Skip to main content
. 2021 Mar 5;19(2):319–329. doi: 10.1016/j.gpb.2020.05.005

Table 2.

Performance comparison of CNDM and NDM in clustering of scRNA-seq data

Method Input Buettner[15] Kim[43] Wang[45] Gokce[46] Tabula Muris[47](aorta) Tabula Muris[47](limb muscle)
K-means NDM 0.50 0.50 0.30 0.79 0.21 0.58
CNDM 0.87 0.81 0.45 0.75 0.63 0.66
Hierarchical NDM 0.69 0.59 0.38 0.95 0.12 0.65
CNDM 0.73 0.77 0.45 0.92 0.75 0.76
K-means (t-SNE) NDM 0.83 0.84 0.61 0.38 0.46 0.62
CNDM 0.95 0.93 0.67 0.36 0.61 0.65
Hierarchical (t-SNE) NDM 0.89 0.98 0.58 0.47 0.50 0.66
CNDM 0.95 0.95 0.72 0.39 0.50 0.66
K-medoids NDM 0.26 0.49 0.31 0.60 0.35 0.14
CNDM 0.53 0.61 0.21 0.81 0.53 0.39
SC3 NDM 0.67 1 0.70 0.45 0.29 0.66
CNDM 0.98 0.96 0.86 0.72 0.73 0.76
SIMLR NDM 0.64 0.75 0.29 0.74 0.40 0.60
CNDM 0.63 0.95 0.60 0.85 0.70 0.71
Seurat NDM 0.82 0.97 0.59 0.44 0.45 0.66
CNDM 0.90 0.84 0.59 0.32 0.76 0.75

Note: The performance of clustering is evaluated by ARI. Hierarchical (t-SNE) and K-means (t-SNE) indicate clustering after t-SNE. NDM, network degree matrix. Bold font (ARI) indicates that CNDM performs better.