lected. The package uses data normalized to account 
for these changes in methodology: Creatinine values 
from the 1999–2000 and 2005–2006 NHANES were 
corrected according to the analytical notes posted by 
NHANES (https://​www.​cdc.​gov/​nchs/​nhanes/​index.​
htm). High sensitivity C-reactive protein assays 
from the 2015–2016 NHANES were posted in units 
mg/L and were divided by 10 to match units in pre-
vious waves. Bone alkaline phosphatase values from 
the 1999–2000 NHANES were adjusted according 
to published equations. Measurement methods for 
plasma fasting glucose changed in the 2005–2006, 
2007–2008, and 2015–2016 NHANES. Values were 
adjusted to be comparable across years using multi-
ple regression equations (https://​www.​cdc.​gov/​nchs/​
nhanes/​index.​htm). Measurement methods for insulin 
changed in the 1999–2000, 2003–2004, 2005–2006, 
2011–2012, and 2013–2014 NHANES. Values were 
adjusted to be comparable across years using multi-
ple regression equations (https://​www.​cdc.​gov/​nchs/​
nhanes/​index.​htm).

In the BioAge package, data from NHANES 
III and NHANES IV are loaded as the datasets 
NHANES3 and NHANES4. The NHANES4 dataset 
also contains computed values of KDM biological 
age and PhenoAge based on the original versions of 
those algorithms published by Levine and colleagues 
[13, 38].

Comparison of biological aging measures

The package’s _nhanes functions conduct a series 
of analyses to compare KDM BA, PhenoAge, and 
HD algorithms generated with user-specified sets 
of biomarkers with one another and with versions 
of KDM BA and PhenoAge algorithms published 
previously. All algorithms are trained in NHANES 
III data. Comparative analysis is conducted using 
NHANES IV data. Thus, training and test samples 
are distinct from one another. Analyses proceed 
in four steps. First, biological aging measures are 

correlated with chronological age. Second, biologi-
cal aging measures are correlated with one another. 
Third, biological aging measures are tested for 
association with healthspan-related characteristics: 
mortality, disability, physical function, and self-
rated health. Finally, a set of analyses tests socio-
economic patterning of biological aging algorithms.

Below, the measures included in the validation 
analysis are described briefly, followed by details of 
the analysis. Complete details on all measurements 
are available from the NHANES website (https://​
www.​cdc.​gov/​nchs/​nhanes/​index.​htm).

Mortality

NHANES III and NHANES 1999–2014 are inde-
pendent cohorts with different lengths of follow-up 
for mortality. Participants’ survival status and cause 
of death were determined through probabilistic 
matching to the death certificates form the National 
Death Index recorded through 2015 [39]. For analy-
sis, we used information on aging-related mortality 
from diseases of the heart, malignant neoplasms, 
chronic lower respiratory disease, cerebrovascu-
lar disease, Alzheimer’s disease, diabetes mellitus, 
nephritis, nephrotic syndrome, and nephrosis.

Disability, physical functioning, and self‑rated health

We analyzed associations of biological aging 
measures with counts of limitations to activities 
of daily living (ADLs), walk speed, grip strength, 
and self-rated health. ADLs were measured as a 
count of functional impairments across 19 activi-
ties. Walk speed was measured in NHANES 
1999–2002 from participants aged 50 and older. 
Measures were taken as time in seconds to walk 
20 ft. Values were log-transformed for analy-
sis. Grip strength was measured in NHANES 
2011–2014 using a hand dynamometer. Values 
were averaged across three trials. We analyzed 
values for the dominant hand. To account for dif-
ferences in distributions between men and women, 
values were transformed to have M = 0, SD = 1 
within sex. Self-rated general health was assessed 
from a survey item with five response categories 
ranging from excellent to poor.
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Socioeconomic circumstances

Socioeconomic circumstances measures included 
education, annual family income, and poverty 
income ratio. Education was categorized into five 
categories: less than 9th grade, 9–11th grade, high 
school graduate/GED, some college, and college 
graduate or higher. Annual family income was 
self-reported as one of 11 income categories rang-
ing from less than $5,000 to over $75,000. Poverty 
income ratio was calculated based on family income 
and the poverty threshold based on family size.

Analysis of validation measures

For analysis, KDM BA and PhenoAge values were 
differenced from chronological age values and then 
standardized to have M = 0, SD = 1 separately for 
men and women. HD values were log-transformed 
and then standardized to have M = 0, SD = 1 sepa-
rately for men and women. The package tests asso-
ciations of biological aging measures with mortal-
ity (survival time) using Cox proportional hazards 
models to estimate hazard ratios (HR). The package 
tests associations of biological aging measures with 
counts of ADLs, log-walk-test time, grip strength, 
and self-rated health using linear regression models. 
For linear regression analysis, outcome variables 
are standardized to have M = 0, SD = 1. Coefficients 
reported are interpretable on a Pearson’s r scale. 
The package tests associations of socioeconomic 
circumstances measures with biological aging 
measures using linear regression. In these models, 
measures of socioeconomic circumstances are spec-
ified as independent variables, and biological aging 
measures are specified as dependent variables. Soci-
oeconomic circumstance measures are standardized 
to M = 0, SD = 1 for analysis so that effect sizes are 
denominated in terms of a 1 SD unit improvement 
in socioeconomic circumstances. Analysis includes 
NHANES IV participants for whom biological 
aging measures can be calculated and for whom any 
validation data are available. Models are reported 
for the full analysis sample with covariate adjust-
ment for chronological age and sex and for samples 
stratified by sex, race, and chronological age (under/
over 65 years).

Analysis

We compared original KDM BA and PhenoAge 
algorithms with algorithms composed with the new 
biomarker set in the NHANES IV dataset. First, two 
sets of “plot_” functions create comparative scatter 
plots using Pearson correlations. “plot_ba” function 
tests associations of chronological age with biologi-
cal aging measures. “plot_baa” function tests associa-
tions among biological aging measures. In this func-
tion, KDM BA and PhenoAge were computed as the 
difference between biological age and chronological 
age. These biological age advancement (BAA) val-
ues were then standardized to have mean = 0, SD = 1 
separately for men and women within the analysis 
sample.

Three sets of “table_” functions create regression 
tables with full sample and are stratified by gender, 
race, and age groups. “table_surv” function tests asso-
ciations of biological aging measures with mortality. 
This function uses Cox proportional hazard models 
to estimate hazard ratios. “table_health” function 
tests associations of biological aging measures with 
functional performance measures. Biological aging 
measures were independent variables. Functional 
performance measures were dependent variables and 
standardized to have mean = 0, SD = 1 for analysis. 
“table_ses” function tests association of socioeco-
nomic circumstance measures with biological aging 
measures. Socioeconomic circumstance measures 
were independent variables and standardized to have 
mean = 0, SD = 1 for analysis. Biological aging meas-
ures were dependent variables. In table_health and 
table_ses functions, linear regression is used to com-
pute standardized beta coefficients (interpretable as 
Pearson’s r).

Results

Part 1. Parameterization of KDM, PhenoAge, and 
HD biological aging measures for the CALERIE trial 
dataset using NHANES III

We previously analyzed KDM and HD biological 
aging measures in CALERIE using a biomarker set 
based on the original KDM algorithm published by 
Levine [29, 31]. We used the _nhanes functions of the 
BioAge package to train new KDM, PhenoAge, and 
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HD algorithms in the NHANES III data and then used 
the _calc functions to project the algorithms onto the 
CALERIE data. We conducted three sets of analyses: 
(i) using the same biomarker set included in our origi-
nal CALERIE analysis (hereafter, “CALERIE Origi-
nal”); (ii) using a biomarker set based on the origi-
nal PhenoAge algorithm published by Levine [13] 
(hereafter “V1”); and (iii) using a biomarker set com-
posed of those included in the CALERIE Original 
and V1 sets (hereafter “V2”). Biomarkers included 
in the three sets of measures and their correlations 
with chronological age in the NHANES IV test data 
and the CALERIE sample at baseline are reported in 
Table S2.1.

Part 2: Validation of new KDM, PhenoAge, and HD 
algorithms in NHANES IV data

The several biological aging measures were corre-
lated with one another in the NHANES IV test data 
(Fig. 1). To analyze correlations among measures, we 
first differenced KDM and PhenoAge measures from 
chronological age to calculate age advancement val-
ues. Correlations among the biological aging meas-
ures in NHANES IV ranged from 0.39 to 0.96 (Fig. 1, 
Fig. S1.2).

The several biological aging measures were associ-
ated with mortality risk in the NHANES IV test sam-
ple. Compared to the KDM and PhenoAge algorithms 
first proposed by Levine, the CALERIE Original and 
V1 algorithms were somewhat less predictive of mor-
tality (Table S1.1) and more weakly correlated with 
self-rated health and measures of physical function-
ing (Table S1.2); the V2 algorithms, which included 
biomarkers from both the CALERIE Original and V1 
sets, performed better, although still not as well as the 
original PhenoAge. Similar results were found when 
comparing three algorithms to mortality, self-rated 
health and physical functioning, and socioeconomic 
factors across different gender, race, and age groups. 
For example, V2 PhenoAge produced the most robust 
results for individual Cox proportional hazard mod-
els (HR = 1.43 95% CI = [1.37–1.49], Table  S1.1). 
Complete results from analysis of the NHANES IV 
data produced by the plot_ and table_ functions of 
the BioAge package are compiled in SI Section I. 
These include analysis of association with chrono-
logical age; intercorrelation with other measures of 
aging, including the original KDM and PhenoAge 

algorithms proposed by Levine [13, 29]; and addi-
tional association analysis of self-rated health, and 
physical functioning, and socioeconomic factors. The 
V2 algorithm consistently performed better in these 
criterion validity analyses relative to the CALERIE 
Original and V1 algorithms. Therefore, we retained 
the V2 algorithm for CALERIE analysis. (For com-
pleteness of documentation, results for CALERIE 
analysis of the CALERIE Original and V1 algorithms 
are reported in SI Section II.)

Part 3. CALERIE Analysis

The CALERIE trial randomized n = 220 non-obese 
midlife adults to 2  years of 25% caloric restriction 
(CR) or ad  libitum (AL) diet, the control condition. 
Most participants in the CR intervention group did 
not achieve the prescribed dose of caloric restriction; 
the average percent CR over the 2  years was about 
half the prescribed dose [40]. Nevertheless, partici-
pants in the CR group lost significant weight over 
the first 12  months of the trial and maintained this 
weight loss over the second 12-month interval. They 
also experienced a range of physiological changes 
indicating improved cardiometabolic health [41]. We 
previously reported that the CR group demonstrated 
slower biological aging as compared to the AL group 
based on versions of the KDM BA and HD algo-
rithms trained in data from NHANES 2007–11 [31]. 
PhenoAge has not yet been analyzed in CALERIE. 
Characteristics of the CALERIE participants included 
in analysis and values of the biological aging meas-
ures in the CR intervention and AL control groups are 
reported in Table 1.

CALERIE participants’ chronological age and V2 
versions of the KDM BA and PhenoAge measures 
were correlated (Pearson r range = 0.81–0.90, Fig.  2). 
CALERIE participants’ V2 HD values were not cor-
related with their chronological ages. At baseline, 
there was little difference in biological aging measures 
between CR and AL groups. Participants’ biological 
aging measures were slightly younger than their chron-
ological ages (chronological age mean = 39; KDM BA 
mean = 35; PhenoAge mean = 34). This difference may 
reflect the sampling frames used for CALERIE and the 
NHANES and volunteer bias and that CALERIE par-
ticipants were selected to be in good health, whereas 
the NHANES sample represented the general US 
population. CALERIE sample baseline summary 
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statistics for biological aging measures are reported in 
Table S2.2. Intercorrelations of biological aging meas-
ures are graphed in Fig. S2.2.

We tested the hypothesis that CALERIE interven-
tions slowed biological aging using mixed-effects 
growth models, including participant-level random 
intercepts and slopes. The model took the form

where Δ BioAgeit is change in the BA measure 
from baseline for individual “i” at time “t,” �1 esti-
mates annual change in BA for ad  libitum arm par-
ticipants, �2 estimates any baseline difference BA 
between participants in AL and CR arms of the trial, 
�3 estimates the difference in annual change in BA 

(4)
ΔBioAgeit = �1Timeit + �2CRi + �3Time × CRit

+ �Covariates + �0i + �1iTimeit + �it

Fig. 1   Correlations of published versions of Klemera-Doubal 
method (KDM) biological age and PhenoAge with versions 
of KDM biological age, PhenoAge, and a measure computed 
using the homeostatic dysregulation method based on a modi-
fied set of biomarkers. The figure plots data from NHANES 
IV generated with the _nhanes commands within the Bio-
Age package. All measures were developed from analysis of 
NHANES III and computed using data from NHANES IV. 
KDM biological age and PhenoAge values were differenced 
from chronological age for analysis. The “Levine Original” 
KDM algorithm was composed from chronological age and 
10 biomarkers: albumin, alkaline phosphatase, blood urea 
nitrogen, creatinine, C-reactive protein, cytomegalovirus opti-

cal density, HbA1C, total cholesterol, systolic blood pressure, 
and forced expiratory volume in 1  s (FEV1). The “Levine 
Original” PhenoAge was composed from chronological age 
and 9 biomarkers: albumin, alkaline phosphatase, creatinine, 
C-reactive protein, fasting glucose, white blood cell count, 
lymphocyte percentage, mean cell volume, and red cell distri-
bution width. The “V2” versions of the KDM, PhenoAge, and 
HD algorithms included chronological age and 12 biomarkers: 
albumin, alkaline phosphatase, blood urea nitrogen, creatinine, 
C-reactive protein, HbA1C, total cholesterol, uric acid, white 
blood cell count, lymphocyte percentage, mean cell volume, 
and red cell distribution width
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between AL arm and CR arm participants, � is a 
vector of covariates, and �0i and �1i are the random 
intercepts and slopes estimated for each individual 
“i.” The coefficient �3 tests the hypothesis that bio-
logical aging was slowed for participants randomized 
to the CR arm of the trial. All models included sex 
and baseline age as covariates. The mixed-effects 
regression analysis included 611 observations of 220 
individuals.

Across follow-up, CALERIE participants rand-
omized to the trial’s CR arm experienced slower or 

reversed biological aging as compared to AL arm 
participants as measured by V2 KDM BA and Phe-
noAge. The average change from baseline in biologi-
cal aging measures is plotted for AL and CR partici-
pants in Fig.  3. CALERIE participants randomized 
to the AL control group experienced an increase in 
V2 KDM BA of 0.69 “years” per 12-month follow-
up (95% CI [0.21, 1.16]). In contrast, for participants 
randomized to CR, KDM BA decreased (b =  − 0.2 
95% CI [− 0.55, 0.14] “years” per 12-month fol-
low-up interval). For PhenoAge, both AL and CR 
groups experienced an increase over time, but the 
increase was slower for the CR group (AL b = 0.83 
[0.46–1.21], CR b = 0.17 [− 0.11, 0.44]; p value for 
test of difference = 0.006). HD was unchanged across 
follow-up for both AL and CR group participants. 

Regression model results are reported in Table 2.

Discussion

Quantification of biological aging is emerging as a 
novel approach to investigating how  exposures and 
interventions may influence risk for chronic disease, 
disability, and mortality [8]. Because the aging pro-
cess is ongoing from at least reproductive maturity 

Table 1   Characteristics of CALERIE trial participants 
included in analysis

M mean, SD standard deviation

Ad libitum 
(n = 68)

Caloric 
restriction 
(n = 139)

%/M SD %/M SD

Male 26.47% 30.94%
Age 38.14 6.66 37.84 7.35
V2 versions of biological age 

measures at pre-intervention 
baseline

KDM 34.32 7.05 34.10 6.94
PhenoAge 32.32 7.16 32.80 7.57
HD (log) 5.27 0.97 5.32 1.07

Fig. 2   Associations of Klemera-Doubal method (KDM) bio-
logical age, PhenoAge, and homeostatic dysregulation (HD) 
measures of biological age with chronological age among par-
ticipants in the CALERIE trial at pre-intervention baseline. 

The figure plots pre-intervention baseline values of the three 
biological aging measures against chronological age for men 
(blue) and women (pink) participating in the CALERIE trial 
(n = 207)
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and may begin even earlier [42], biological aging 
measures have potential to detect signs of risk dec-
ades before disease processes are established [30]. 
Measurements of biological aging based on algo-
rithm-defined composites of clinical parameters are 
relatively understudied in this growing research area. 
These measures are equally or more predictive of 
morbidity and mortality as compared to better-studied 
measures based on molecular data, including telomere 

length and DNA methylation clocks [20–22, 24]; 
they are variable in apparently healthy young adults 
[23, 30]; and they are sensitive to risk exposures that 
shorten healthy lifespan and to interventions that slow 
aging in animals [23, 24, 31, 43, 44]. Importantly, the 
data needed to calculate these algorithm-based meas-
ures are routinely collected during clinical care and 
health research: routine blood chemistries, complete 
blood counts, and assessments of lung function and 

Fig. 3   Change in Klemera-Doubal method (KDM) biologi-
cal age, PhenoAge, and homeostatic dysregulation (HD) from 
baseline to 12- and 24-month follow-ups in the ad  libitum 
(dark blue dots) and caloric restriction (light blue triangles) 
groups of the CALERIE trial. The figure plots predicted val-
ues and 95% confidence intervals estimated from mixed-effects 

growth models for participants in the ad libitum control group 
(dark blue circles, solid line) and caloric restriction interven-
tion group (light blue triangles, dashed line). Values of KDM 
biological age and PhenoAge are denominated in years. Values 
of HD are denominated in log Mahalanobis distance units

Table 2   Estimated annual change in KDM, PhenoAge, and HD biological aging measures from baseline through 24-month follow-
up in ad libitum and caloric restriction groups in the CALERIE randomized trial

The regression model included sex and age at baseline as covariates
CI confidence interval

Biomarker set b [95% CI] p value n

V2
KDM Ad libitum 0.69 [0.21, 1.16] 0.005 68

Caloric restriction  − 0.2 [− 0.55, 0.14] 0.248 139
Interaction  − 0.89 [− 1.47, − 0.31] 0.003 207

PhenoAge Ad libitum 0.83 [0.46, 1.21]  < 0.01 68
Caloric restriction 0.17 [− 0.11, 0.44] 0.232 139
Interaction  − 0.67 [− 1.13, − 0.2] 0.006 207

HD (log) Ad libitum 0.06 [− 0.08, 0.2] 0.411 68
Caloric restriction  − 0.01 [− 0.12, 0.09] 0.784 139
Interaction  − 0.07 [− 0.25, 0.1] 0.409 207
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blood pressure. They therefore represent an un-tapped 
reservoir of information about aging processes within 
many existing datasets. We developed an R package 
to aid investigators in integrating these measurements 
into existing datasets that address key challenges that 
may have slowed their adoption.

The BioAge R package is an easy to install tool 
that can implement the Klemera-Doubal [27], Phe-
noAge [34], and homeostatic dysregulation [28] 
methods following the approach we have used in pre-
vious work [24, 31, 43, 45]. The package has three 
strengths. First, it eases implementation of published 
biological age algorithms in biomarker datasets. Sec-
ond, it allows for parameterization of new algorithms 
using published methods based in existing or new 
datasets, although the _nhanes commands are limited 
to the set of biomarkers included in the NHANES 
database. Third, when new algorithms are composed 
of biomarkers included in the NHANES database, it 
enables head-to-head comparison with the original 
published versions of the biological age algorithms to 
evaluate comparative criterion and construct validity.

We demonstrated the BioAge package by apply-
ing it to calculate biological age values from labo-
ratory data collected in the CALERIE randomized 
controlled trial, the first human randomized con-
trolled trial of long-term calorie restriction [40]. We 
previously used data from NHANES 2007–2010 to 
develop versions of the KDM and HD algorithms 
to test effects of CALERIE intervention on biologi-
cal aging [31]. Building on that analysis, we used 
the BioAge package to compute new versions of the 
PhenoAge, KDM, and HD algorithms based on (a) 
the original set of markers used in our earlier paper; 
(b) a set of markers matched as closely as possible to 
the Levine PhenoAge algorithm; and (c) a combined 
set of measures included in the first two sets. We used 
NHANES III data to train these algorithms. In com-
parative validation analysis using data from NHANES 
IV (1999–2018), the algorithm with the combined 
set of biomarkers performed the best in analysis 
predicting morbidity and mortality. We applied this 
algorithm to the CALERIE data to test intervention 
effects on biological aging. Consistent with our ear-
lier analysis, we found that CALERIE intervention 
slowed biological aging as measured by the KDM 
and PhenoAge algorithms. However, in contrast to 
our previous analysis, the effect of CALERIE inter-
vention on biological aging measured by the HD 

algorithm was not statistically different from zero. 
For the analysis reported in this article, we developed 
the HD algorithm using data from NHANES III, col-
lected during 1989–1994. In our previous article, we 
developed the HD algorithm using data from continu-
ous NHANES waves 2007–2010, matching the time 
period during which the CALERIE trial was con-
ducted. The difference in results highlights potential 
sensitivity of algorithms to the reference data used in 
their development.

The BioAge package offers researchers flexibil-
ity to customize biological age algorithms to chosen 
sets of biomarkers and reference samples. Published 
approaches to selecting biomarkers to compose the 
algorithms included in the BioAge package include 
screening a biomarker set for the subset meeting a 
correlation threshold with chronological age [29] and 
selection by machine learning [32]. More inclusive 
approaches incorporate all available biomarkers with 
known relationship to aging-related disease or to bio-
logical systems affected by aging [30, 33]. Empirical 
approaches to biomarker selection have the advantage 
of being objective and reproducible, although they can 
lead to over-fitting of algorithms to training data. Ulti-
mately, the guiding principle of biomarker selection 
for physiology-based biological age algorithms should 
be to include markers reflecting the integrity of multi-
ple biological systems affected by aging processes. The 
optimal method for identifying which systems and bio-
markers should be included remains a work in progress. 
The BioAge R package is intended as tool that can help 
advance this effort as well as accelerate translation of 
such advances for epidemiologic and clinical research.

Conclusions

Measurements of biological aging derived from clini-
cal parameters, including routine blood chemistries, 
complete blood count data, and blood pressure and 
lung function testing, represent a powerful approach 
to investigating etiology of individual differences 
in aging and evaluating interventions to increase 
healthspan. The BioAge R package facilitates imple-
mentation of training and testing of three common, 
validated methods to compute biological age meas-
urements from these types of data.
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