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Summary:

We learn and remember multiple new experiences throughout the day. The neural principles 

enabling continuous rapid learning and formation of distinct representations of numerous 

sequential experiences without major interference are not understood. To understand this process, 

here we interrogated ensembles of hippocampal place cells as rats explored 15 novel linear 

environments interleaved with sleep sessions over continuous 16-hour periods. Remarkably, we 

found that a population of place cells were selective to environment orientation and topology. This 

orientation selectivity property biased the network-level discrimination and re/mapping between 

multiple environments. Novel environmental representations emerged rapidly as more generic, 

but repeated experience within the environments subsequently enhanced their discriminability. 

Generalization of prior experience with different environments consequently improved network 

predictability of future novel environmental representations via strengthened generative predictive 

codes. These coding schemes reveal a high-capacity, high-efficiency neuronal framework for rapid 

representation of numerous sequential experiences with optimal discrimination-generalization 

balance and reduced interference.
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eTOC Blurb:

Liu et al. report that a population of hippocampal place cells display selectivity to spatial 

context orientation and topology, which biases the discrimination and remapping between multiple 

contexts. Repeated experience within a context enhances its representation discriminability while 

generalization across multiple contexts improves network predictability of future novel context 

representations.
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Introduction:

Distinct representations of over a dozen sequential episodes encountered within a day are 

often maintained in memory until a decision or evaluation regarding their content (e.g., 

which one of the many visited rental homes to select) is performed at the end of the 

day (Brady et al., 2008; Voss, 2009). In the rodent hippocampus, place cells (O'Keefe 
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and Dostrovsky, 1971) are sequentially activated at different locations along an animal’s 

trajectory and are partially controlled by the environment geometry (Leutgeb et al., 2005; 

Muller and Kubie, 1987; Wills et al., 2005) and distal cues (Lee et al., 2004; Monaco 

et al., 2014; Quirk et al., 1990). This sequential activation can be partly predicted from 

an internal repertoire of temporal sequences expressed during the pre-exploration sleep 

(Dragoi and Tonegawa, 2011, 2014; Liu et al., 2018). Therefore, spatial representations 

of the external world emerge continuously from the dynamic interplay between generative 

pre-existing activity patterns (Dragoi et al., 2003; Dragoi and Tonegawa, 2011; Liu et al., 

2018) and those driven by the newly encountered external stimuli (Dragoi and Tonegawa, 

2013a; Farooq and Dragoi, 2019; Farooq et al., 2019; Grosmark and Buzsaki, 2016; Lee and 

Wilson, 2002; Monaco et al., 2014).

Previous studies investigated how exposure to multiple environments instructs hippocampal 

place cell recruitment and spatial re/mapping in the rat (Alme et al., 2014; Rich et al., 

2014). Consistently, these studies found that both CA3 place cell recruitment and spatial 

re/mapping across eleven 2-D boxes and rooms (Alme et al., 2014) and CA1 place cell 

recruitment across different linear segments along 48 m-long tracks within a room (Rich 

et al., 2014) appear to occur randomly, indicative of a large network capacity for spatial 

re/mapping. However, exactly how place cell recruitment and re/mapping are organized 

to encode geometric features (like orientation or landmark) and maintain large loads of 

distinct sequential information learned within a day without a major interference (Hasselmo 

and Wyble, 1997; McCloskey and Cohen, 1989; Peterson and Gentile, 1965; Underwood 

and Postman, 1960) between individual memories and limitation of network capacity 

has remained unknown. This is largely because until now the links between pre-existing 
sequential motifs and experience-related sequential activity patterns during run have only 

been measured in subjects exposed to single (Grosmark and Buzsaki, 2016; Lee and Wilson, 

2002) or a small number (Dragoi and Tonegawa, 2013b; Liu et al., 2018) of experiences. 

Exposure to a few different sequential experiences on linear tracks has previously indicated 

that the pre-existing network dynamics employed for their distinct neuronal ensemble 

representation increase linearly with the number of experiences (Dragoi and Tonegawa, 

2013b). However, it is highly likely that these dynamics would change significantly when 

challenged with one order of magnitude higher number of experiences. At the same time, 

formation of long-term representations of multiple experiences is achieved in several stages 

mapped onto corresponding distinct network operations during alternating sleep and wake 

brain states (Buzsaki, 1989; Farooq and Dragoi, 2019; Farooq et al., 2019; Lee and Wilson, 

2002; Oudiette et al., 2013).

Here, we investigated waking and sleep hippocampal CA1 network dynamics employed to 

distinctly encode and represent a large number of sequential environments within a day, 

which revealed several novel schemes for representation of numerous experiences. Notably, 

we uncovered an orientation selectivity feature of place cells which biased neuronal re/

mapping across multiple environments and led to an increase in generalization of context 

representations. Incorporation of generalized multisensory information including orientation 

and topology from other parallel environments greatly improved the predictive models of 

place cell sequence re/mapping derived from pre-exploratory sleep activity. The improved 
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predictive codes could facilitate rapid encoding of multiple future novel experiences in the 

CA1.

Results:

To reveal principles underlying distinct representations of numerous experiences we 

electrophysiologically recorded hippocampal CA1 neurons from 5 adult naïve rats while 

they explored 15 linear tracks interleaved with four sleep sessions over a 16 h period. 

Boundaries of the 15 horizontally oriented (i.e., East-West/E-W) or vertically oriented (i.e., 

North-South/N-S) 150 cm-long linear tracks were sequentially defined by opaque barriers 

dynamically placed into one of two elevated 2-D mazes located in two visually, acoustically, 

and spatially distinct rooms or compartments (Maze1: tracks 1-7, Maze 2: tracks 8-15; 

Figure 1A, Figure S1A-F). Interleaving sleep sessions occurred before all explorations 

(Sleep1, pre-experience), after exploring track1 (Sleep2), between exploring Maze1 and 

Maze2 (Sleep3), and after all explorations (Sleep4, post-experience).

Orientation-selectivity and topology drive non-random re/mapping

A total of 280 putative pyramidal neurons from 5 rats maintained stable spike amplitude 

throughout the long duration of the experiment (Figures 1B and S1G). Their spiking activity 

was used to calculate place maps (i.e., firing rate profile normalized by occupancy binned 

from the beginning to the end of each track) across the 15 tracks (Figure 1C). We observed 

a remarkable neuronal selectivity to track orientation in a group of neurons (Figure 1D). 

To quantify the impact of environment geometry on re/mapping (Dragoi and Tonegawa, 

2013b; Leutgeb et al., 2005; Muller and Kubie, 1987; Wills et al., 2005), we assessed the 

similarity of spatial encoding between any two linear tracks by calculating the correlation 

between population-level place maps for each track pair (Figure 2A). We built a generalized 

linear model using these population-level place map correlation values as predictor and 

consistency of several geometric features as variables and found that track orientation had 

the single and largest impact on re/mapping (p< 10−7, Chi-square test, Figure 2B, Methods). 

Consistently, parallel track pairs had higher correlations than orthogonal pairs (Figure 2C, 

P=2×10−12, n=280; 245, Wilcoxon rank-sum test; P<10−12, for correlations at population 

place cell level), with spatially proximal parallel tracks exhibiting higher similarity (Figure 

2D, Separation vs. Correlation: R=−0.28, P=0.004, n=105, Pearson’s correlation). Despite 

these non-random features of re/mapping across parallel tracks, the correlations between 

population place maps on different sessions on the same track (e.g., between the first and 

the second run sessions on track1, the same for track8; Figure 2E, R=0.55±0.02) were: 1. 

higher than those on different tracks (R=0.13±0.004, P<10−9, Wilcoxon rank-sum test) and 

2. higher than those on analogous tracks between the Mazes (i.e., with overlapping position 

when superimposing the two Mazes, R=0.19±0.02, P<10−4, Wilcoxon rank-sum test). The 

high stability of place maps across two sessions on the same track and the increased re/

mapping across different tracks together indicate that animals were not confused by their 

exposure to multiple experiences. Furthermore, we did not find a significant grouping of 

track re/mapping by Maze identity (Figure 2F, Maze: P=0.43, Wilcoxon rank-sum test), 

indicating that place cell ensembles primarily re/mapped as a function of track identity 

and orientation regardless of their Maze/room allocation. Importantly, the track pairs with 
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analogous position across the two Mazes were not more strongly correlated than the group 

of all pairs of parallel tracks from across the two Mazes (P=0.64, Wilcoxon rank-sum test; 

Figure 2E). This further indicates that the animals were not confusing Maze2 for Maze1. 

Therefore, the 15 tracks, which were explored explicitly at separate times in randomized 

order regarding their orientation (Figure S1B-F) and with no task-related association 

between each other, have all premises to be represented as independent of each other as 

they can be (range of all parallel track pair correlations within and across the mazes was 

0.12-0.19).

We quantified the selectivity of place cell firing rate as a function of track orientation by 

calculating an orientation selectivity index (OSI) and its statistical significance (P-value). 

We defined OSI as a neuron’s propensity to preferentially be activated on parallel versus 

orthogonal tracks and calculated its significance against 500 random shuffles of track 

orientations (Figure 2G; Methods). We found that 16.8% (47/280) of all neurons had 

significant, reliable orientation selectivity for horizontal (E-W) or vertical (N-S) orientations 

(8.57% and 8.21% of neurons; Figures 2G and S2A-C). An additional 19.6% of all 

neurons also had preferred orientation but were very selectively active only on few specific 

tracks and for this reason did not reach our stringent criteria for significance (Figure 2G). 

Interestingly, when OSIs were calculated using tracks from Maze1 alone, 92.3% of neurons 

with orientation selectivity on Maze1 preserved their preferred orientation in Maze2 (Figure 

3A) and their OSIs were highly correlated across the two mazes (Figure 3B). This indicates 

that animals maintained their sense of orientation across the two Mazes and rooms despite 

clear re/mapping across different tracks. This finding suggests that there is a dissociation 

between the processes underlying re/mapping and those underlying (preserved) orientation.

A classic feature of CA1 place cell activity during runs on linear tracks is their directional 

selectivity manifested at the level of maximal firing rate or absolute location of firing 

between the runs in the opposite directions (McNaughton et al., 1983; Muller et al., 1994). 

For each neuron, we calculated its direction selectivity index (DSI) similarly to its OSI, 

but using four moving directions (i.e., toward East, West, North, South) as variables instead 

of the two possible orientations (i.e., horizontal and vertical). The orientation selectivity 

property of place cells described here was more prevalent than their directional selectivity 

on linear tracks, which was expressed in only 10.3% of all neurons, 72.4% of which (21/29) 

were also orientation selective (Figure S2D-E). Animals’ moving direction did not show a 

significant contribution to re/mapping (P=0.89, Chi-square test; data not shown). Orientation 

selectivity could not be simply explained by an increased bidirectionality (Dragoi and 

Buzsaki, 2006; McNaughton et al., 1983; Navratilova et al., 2012) in place cell firing, 

the two properties being negatively correlated (R=−0.17, Figure S2F). Moreover, while the 

distinct distal cues across the two rooms contribute to place cell remapping across tracks of 

the two Mazes, they do not prevent the maintenance of orientation selectivity across the two 

rooms/Mazes. These properties differentiate orientation selectivity from the phenomenon 

of path equivalence (Derdikman et al., 2009; Singer et al., 2010). Anatomically, electrodes 

located in relatively more posterior CA1 areas recorded a higher proportion of orientation­

selective neurons (Figure S2G-H). Place maps of orientation-selective neurons had relatively 

higher peak firing rates compared with non-orientation-selective neurons (Figure S2I).
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Place cells are named for their selectivity to spatial locations (O'Keefe and Nadel, 1978). 

To compare neuronal orientation selectivity and location selectivity, we computed: 1. 

intersection-OSI using place cell activity during runs in orthogonal orientations within 

intersection areas (same location, different orientation; Figure 3C top, grey square/red 

arrows, Figure S3A) and 2. intersection location selectivity index (LSI) using their activity 

inside and outside intersection area in the same orientation (same orientation, different 

location; Figure 3C top, red squares). Surprisingly, we found that intersection-OSIs were 

higher than LSIs (Figure 3C, Figure S3B-C; P<10−16, n=280, Wilcoxon rank-sum test), 

indicating that track orientation can drive place cell activity stronger than its absolute 

location in the allocentric space. In addition, place cell population-level place maps in the 

inner intersectional areas were significantly correlated across runs in parallel orientations 

(Figure S3D-E, P<10−14, Wilcoxon rank-sum test). At the neuronal population level, the 

trajectories of population firing rate activity across orthogonal tracks separated well into two 

clusters in the principal component space (Figure 3D).

To further understand the nature of place cell re/mapping, we extracted the individual 

place cell subfields (mean=1.59 subfields/track/place cell, Figure S3F; see Methods). For 

each place cell, we studied the topology and re/mapping of its primary to tertiary place 

subfields which contain 65.5% of place map activity, across corresponding locations on 

other tracks (Figure S3F-G). We found that the location of primary-tertiary subfields on 

certain tracks topologically corresponded to portions with higher than chance firing levels 

on other tracks when the comparison was performed with other parallel, but not orthogonal 

tracks (parallel: P=10−35, n=49,679; partial re/mapping, firing rate redistribution across 

multiple subfields; orthogonal: P=0.9, n=54,109, global re/mapping, one-way ANOVA tests; 

Figure 3E, Figure S3G). This indicates that place subfields did not re/map randomly across 

parallel tracks but were preferentially expressed (i.e., partly constrained) in topologically 

corresponding locations. This is consistent with our earlier finding that induction of intra­

hippocampal long-term potentiation by stimulation of ventral hippocampal commissure 

fibers topologically constrains CA1 place subfield re/mapping to the locations of prior non­

zero spiking activity of the same place cell on the same track (Dragoi et al., 2003). Overall, 

these results indicate that CA1 place cell re/mapping across multiple linear environments 

is not purely random but constrained by their geometric features, primarily orientation 

and topology. Therefore, CA1 spatial representations generalize across the more similar 

(i.e., parallel) environments and discriminate between the more different (i.e., orthogonal) 

ones. This is suggestive of a role for CA1 area in orientation categorization and topology 

generalization across environments.

Temporal dynamics of track discrimination and generalization

Discrimination and generalization of newly encountered environments relative to previous 

environments may express immediately or, alternatively, may develop following additional 

experience within the environment. We investigated the temporal dynamics of experience­

driven discrimination and generalization between different environments at two behavioral 

timescales: 1. across multiple laps within-environment/session (i.e., laps-scale, mean 

duration of single-track sessions, T=18.3 minutes), and 2. across multiple environments/

sessions within the day (i.e., sessions-scale, time between first and last track run sessions, 
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T=9.4 hours). At the laps-scale, we defined ‘discriminability’ to quantify (Zhu et al., 2015) 

how well population-level place maps in single laps discriminated the current track from 

other tracks (Figure S4A, Methods). We found that overall discriminability by all putative 

pyramidal cells was higher between tracks with different orientation (i.e., orthogonal) than 

between those with the same orientation (i.e., parallel; Figure 4A, P=10−128, n=2,615, 

Wilcoxon rank-sum test). Importantly, the single lap discriminability was initially low 

during the early laps, gradually increased in the later laps and was positively correlated 

(laps-scale) with the number of laps/revisits within the environment (Figure 4B-D, mean 

R=0.11, >shuffle P=52×10−4, Wilcoxon rank-sum test; first 3 laps vs. last 3 laps, P=10−4, 

n=150, Wilcoxon signed-rank test).

Discriminability between orthogonal tracks exceeded that between parallel ones both 

during early (57.9% higher) and late laps (61.1% higher) (Figure 4D), consistent with a 

hippocampal processing of orientation selectivity. In agreement, OSI of orientation selective 

neurons also increased from the early to the late laps (Figure S4B). These findings indicate 

a scenario in which: 1. rapid/early encoding/representation of a novel environment (i.e., 

during early laps) has a more generic character (i.e., it is less discriminated against other 

similar environments, like other parallel tracks), and 2. with repeated experience in the 

environment, the representation gradually increases its distinctiveness (i.e., accuracy) from 

other environments (Figure 4B, D). This suggests a within-session experience-driven gradual 

tradeoff between the speed and the accuracy of spatial encoding across individual laps 

within an environment, from rapid and less distinct in the early laps to delayed and more 

distinct in the later laps (Figure 4B-D).

Given the experience-driven gradual increase of discrimination within the session (laps­

scale), we next investigated whether sessions-scale discrimination/generalization between 

different tracks across sessions can also be modulated by the extent of an animal’s 

experience with linear tracks. Sessions-scale similarity was quantified by the population­

level place map correlation. The average sessions-scale similarity between pairs of different 

tracks was generally lower (Alme et al., 2014; Dragoi and Tonegawa, 2011, 2013b) than 

the same-track similarity (i.e., between different repeat sessions on the same track, Figure 

2E). However, for the specific group of within-maze parallel inner tracks, which generally 

have the highest degree of similarity (Figure 2C-F), sessions-scale similarity increased 

from early sessions in Maze1 (i.e., Tracks 5 vs. 7) to the late sessions in Maze2 (i.e., 

Tracks 12 vs. 14 and 13 vs. 15; Maze1 vs. Maze2, P= 0.01, Wilcoxon rank-sum test; 

Figure 4E). Meanwhile, sessions-scale similarity between inner orthogonal track pairs did 

not change (P=0.57, Wilcoxon rank-sum test; Figure 4E). This suggests that the amount of 

prior experience on different tracks could contribute to the increased generalization observed 

across inner parallel track encoding. Animals’ velocity, within-session map stability, and 

sessions-scale similarity of within-maze parallel or orthogonal outer tracks did not change 

from the early (Maze1) to the late (Maze2) sessions (Figures S4C-D and 4E) further 

suggesting that increased sessions-scale generalization does not reflect an overall increased 

animal confusion. This sessions-scale generalization effect was unlikely to be an effect of 

global proactive interference (Peterson and Gentile, 1965) of later encodings by the earlier 

ones since it was expressed specifically for the inner (not the outer) parallel tracks and not 

for the orthogonal ones (Figure 4E). Altogether, our results indicate that repeated experience 
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across laps within a linear track leads to an increased representational discrimination against 

other tracks (Figure 4D, laps-scale) while increased sampling of multiple tracks leads to 

an increased generalization of the representation of the most similar tracks (Figure 4E, 

sessions-scale).

Generative processes underlying recruitment of new place cell sequences

The investigate the processes governing the selection of active hippocampal neurons into 

place cells during encoding of single and multiple novel environments, we computed 

the cumulative probability of place cell recruitment during the encoding of the 15 

different tracks (Figure 5A-C, Figure S5A). The 15 tracks recruited 269 out of the 280 

putative pyramidal cells as place cells. A range of 40-72 place cells/animal were recorded 

simultaneously for the entire duration of the experiment (25± 0.7 simultaneous place cells 

per individual linear track across all tracks and animals). The neuronal doctrine models (i.e., 

single cell as the main unit for information processing) would predict a more linear function 

for neuronal recruitment with an early capacity saturation. However, here we found that the 

cumulative curve of neuronal recruitment into encoding numerous tracks was heavily non­

linear and was best fitted by a hyperbolic ratio function (Naka and Rushton, 1966) (Figure 

S5B). Its parameters indicated that while exposure to the first of the 15 tracks (6.7% of the 

total number of tracks) recruited ~50% of the putative pyramidal neurons, the recruitment 

of 95% of all our putative pyramidal neurons (i.e., C95 index, Figure 5A inset) required 

sequential exposure to 13 (87%) different tracks. The real network operation and capacity 

were much higher than those of a surrogate network that employed a random sampling of 

neurons as place cells across the 15 tracks (C95 of random sampling is five tracks, P<0.008, 

Wilcoxon rank-sum test, Figure 5A inset). Exposure to all 15 tracks recruited 96% of all 

putative pyramidal neurons across all animals (N = 40, 51, 72, 48, 58 neurons in rats 

1-5; Figure 5A and inset), indicating that most, if not all, putative CA1 pyramidal cells 

can become place cells. Moreover, we found that the number of different tracks encoded 

by an individual neuron was best described by a gamma Poisson distribution (Figure 5B 

left, gamma Poisson parameters r, p = 3.07, 0.43; the fit was better than the Poisson P=0, 

Likelihood-ratio chi-squared test). When we virtually connected all the 15 tracks into one 

22.5-meter-long linear track, we found that the total number of place subfields expressed 

by each place cell along this long track similarly agreed with a gamma Poisson distribution 

(Figure 5B right, gamma Poisson parameters r, p = 1.48, 0.17). The predicted recruitment 

curve by gamma Poisson model matched the observed curve well (Figure 5C, Kolmogorov­

Smirnov statistic = 0.03, P=0.9; see also Figure S5C-D). This distribution of the place 

cell selection process across multiple environments was consistent with a previous report 

on CA1 area place cell selection on an actual long linear track within one room (Rich et 

al., 2014). These neuronal selection features indicate that individual neurons are re-used 

across experiences and that network capacity to distinctly encode numerous environments 

is enhanced primarily via a combinatorial neuronal ensemble code rather than an individual 

neuron code (Dragoi and Tonegawa, 2013b; Liu et al., 2018).

Given the importance of neuronal ensemble coding, we investigated how coordinated was 

re/mapping across place cells. We searched (Cumin and Unsworth, 2007) for the ‘longest­

common-sequence’ defined as the largest number of place cells whose primary subfields 
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were active in the exact same order across track pairs. We found that sequences of 7.2±0.2 

place cells could be selected and re-used in the same order during spatial encoding from 

one track to another (Figure S5E-F). This selection process was supported, in part, by the 

network organization into high-repeat neuronal tuplet motifs (Liu et al., 2018) (Figure S5G, 

P<10−3, n=12, Wilcoxon rank-sum test).

Neurons’ selection as place cells during track exploration is generally contributed by: 1. 

their spontaneous, internally-generated excitability and functional connectivity (Cai et al., 

2016; Dragoi and Tonegawa, 2011, 2014; Liu et al., 2018) and 2. by multisensory drives 

from the external world (Farooq et al., 2019; Lee and Wilson, 2002; Monaco et al., 

2014; Muller and Kubie, 1987) acting online during exploration or via replay (Lee and 

Wilson, 2002) of a recent activity. We found that the firing rate of neurons during sleep 

correlated with the number of tracks onto which they expressed a place subfield (Figures 

5D and S5H). This correlation gradually increased as a function of experience, from Sleep1 

(i.e., spontaneous, internally-generated excitability, R=0.21, P<10−3) to later sleep sessions 

(i.e., mixed internally- and externally-driven excitability, Sleep2-4: R=0.34-0.47, P<10−8, 

Pearson’s correlations; Figures 5E and S5I). The partial correlation between neuronal firing 

rates during Sleep4 while controlling for Sleep1 firing rates and the number of participating 

tracks was also significant (R=0.4, P<10−11), consistent with a stronger contribution to 

neuronal firing rate expressed in sleep from the replay of prior multisensory drives. Overall, 

these findings indicate that both internally-generated and externally-driven neuronal activity 

contribute to neuronal selection during information encoding of novel linear tracks.

Given the externally driven orientation selectivity of neurons and the contribution of 

internally generated sleep mechanisms to neuronal selection during run, we wanted to 

investigate whether and how orientation selectivity might contribute to the experience-driven 

change in neuronal selection from sleep. To evaluate the internally-generated activity, for 

each sleep session we constructed a Markov chain model based on neuronal excitability 

and functional connectivity during the sleep frames alone (Figure 6A, Methods). We 

used this model to estimate (Liu et al., 2018) the probability of run sequences and of 

control-random sequences with equal length (Figure 6B-D, Methods). For each run and 

sleep session, we determined the percentile of the probability of each run sequence among 

the distribution of probabilities of 106 random sequences. A higher percentile indicates a 

higher predictability/retrievability of a run sequence from the sleep sequences. Overall, we 

found that place cell sequences of the 15 tracks expressed high predictability/retrievability 

from every sleep session (Figure 6E, Figure S6A, P<10−152, n=150, highly left-skewed 

distributions, Kolmogorov-Smirnov tests). The percentiles of probabilities of run sequences 

inferred from sleep increased as a function of animal’s experience with linear tracks, from 

Sleep1 (generative preplay, no linear track experience) to Sleep2-4, likely due to prediction­

error-based plasticity (Liu et al., 2018) reflected as generative replay (Figure 6F, Figure 

S5H, P<10−19, n=600, Kruskal-Wallis tests).

Next, run sequences expressed on certain tracks (i.e., called ‘in-run’ sequences) were also 

used in combination with sleep sequences (i.e., called ‘in-sleep’ sequences) to construct the 

Markov chain model (Methods). We found that the probability percentiles of run sequences 

(identity and order) estimated from the model combining sleep sequences with the run 
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sequences on other parallel tracks were generally higher than those estimated from the 

model using only sleep sequences (Sleep+parallel tracks>Sleep only: P<4×10−3, n=150, 

Sleep1-4, Figure 6G; Sleep1-4: P=0.03, 0.02, 0.2, 0.4; n=150, Figure 6H, Wilcoxon signed­

rank tests). At the same time, information from the other parallel tracks improved the 

predictive model stronger than the information from the orthogonal tracks (Sleep+parallel 

tracks>Sleep+orthogonal tracks, P<0.01, n=150, Sleep1-4, Figure 6G-H, Wilcoxon signed­

rank tests). Therefore, integration of in-run (primary-tertiary place subfields) and in­

sleep information improved the predictability of run sequences, and the contribution 

came primarily or exclusively from the other parallel tracks (Figure 6G-H). Notably, 

integration of in-run information about the other parallel tracks into the preceding sleep 

(Sleep2+parallel>Sleep only, P<0.05, Figure 6G-H) increased the predictive codes for the 

current ‘target’ tracks to a level commensurate to the one induced by the real exploration 

of the current ‘target’ tracks in the following sleep (Sleep3-4 only vs. Sleep2+parallel, 

P>0.05, Figure 6G-H). After a sufficient number of tracks were already explored (i.e., 

Maze1), integration of in-run information into later sleep sessions ceased to improve the 

inferred probability of neuronal order during run calculated from the later sleep sessions 

alone (Sleep3 only vs. Sleep3+parallel, Sleep4 only vs. Sleep4+parallel, P>0.05, Figure 

6H). Given that orientation selectivity is contributed by a redistribution of place cell firing 

rate across different subfields (rate remapping) across parallel tracks, we hypothesized that 

secondary-tertiary subfields may be necessary for the improvement in predictive codes by 

prior experience. Indeed, we found that primary place subfields alone (42.1% of all place 

cells had multiple subfields on a given track, Figure S3F) were not sufficient to reveal the 

contribution of prior run-on-parallel-tracks experience to the prediction from sleep (Figure 

S6C-D). Altogether, these results demonstrate that: 1. generation of place cell sequences 

is contributed by both internally-generated and externally-driven network dynamics, 2. 

integration of generalized information about other similar (parallel) environments into 

the intrinsic sleep codes (i.e., preplay) can improve generative prediction of future place 

cell sequences in a new environment, and 3. this improvement is commensurate with the 

plasticity in generative replay (Liu et al., 2018) induced by the actual exploration of that new 

environment (i.e., replay).

Discussion:

Context representation is crucial for episodic memory function and for spatial navigation 

and mental travel (Eichenbaum and Cohen, 2014; Tulving, 2002). Here we have shown that 

hippocampal representation of specific linear environments is selective to their orientation 

and topology. The orientation selectivity property of CA1 place cells was preserved and 

transferred across different yet connected rooms despite global place subfield re/mapping 

between rooms. The differences in distal cues (visual, auditory) and Mazes (7 tracks in 

Maze1, 8 in Maze2) between rooms likely contributed to the global place cell re/mapping 

across Mazes. Meanwhile, rooms contiguity (ceiling, floor, walls) and Maze similarity in 

geometry and orientation may have helped the animals maintain their sense of orientation 

across the two Mazes and rooms.

Our finding of experience-dependent gradual generalization-discrimination tradeoff (Figure 

4B-D) may indicate the existence of a continuum of representations flanked by two general 

Liu et al. Page 10

Neuron. Author manuscript; available in PMC 2022 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



operation modes (Kahneman, 2011; McClelland et al., 1995): one faster and more generic 

(e.g., ‘a horizontal (E-W) track’, Figure 4B-D, early laps) and one slower and more 

individualized (e.g., ‘track #9’, late laps). The more generic representation (early laps) 

is primarily driven by top-down mechanisms ignited by a strongly predictive network pre­

configuration spontaneously expressed during pre-experience sleep (Dragoi and Tonegawa, 

2011; Liu et al., 2018), which is partly innate and partly contributed by prior experience 

(Dragoi and Tonegawa, 2013a; Farooq and Dragoi, 2019; Tse et al., 2007). With repeated 

trials within the same environment, additional features from the external world could 

contribute to the slow-individualized discrimination (e.g., into individual tracks #1-15, 

Figure 4B-D, late laps).

CA3 and dentate gyrus areas are reported to be critical for pattern completion and 

pattern separation processes, respectively, while CA1 area undergoes a more linear, graded 

transformation across different contexts (Guzowski et al., 2004; Lee et al., 2004; Leutgeb 

et al., 2007). These and other previous studies primarily assessed binary representations 

between two 2-D contexts at fixed timepoints. Here, we compared the temporal dynamics of 

representations of 15 linear tracks and found that generalization across environments (akin 

to pattern completion) increased as a function of experience load while discrimination across 

environments (akin to pattern separation) increased as a function of repeated trials within 

an environment (Figure 4B-D, laps-scale). What remains to be understood is how neuronal 

ensembles from the upstream CA3 and the dentate gyrus would perform pattern completion 

and separation under this new, increased-load experimental paradigm.

Place cells in the dorsal hippocampus CA1 area were previously shown to lack head­

directional tuning in 2-D environments (Muller et al., 1994; O'Keefe and Nadel, 1978) and 

to exhibit a strong directional selectivity in narrow linear environments (McNaughton et al., 

1983; Muller et al., 1994), which would develop as a function of experience-dependent 

plasticity (Dragoi et al., 2003; Navratilova et al., 2012). The orientation selectivity 

phenomenon could not be simply attributed to an occupancy or behavioral bias (Burgess et 

al., 2005; Muller et al., 1994) since both animal occupancy and behavior across all the tracks 

were highly similar. We propose that orientation selectivity is predominantly contributed by 

an internal head direction signal from the upstream entorhinal cortex (Brandon et al., 2013; 

Giocomo et al., 2014; Sargolini et al., 2006) combined with a reduced subfield directionality 

due to increased track novelty (Navratilova et al., 2012), facilitated by a similarity in Maze 

configuration and continuity of distal room walls.

After extended experience across multiple days within an environment (Kinsky et al., 

2020; Mankin et al., 2012; Ziv et al., 2013) or after rapid artificial induction of long-term 

potentiation of intra-hippocampal synaptic transmission (Dragoi et al., 2003), the place cell 

representation of the same environment can drift and appear re/mapped. In contrast to the 

extended timescale representational drift (i.e., over days), during our 16 h recording we only 

re-exposed our animals once to the same environment (tracks 1 and 8) over a relatively 

shorter time interval (~1-2 h) and were not able to track a long-term representational 

drift. Reported representational drift after ~24 h (Mankin et al., 2012) reduced place cell 

population vector correlations to levels (R~0.6) much higher than the correlations between 

different tracks reported in our study (R=0.13±0.004). This indicates that the place maps 
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within the 16 h duration of our experiment were stable enough for the animals to rapidly 

distinguish between different tracks. The laps-scale place map changes from the early to 

the late laps (Figure 4B-C) might resemble an accelerated representational drift likely to 

enhance the discrimination from other environments.

Previously, we detected the existence of generative predictive codes for future novel place 

cell sequences during pre-experience sleep (Liu et al., 2018). These codes were updated 

in response to inferred undetermined external stimuli via prediction error and generative 

replay (Liu et al., 2018). Here we reveal that incorporation of generalized multisensory 

information about orientation and topology into the predictive codes of sleep strengthens the 

combined network predictive power for similar (parallel) future novel environments (Figure 

6G-H). The degree by which the predictive codes were strengthened by parallel track 

generalization is commensurate with that of the plasticity in replay (Dragoi, 2020) induced 

by the actual exploration of the new (parallel) environments (Figure 6G-H). This suggests 

that mapping of an even larger repertoire of multisensory-driven hippocampal activity 

could further increase the network predictability for rapid encoding and representation of 

future novel experiences. Consistent with this idea, the inclusion of secondary and tertiary 

place subfields (likely representing additional multisensory contingencies) along with the 

primary subfields was critical in revealing the role of environment topology in increased 

predictive coding (Figures 6G-H, S6C-D). We propose that similar principles of combined 

representational features of internally-generated (top-down) and externally-driven (bottom­

up) activity would be conducive to improved predictability in representation of future novel 

environments. Using a linear extrapolation of neuronal activity on 3 tracks and the preceding 

sleep, we estimated that hippocampal network capacity may be reached after exposure to 

15 linear tracks (Dragoi and Tonegawa, 2013b). Here we show that, while initially linear, 

the functions governing the selection and allocation of place cells on numerous additional 

linear tracks become heavily non-linear. The multiple coding schemes demonstrated here 

support a hippocampal role in generative predictive coding, inference and discrimination­

generalization of novel contextual information and are likely to generalize to the activity of 

additional areas of the brain.

STAR Methods:

RESOURCE AVAILABILITY

Lead contact: Further information and requests for resources and reagents 

should be directed to and will be fulfilled by the lead contact, George Dragoi 

(george.dragoi@yale.edu).

Materials availability: This study did not generate new unique reagents.

Data and code availability:

• The reported data are archived on file servers at the Yale Medical School. Data 

reported in this paper will be shared by the lead contact upon request.

• Original code was deposited in Dataverse and is available at DOI https://doi.org/

10.7910/DVN/KFCXTF.
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• Additional information required to reanalyze the data reported in this paper is 

available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Five Long-Evans adult male rats weighting ~350 g were used for data collection. Animal 

handling and experimental procedures were approved by the IACUC at Yale University and 

were performed in agreement with the NIH guidelines for ethical treatment of animals.

METHOD DETAILS

Surgery and experimental design—Animals were implanted bilaterally with 32 

independently movable tetrodes (Rats 3-5) or two independently movable 64-channel 

8-shank silicon octatrodes (Neuronexus probes, Rats 1-2) under isoflurane anesthesia. 

Craniotomy was performed above area CA1 of the hippocampus (centered at 4 mm post­

bregma, 2 mm lateral to midline). The reference electrode was implanted posterior to 

lambda over the cerebellum. During the following several weeks post recovery, the tetrodes 

and silicon probes were advanced daily while animals rested and slept in a high-wall opaque 

sleeping box (30 x 45 x 40 (h) cm).

The experimental apparatus consisted of two 150 2× 150 cm rectangular elevated linear 

track mazes with additional parallel and orthogonal tracks inside the square arranged as 

described in Figures 1A and S1. All tracks were 150 cm long, 6.25 cm wide and 75 

cm above the floor. Experimental sessions were conducted while the animals explored for 

chocolate sprinkle rewards placed at the ends of the linear tracks (one sprinkle at each end 

of the available track on each lap). Each track was explored for at least 10 laps for food 

rewards. Neuronal activity was recorded in naïve animals during the pre-experience sleep 

session (Sleep1) in the sleep box for ~2-4 h, after which the first linear maze (Maze1, tracks 

1-7) was brought into the room and installed. Subsequently, the animals were transferred 

onto track1 of Maze1 for the first time and allowed to explore the 150 cm-long linear 

track while access to connected tracks was blocked by 20 cm-high, 10 cm-wide barriers. 

This was followed by a ~2 h sleep session in the sleep box (Sleep2) and a re-exposure 

to track1. While the animals were on track1, the end barriers were lifted in succession 

allowing the animals to explore for the first time 3 additional 150 cm-long linear tracks 

completing the outer tracks of Maze1 (tracks 1-4). Afterward, the animals were placed 

on and allowed to explore in succession tracks 5-7. Exploration of Maze1 was followed 

by a 2-4 h sleep session in the sleep box (Sleep3). Following Sleep3, the animals were 

directly transferred to the second maze (Maze2, tracks 8-15) located in another room or 

compartment through an opening in the curtain or a door separating the 2 rooms. The curtain 

and the door were opened during transfer and were closed at all the other times. The animals 

were held on experimenter’s arm during the transfer between Mazes during which time the 

global cues and topological relationship between two rooms/compartments were visible to 

the animal. Animals first explored track8 for one session, after which the end barriers were 

lifted in succession allowing the animals to explore all outer tracks of Maze2 (tracks 8-11) 

contiguously.
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Subsequently, the animals were placed on and sequentially explored tracks 12-15 

individually. After exploration of Maze2, the animals were placed in the sleep box for a 2-4 

h sleep session (Sleep4). The sleep box was always placed in the same location of room1 for 

the whole duration of the experiment and was temporarily removed during the exploration 

of tracks 1-15. Additional details of all exploration and sleep sessions are provided in Figure 

1A and Figure S1. For tracks 1 and 8, only the first exploratory session on these tracks was 

used for all the analyses with the exception of Figure 2E, which explicitly investigated the 

similarity between place maps on the two different sessions on the same track.

Electrophysiology data acquisition—Electrophysiological data acquisition was 

performed using a 128-channel digital Neuralynx data acquisition system (DigiLynx) with 

Cheetah software. Raw signals were recorded at 30 kHz and were digitally filtered between 

1 and 6,000 Hz. Spikes were obtained by high pass filtering raw signal above 600 Hz 

and triggering signal acquisition by passing a 50 μV threshold. The animal’s position was 

monitored via a set of LEDs placed within the headstage and an overhead camera whose 

video capture was recorded by the Cheetah software.

Single cells were identified and isolated offline using the manual clustering method 

Xclust3 (Dragoi and Tonegawa, 2013b). Putative pyramidal cells were distinguished from 

interneurons based on spike width, average rate, and autocorrelations as published before 

(Dragoi and Tonegawa, 2013b). We collected 43, 51, 76, 48 and 62 pyramidal cells from the 

5 animals.

After the completion of all experiments, all rats were perfused intracardially with 10% 

formalin and their brains were fixed, sectioned, and stained using Cresyl violet to 

reconstruct all electrode tracks.

Place maps and place subfields on linear tracks—Place maps were computed as 

the ratio between the number of spikes and the time spent in 2 cm bins along the track, 

smoothed with a Gaussian kernel with a standard deviation of 2 cm (Dragoi and Tonegawa, 

2013b). Bins where the animal spent a total of less than 0.1 sec and periods during which 

the animal’s velocity was below 5 cm/s were excluded. Place subfields were defined as areas 

of a place map with >2 Hz activity contiguous for >10 cm. Place subfields were named 

primary to tertiary in the descending order of their peak firing rate. Place subfield length 

and peak rate were calculated after separating the direction of movement and linearizing the 

trajectory of the animal. The place subfield peak rate and location were given by the rate 

and location of the bin with the highest ratio between spike counts and time spent. Place 

subfield borders were defined as the points where the firing rate became less than 10% of the 

peak firing rate or 2 Hz (whichever was bigger) for at least 2 cm. Place cell Run sequences 

(two sequences/run) were calculated by ranking cells based on their primary place subfield 

location along the animals’ trajectory.

Place maps in tracks’ intersection areas—Intersection areas were defined as the 

crossing areas between two orthogonal inner tracks outside reward areas in each Maze. 

There were 6 intersection areas in total (Figure S3A). The place maps in the intersection 

areas of orthogonal tracks were separately calculated for each intersection area. Animals’ 
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2-D trajectory in the whole maze was separated into different directions (2 directions for 

each track) and different tracks, and binned in 3 cm × 3 cm. Bins with animal occupancy 

<0.05 s or animal velocity <5 cm/s were excluded. Effective intersection bins were defined 

as the space bins that have enough occupancy from both tracks and both directions. Place 

maps in intersection area were only calculated in the effective intersection bins. The ratio 

between the number of spikes and the time spent was calculated in each bin and smoothed 

with a Gaussian kernel with standard deviation of 3 cm to obtain 2-D place maps on each 

direction in each track.

Population-level place map correlation—Place maps of putative pyramidal neurons in 

each track were aligned together as a two-dimensional place map matrix with neurons as 

one dimension and spatial bin as another dimension. To compute the population-level place 

map correlation of a track pair, place map matrices of each track were first converted to 1-D 

vectors by concatenating the place maps of each neuron. The 1-D vectors of the two tracks 

in each track pair were aligned to corresponding neuron and space bin, and a Pearson’s 

correlation value between these two vectors was calculated as the population-level place 

map correlation between the two tracks:

r(A, B) = 1
N − 1 ∑

i = 1

N Ai − μA
σA

Bi − μB
σB

where A and B are the population-level place map vectors of the two tracks being compared, 

μ and σ are the mean and the standard deviation, respectively.

Place maps per lap and track discriminability—The spikes of each lap when 

animal’s velocity was >5 cm/s were collected and normalized by the occupancy of the 

corresponding lap with 2 cm bin size resolution to generate place maps of each lap. This was 

performed for each lap of each run session on each track.

The neuronal population-level place maps on a certain lap in a certain track were compared 

with the whole-session place maps on each and all tracks using Pearson’s correlations. 

For the analysis of relationship between discriminability and orientation (Figure 4A), in 

each comparison between activity in a lap of the current track and another track, tracks 

parallel with the current track and tracks orthogonal with the current track were separately 

grouped and compared. For the other analyses, all tracks were used. The track which had the 

maximum correlation value with the lap place maps was defined as the online ‘predicted’ 

track during the run. The track in which the animal was actually running was defined as 

the ‘actual’ track (Zhu et al., 2015). For each lap, we compared the average similarity 

between population-level place map in single-lap and whole session on the same track with 

the corresponding neuronal population lap-session similarity across different tracks (Figure 

S4A); we computed ‘discriminability’ as the ratio between the two similarity values. The 

discriminability index (DI) of a lap was defined as:

DI =
Cr

E[Cw]
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where Cr is the correlation value between population-level place maps on the actual track 

and the lap place maps, Cw is the correlation value between population-level place maps on 

all the other tracks and the lap place maps. E[ ] represents expectation. To evaluate whether 

the correlation between discriminability and lap number (Figure 4B) was significantly 

positive, we broke the correspondence between lap number and discriminability by shuffling 

the lap number and then recalculated the correlation between the shuffled lap order with the 

discriminability. This was performed 100 times to construct a shuffle dataset of correlation 

values (Figure 4C). The differences between the shuffle dataset correlations and the original 

correlations were tested by a Wilcoxon rank-sum test.

Orientation selectivity, direction selectivity and location selectivity—The 

orientation selectivity of each neuron was quantified by comparing the place map on 

the horizontally (E-W) oriented and the vertically (N-S) oriented tracks (Figure 1A). The 

orientation selectivity index (OSI) was calculated as:

OSI =
Rℎ − Rv
Rℎ + Rv

where Rh and Rv are the expectation of average firing rate when animals travel in 

horizontally (E-W) oriented and in vertically (N-S) oriented tracks, respectively.

For OSI in the intersectional areas, Rh and Rv are the average firing rates in the effective 

intersectional bins when the animals travel in horizontally (E-W) oriented and in vertically 

(N-S) oriented tracks, respectively.

The significance of orientation selectivity was evaluated by shuffling the orientation 

identity (i.e., horizontal (E-W) or vertical (N-S)) of all tracks 500 times and recalculating 

corresponding OSIs. The original OSI was compared with the OSIs of the shuffled tracks 

to determine whether the original OSI is higher than 95% of the shuffled data OSIs. The 

neurons that passed the significance test were considered orientation selective, while the 

neurons that did not pass significance were allocated to the orientation non-selective group. 

The neurons with high OSI and high P-values (i.e., non-significant) were not assigned as 

orientation selective at the single cell level, but they have the potential to contribute to 

the encoding of orientation at the neuronal population level. The value and significance of 

the direction selectivity index (DSI) was evaluated similarly to OSI by using the direction 

(0° / E, 90° / N, 180° / W or 270° / S) of each track. To compare orientation selectivity 

with location selectivity, we computed intersection-OSI for place cell activity using only 

the spatial bins in the intersection areas where the animals occupied the same physical 

location in the room coordinates while running along tracks of different orientation (same 

location, different orientation; Figure 3C, grey square/red arrows). We also computed 

location selectivity index (LSI) by comparing place maps inside and outside intersection 

areas while animals ran on the same track (same orientation, different location; Figure 3C, 

red squares).

The location selectivity was quantified by comparing the place maps on two locations on the 

same track:
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LSI =
Rin − Rout
Rin + Rout

where Rin is the average response inside intersectional area, Rout is the average response in 

another location outside intersectional area of the same track with an equal number of space 

bins outside intersectional area. Orientation selectivity lacks specificity to animal’s vectorial 

direction of movement on parallel tracks and manifests across tracks separated across two 

rooms having different external visual and auditory cues. Orientation selectivity may rely 

on animal’s rapid (re)orientation based on the continuity of the floor, ceiling, and distal 

walls between the rooms also available during the animal transfer between the rooms. These 

properties differentiate orientation selectivity from the phenomenon of path equivalence 

manifested on nearby parallel tracks where animals performed repeated exploration of 

analogous environments and developed direction-specific multi-track association by task 

similarity. It is possible that the similar Maze configurations across the two rooms (e.g., the 

fixed barrier, the overall shape and size of the Mazes) and the spatial continuity between 

the rooms played a role in maintaining a general sense of orientation for the animals across 

the 2 Mazes and rooms. However, given that orientation selectivity was expressed on linear 

tracks that were separated by as much as 1.5 m and 180° or located in different rooms 

containing different external cues and separated by opaque walls, its strong dependence on 

specific visual cues is less likely. Instead, different distal cues likely contributed to place 

cell remapping across the analogous tracks of the two Mazes and rooms despite preserved 

orientation selectivity.

Place cell recruitment—We calculated the cumulative number of neurons that became 

place cells (i.e., at least one subfield) in a certain number of linear tracks (Figure S5A). For 

one track, this is the average number of place cells in each one track normalized by the 

total number of putative pyramidal neurons. For multiple tracks (e.g., 5 tracks), this is how 

many place cells participated in at least one of the multiple tracks (e.g., one of the 5 tracks) 

normalized by the total number of pyramidal neurons.

Cumulative probability curve fitting—The cumulative recruitment of place cells across 

multiple tracks was fitted by linear, logarithmic (Weber-Fechner’s law), power (Stevens’ 

power law), exponential (Random sampling of uniform distribution), and hyperbolic ratio 

functions, using the least-square method as below:

Linear:

p = αx + β

where α is the slope, β the intercept, p is the proportion of neurons that were recruited as 

place cells by at least one track, and x is the number of tracks.

Logarithmic:

p = α log x + β
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where α is the sensitivity, β the baseline.

Power:

p = αxβ

where α is the proportionality constant (i.e., scaling factor), β the exponent.

Exponential:

p = α − αβx

where α is the saturation level (for example, in place cell recruitment, it represented the 

maximum proportion of neurons that would be recruited by an infinite number of tracks), 

β is the proportion of inactivation (for example, in place cell recruitment, it represented the 

proportion of silent neurons in one track).

Hyperbolic ratio function (Naka and Rushton, 1966)

p = xn

xn + C50
n

where C50 is the half-saturation constant (for example, in place cell recruitment, it represents 

the number of tracks required to recruit half of all neurons), n is an exponent describing 

cooperativity. C95 was calculated as the x value when p=0.95.

Non-random re/mapping of place subfields—To estimate the non-randomness of re/

mapping, the location of each place subfield was extracted and the firing rate profiles on the 

corresponding locations (distance from ends) on other tracks were collected and averaged. 

The firing rate profiles on random locations on other tracks were also collected and averaged 

to be compared with those in the corresponding locations. After evaluation of all place 

subfields of all tracks, the tracks were grouped according to their orientation. For each place 

subfield on a track, corresponding locations in other parallel and orthogonal tracks were 

separately collected and averaged to evaluate the impact of track orientation on remapping. 

Similarly, 1st subfield and 2nd-3rd subfields comparisons were performed according to 

whether the starting place subfield was a primary subfield or a secondary-tertiary subfield.

Longest common sequence—If a multi-neuron sequence longer than chance occurred 

in the run sequences on multiple different tracks, we defined it as a longest-common­

sequence. For every two run sequences on different tracks, we applied a length-growing 

method to search for the common sequences with the same neurons and in the same 

order, until the length of the common sequence could not be further extended (Cumin 

and Unsworth, 2007). Next, we shuffled the order of neurons in these two run sequences 

500 times and re-extracted the common sequences. The length of common sequences from 

shuffled sequences were compared with the length of common sequence from the original 
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run sequences. If the length of the common sequence from the original run sequences was 

higher than the length of 95% of the shuffles, the sequence was considered a significant 

longest-common-sequence.

Generalized linear model of geometric features—We applied generalized linear 

models (GLM) to investigate the contribution of geometric features to population-level 

place maps (correlation between track pair population vector). This method looked for 

geometric features that group place maps, i.e., when two tracks are similar in that geometric 

feature, their place maps are more similar. The geometric features of each track pair were 

extracted and their consistency between track pairs was used in the model. We extracted the 

following geometric features for each track: Maze (i.e., maze identity, Maze1 ∣Maze2), 

InOut (i.e., inner versus outer/on Maze-boundary tracks, inner∣outer), MiddleBar (i.e., 

number of non-rewarded track intersection areas, one∣two), NearCurtain (i.e., tracks 4&8, 

yes∣no), Orientation (i.e., horizontal (E-W)∣vertical (N-S)), NearFixBar (i.e., fixed barrier 

between tracks 3&4 and tracks 10&11, yes∣no), and NearWall (i.e., tracks closest to rooms 

walls, yes∣no). All track pairs were compared using these factors. For each track pair, we 

generated a vector of binary values (i.e., true/false) to indicate whether their geometric 

features were the same or different. This matrix of geometric similarity of all track pairs was 

used as predictor variables for the GLM. The linear model contains an intercept and a linear 

term for each predictor that was applied in the GLM. The link function of the GLM was the 

identity function f(μ) = μ. The distribution of response variables was a Normal distribution.

For the population-level place map model (Figure 2B), the population-level place map 

correlations of each track pairs were used as response variables. Deviance of the original 

GLM was calculated for each geometric feature. Deviance of a model M1 is twice the 

difference between the loglikelihood of the model M1 and the full model Ms. A full model is 

the model with the maximum number of parameters that can be estimated.

Deviance = − 2(logL(b1, y) − logL(bS, y))

where L(b,y) is the maximum value of the likelihood function for a model with the 

parameters b for observation y; b1 and bs contain the estimated parameters for the model M1 

and the full model, respectively.

Next, each geometric feature was removed from the model to generate a reduced model 

for that geometric feature. The deviance of the reduced model was calculated again to be 

compared with the deviance of the full model. Only one feature was removed at a time. 

There is one reduced model for each geometric feature. The difference of deviance between 

the reduced model and the full model was considered as the contribution of that geometric 

feature.

Sequence detection during sleep—Spiking frames were detected during slow-wave 

sleep periods in the sleep box determined based on continuous long animal immobility 

(velocity below 1 cm/s for at least 5 minutes) and low theta/delta ratio (below 2, after Hilbert 

transform for respective frequencies, 6-12 Hz for theta and 1-4 Hz for delta, and smoothed 

with a 5s Gaussian) to exclude epochs of rapid-eye movement sleep. A spiking frame was 
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defined as a transient increase in the multiunit firing activity of a population of at least six 

different putative pyramidal cells within a temporal window preceded and followed by at 

least 100 ms of silence that delimited the beginning and the end of the event. The duration of 

spiking frames was limited to 80-1,200 ms. The spikes of all cells that were emitted during 

the sleep frames were sorted by time, the spike time center of mass (COM) was calculated 

for each cell in each frame, and was used to determine the cells’ order in each spiking frame.

Markov model of sleep sequences—We constructed a first-order Markov chain model 

for neuronal sequence activity during sleep frames. All details of the model were published 

before (Liu et al., 2018). Briefly, each sleep frame was represented by the sequence of 

neurons identity. The alphabet of the model was neuron’s identity. The maximum likelihood 

was used to estimate the parameters. Conditional probability was derived from the transition 

matrix we computed from neuronal activity during sleep frames, and was given by:

pr(xi ∣ xi − k…xi − 2xi − 1) =
n(xi − k…xi − 2xi − 1xi)
n(xi − k…xi − 2xi − 1)

where xi is the ith cell in the sleep sequence, n is the count of sequence, and k is the order of 

the model, which was set to 1 in the most cases in this study.

Conditional probability p2 was given by:

p2(xi ∣ xi − 1) =
n(xi − 1xi)
n(xi − 1)

where xi is the ith cell in a sleep sequence, n is the count of sequences.

The unconditional probability (p1) of each cell was given by:

p1(xi) =
n(xi)

N

where N is the length of sequential activity during sleep frames.

To alleviate the noise induced by low firing cells, the zero values in the transition matrix 

were set to the minimum non-zero value in the transition matrix and the values of one were 

set to the maximum non-one value in the matrix.

The probability of any sequence whose alphabet was included in the alphabet of the model 

could be estimated. For a given sequence X, the probability was estimated by

pr(X) = pr(x1) ∏
i = 2

n
pr(xi ∣ xi − 1)

where X is the sequence of interest, xi is the ith cell, and n is the sequence length.
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To evaluate the run sequences on the 15 tracks, for each run sequence, one million random 

sequences with the same length as the run sequence were generated by a uniform random 

sampling from all cells in the model. The probabilities of each of the random sequences 

and the real run sequence were estimated by the Markov model after which the percentile 

of run sequence probability among the distribution of probabilities of corresponding 

random sequences was calculated. The percentile was used to quantify the predictability/

retrievability of the run sequence from sleep. To investigate run cell order prediction from 

sleep, the random sequences for a run sequence were generated by shuffling the order of 

place cells in the real run sequence. All random sequences consisted of the same (place) cell 

population as the run sequence, with different orders.

To test the effect of place subfields in prediction of run from sleep, for each run sequence we 

constructed a population of sequences of the same cell count using combinations of primary, 

secondary and tertiary place subfields (one subfield at a time/place cell). For the cells with 

multiple place subfields, each place subfield was used to construct different sequences and 

obtain all possible combinations of place subfields. We used the Markov model of the sleep 

to estimate the prediction percentile of these newly generated run sequences and computed 

a percentile distribution for each run sequence. The peak of the probability percentile 

distribution was defined as the probability percentile of the original run sequence, for each 

track.

As a test for the contribution of the primary subfields, we also performed this analysis by 

using only primary subfields to construct run sequences, whose percentile was estimated 

(Figure S6C-D).

We also investigated the effect of combining run information into the sleep Markov model. 

‘In-run’ information was estimated from the run sequences on linear tracks while ‘in-sleep’ 

information was estimated from sleep sequences that built the previous Markov chain model. 

Given that hippocampal network expressed generalization and categorization of geometric 

features during run, we asked whether sequence predictability for a ‘target’ track can be 

improved by combining functional connectivity derived from sleep alone with the one from 

the external stimuli computed during runs on the other parallel or orthogonal ‘source’ 

tracks. For each target run sequence, we used the sequences in all parallel or, separately, 

all orthogonal tracks except for the target track to construct transition matrices. Then the 

Hadamard product of elements in the transition matrix of the sleep sequences and the 

transition matrices of the run sequences were calculated as a combined matrix, which was 

used to estimate the probability of the target run sequence. This probability was compared 

with the probability of random sequences generated by random sampling of neurons to 

obtain the percentile and predictability of the target sequence. For the orientation selective 

contribution of run information to sleep, each target sequence was estimated by using the 

combined transition matrix from the sleep sequences and the run sequences in tracks that 

were parallel with the target sequence. Neuron order estimation was performed by similar 

methods, but the random sequences were generated by shuffling the neuron order of the 

target sequence.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Analyses were performed using customized code written in MATLAB (R2017b, 

MathWorks) and Python (2.7). The comparison between multiple populations was tested 

by Kruskal-Wallis tests. The comparison between two populations of different sample size 

was tested by the Wilcoxon rank-sum test, while two populations with the same sample 

sizes were tested pairwise by the Wilcoxon signed-rank test. In figures, *P<0.05, **P<0.01, 

***P<0.001. Data were represented as mean±standard error of the mean (SEM).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights:

• Hippocampal place cells display selectivity to context orientation and 

topology

• Orientation selectivity biases discrimination and remapping between contexts

• Repeated experience within a context enhances its representation 

discriminability

• Generalization of experience across multiple contexts improves predictive 

coding
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Figure 1. Hippocampal CA1 pyramidal cell activity during sequential exploration of 15 linear 
tracks.
(A) Diagram of the experimental setup and timeline of the sleep and run sessions of an 

example rat. Red lines represent barriers used to define the boundaries of individual tracks.

(B) Spike sorting and configuration for three example tetrodes.

(C-D) Place maps of 3 example neurons across the 15 tracks depicting the orientation 

selectivity phenomenon. Place maps above and below the straight horizontal lines are from 

the two running directions on the same tracks. Tracks were arranged by run order (C) 

or grouped by their horizontal (East-West/E-W) or vertical (North-South/N-S) orientation 

(D). Note that neurons in blue and red color display orientation selectivity for horizontally 

(E-W) and vertically (N-S) oriented tracks respectively, and the neuron in gray displays no 

orientation selectivity.

See also Figure S1.
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Figure 2. Orientation selectivity of hippocampal dorsal CA1 place cells.
(A) Example of population-level place map correlations between all track pairs in one 

animal during run.

(B) Contribution of track geometry features to place cell re/mapping estimated by a 

generalized linear model (GLM).

(C) Influence of track orientation on population-level place cell re/mapping measured by 

population-level place map correlations across track pairs.

(D) Population-level place map correlation between track pairs changes as a function of their 

physical separation.

(E) Correlations between population-level place maps during different sessions on: the same 

track, different tracks, track pairs with analogous spatial location across the Mazes, and all 

parallel tracks.

(F) Correlations between population-level place maps during sessions on tracks within the 

same Maze are similar to those during sessions on tracks across different Mazes.

(G) Distribution of orientation selectivity index (OSI) calculated by firing rate and its 

associated significance (P value) across the place cell population from all putative pyramidal 

neurons (center) and from three example neurons depicting one orientation non-selective 

neuron (left), one orientation selective neuron (bottom right) and one orientation non­

selective neuron with high OSI (top right). Top-left pie chart, Proportion of neurons with 

significant and non-significant OSI.

Data are represented as mean±SEM. ***P < 0.001.

See also Figure S2.
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Figure 3. Properties of orientation selective neurons.
(A-B), Preserved preferred orientation (A) and OSI strength (B) across the two Mazes for 

neurons with significant orientation selectivity on Maze1.

(C) Place cells OSI inside intersectional areas between orthogonal tracks (i.e., same location, 

different orientation) is stronger than their within-track location selectivity index (i.e., same 

orientation, different location).

(D) Clustering of trajectories of horizontally (E-W) and vertically (N-S) oriented population­

level place maps of the 15 tracks projected in principal component space. Left, original 

population-level place maps. Right, space-shift shuffled population-level place maps.

(E) Across-tracks topology-dependent re/mapping of place subfields. Top cartoon, the 

method of extraction of the corresponding locations. Bottom, re/mapping of a place cell 

subfield on a linear track (Reference) preferentially occurs in locations topologically 

corresponding (i.e., same distance from track end) to non-zero activity of the cell on 
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different parallel (left), but not orthogonal tracks (right). Black dots: space bins significantly 

higher than shuffle (P<0.05, Wilcoxon rank-sum test). ***P < 0.001.

See also Figures S2 and S3.

Liu et al. Page 29

Neuron. Author manuscript; available in PMC 2022 November 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Temporal dynamics of context encoding and discrimination.
(A) Neuronal population-level place map discriminability between different parallel or 

different orthogonal tracks.

(B) Experience-dependent gradual increase in context discriminability as a function of lap 

number in an example run session at short, within-session timescale (i.e., laps-scale).

(C) Distribution of correlation values between discriminability and lap number across all run 

sessions and animals in the original data compared with lap number-shuffled data.

(D) Discriminability during the first 3 laps compared with the last 3 laps.

(E) Correlations between population-level place maps during sessions on the same Maze 

on: outer orthogonal tracks, outer parallel tracks, inner orthogonal tracks, and inner parallel 

tracks.

Data are represented as mean±SEM. *P < 0.05, **P < 0.01, ***P < 0.001, n.s., not 

significant.

See also Figure S4.
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Figure 5. Recruitment of place cells on the fifteen tracks.
(A) Cumulative place cell recruitment on the 15 tracks. Inset: C95, number of tracks driving 

the cumulative recruitment of 95% of all neurons as place cells.

(B) Distribution of neuronal participation in the encoding/mapping of the 15 tracks (Left) 

and distribution of the number of place subfields/neuron (Right) compared with Gamma 

Poisson and Poisson distributions.

(C) Cumulative recruitment of place cells on a virtual 22.5 m-long track created by 

concatenation of all the 15 tracks.

(D) Relationship between the neuronal firing rate of putative pyramidal cells during the 4 

sleep sessions and the number of tracks on which they express place subfields.

(E) Correlation between firing rate of neurons during sleep and the number of tracks in 

which they participated as place cells during run as a function of experience.

Data are represented as mean±SEM.

See also Figure S5.
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Figure 6. Generative processes underlying place cell sequences.
(A) Example spiking frames during slow-wave sleep used to extract neuronal order of firing. 

Spikes in red color exemplify temporal order between one pair of neurons across frames.

(B) Example place maps used for constructing run sequences. Place maps in red color 

correspond to the neurons emitting the spikes marked in red in (A).

(C) Probabilities of 106 random sequences (gray) and of a real place cell run sequence (blue, 

dotted) estimated by an example sleep session.

(D) The determination of probability percentile of an example real run sequence (blue). The 

height of the blue line is arbitrary to match the height of the distribution in grey.

(E) Distribution of probability percentiles of the real place cell sequences during run 

(identity and order) during each sleep session. Horizontal dotted line represents chance 

distribution.

(F) The average probability percentile of all real run sequences (identity and order) inferred 

from sleep as a function of sleep ID. Note the overall increases of probability percentiles 

from pre- to post-experience sleep.

(G-H) Increase in the probability percentile for real run sequences, neuronal identity and 

neuronal order (G) and neuronal order alone (H) during run inferred using the Markov chain 

model built on neuronal sequences during the sleep alone (black), or a Markov chain model 

built on combined sleep and primary-tertiary subfield sequences expressed during the run 

sessions on different orthogonal (blue) or parallel (red) tracks.

Data are represented as mean±SEM. *P < 0.05, **P < 0.01, ***P < 0.001, n.s., not 

significant
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See also Figure S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Isoflurane Zoetis ANADA # 200-070

Grip cement Teets denture material N/A

Carprofen Norbrook 55529-131-11

Experimental models: organisms/strains

Rat/Long-Evans Charles River N/A

Software and algorithms

MATLAB R2015b, R2017b MathWorks https://www.mathworks.com/

Python Python software foundation https://www.python.org/

Xclust3 Wilson lab https://github.com/wilsonlab/mwsoft64

Data acquisition software Neuralynx Cheetah

Custom code Dataverse https://doi.org/10.7910/DVN/KFCXTF

Other

128 Channel Digital Amplifier Neuralynx Digilynx

12.7 μm tungsten wires Kanthal PX000004

Silicon Probes Neuronexus Buz-64
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