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Abstract One of the major challenges in single-cell data analysis is the determination of cellular

developmental trajectories using single-cell data. Although substantial studies have been conducted

in recent years, more effective methods are still strongly needed to infer the developmental processes

accurately. This work devises a new method, named DTFLOW, for determining the pseudo-

temporal trajectories with multiple branches. DTFLOW consists of two major steps: a new method

called Bhattacharyya kernel feature decomposition (BKFD) to reduce the data dimensions, and a

novel approach named Reverse Searching on k-nearest neighbor graph (RSKG) to identify the

multi-branching processes of cellular differentiation. In BKFD, we first establish a stationary dis-

tribution for each cell to represent the transition of cellular developmental states based on the ran-

dom walk with restart algorithm, and then propose a new distance metric for calculating

pseudotime of single cells by introducing the Bhattacharyya kernel matrix. The effectiveness of

DTFLOW is rigorously examined by using four single-cell datasets. We compare the efficiency

of DTFLOW with the published state-of-the-art methods. Simulation results suggest that

DTFLOW has superior accuracy and strong robustness properties for constructing pseudotime

trajectories. The Python source code of DTFLOW can be freely accessed at https://github.com/

statway/DTFLOW.
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Introduction

Recent advances in single-cell technologies have provided
powerful tools to measure gene expression levels or protein

activities of thousands of single cells in a single experiment.
Compared with the traditional experimental studies using bulk
samples that average out the responses from a large number of

cells, the analysis of cellular aspects at the single-cell level
offers promising advantages to investigate the heterogeneity
in cellular processes [1]. Since temporal data cannot be col-
lected straightforward, a major step in single-cell studies is to

order individual cells according to their progress along the dif-
ferentiation pathways. The pseudo-temporal data based on the
ordered individual cells will ultimately lead to the reconstruc-

tion of regulatory networks and cellular differentiation path-
ways [2]. The investigation of single-cell data is a part of big
bio-data studies that will lead to the understanding of diseases

and improvement of human health [3,4].
Since the first algorithm Monocle for the pseudo-temporal

ordering [5], a number of data-driven computational methods

have been developed to define the relative position of each cell
during the differentiation process. The methods for inferring
pseudotime trajectories typically consist of two major steps:
a dimensionality reduction step and a trajectory modeling step.

A class of methods based on the graph theory use the
minimum-spanning tree (MST) or shortest path to construct
the major structure of trajectories, and then project all single

cells onto the major structure to obtain the pseudotime trajec-
tory. These methods include Wanderlust [6], Wishbone [7],
TSCAN [8], Monocle [5], Monocle2 [9], Waterfall [10],

SCOUT [11], DensityPath [12], and SoptSC [13]. Another class
of algorithms employ probabilistic models to obtain the major
structure of trajectories, such as Gpfates [14], DeLorean [15],
and PhenoPath [16]. In addition, other techniques have been

used to develop effective methods, include methods based on
differential equations (such as SCOUP [17], Pseudodynamics
[18], and PBA [19]), methods using the principal curves (such

as Embeddr [20] and Slingshot [21]), and machine learning
techniques such as VASC [22]. Usually algorithms based on
the graph theory are more efficient, but the accuracy of infer-

ence results is susceptible to the noise in datasets. However,
methods using probabilistic models or differential equations
need high computational cost. Recently, a number of compar-

ison studies have been conducted to examine the performance
of these algorithms [23], and more effective methods can be
found in the comprehensive literature reviews [24–27].

Network diffusion, also known as network propagation,

has attracted much attention in recent years for identifying dis-
ease genes, genetic modules, and drug targets [28]. It has also
been used for manifold learning and pseudotime calculation

for single-cell data. The nonlinear dimensionality reduction
algorithms based on network propagation include DCA and
PHATE. Among them, DCA obtains the low-dimensional rep-

resentation of the high-dimensional dataset by minimizing the
Kullback–Leibler divergence between the observed diffusion
states and parameterized-multinomial logistic distributions
[29], whereas PHATE generates a Markov transition matrix

as the diffusion operator and then embeds the operator with
the non-metric multi-dimensional scaling (MDS) approach
for the visualization of single-cell datasets [30]. In addition,

MAGIC alleviates the noises in single-cell datasets and learns
the intrinsic biological structures and gene interactions via
data diffusion [31]. Diffusion map, as a random walk
approach, has also been used to explore the developmental

continuum of cell-fate transitions [32,33]. The diffusion pseu-
dotime (DPT) algorithm defines the diffusion pseudotime dis-
tance between two cells using the accumulated Markov

transition matrix and determines the ordering of cells based
on the distances between a root cell and all other cells [34].
In fact, DPT can obtain the pseudo-temporal ordering results

before the dimension reduction step, and thus can detect the
subtle changes of gene expression.

Another important issue in single-cell studies is to identify
branches in the pseudotime trajectories in order to explore

the different developmental pathways. A number of algorithms
have been designed to determine the branches and optimal
bifurcation points. Among them, DPT determines the branch-

ing trajectories by the correlation versus anti-correlation rela-
tionship of the dpt distances between cells [34]. Wishbone
identifies two post-bifurcation cell fates using the second

eigenvector of a mutual disagreement matrix [7]. In addition,
SLICER uses the geodesic entropy metric for branch assign-
ment [35]; TSCAN finds the differentiation structure based

on the MST algorithm applied to the cluster centers [8],
whereas Monocle2 conducts the branching assignment accord-
ing to the branches of the DDRTree [9]. However, the majority
of these branching detection approaches can identify only one

bifurcation point. More sophisticated algorithms are strongly
needed to determine the branching processes with multiple
bifurcation events.

This work proposes a new method, named DTFLOW, for
inferring the pseudotime trajectories using single-cell data.
This method uses a new manifold learning method, named

Bhattacharyya kernel feature decomposition (BKFD), for the
visualization of underlying dataset structure. The innovation
of this algorithm includes the usage of the random walk with

restart (RWR) method to transform each data point into a dis-
crete distribution and the Bhattacharyya kernel to calculate
the similarities between cells. Compared with DPT, RWR
includes a free parameter that can be used to tune for better

inference results. More importantly, we propose a novel dis-
tance metric based on the Bhattacharyya distance to preserve
the distances along the manifold. In addition, DTFLOW uses

an innovative approach named Reverse Searching on k-nearest
neighbor (kNN) graph (RSKG) to identify the underlying
multi-branching processes of cellular differentiation. The effec-

tiveness of our proposed algorithm is rigorously examined by
the analysis of four single-cell datasets.

Method

This section introduces the proposed DTFLOW for the infer-
ence of pseudotime ordering using single-cell data. Figure 1

gives the framework of this algorithm and a brief description
of the major steps. The detailed steps can be found in Algo-
rithm 1 in File S1.

Construction of Markov adjacency matrix

Denote N as the number of cells, D as the number of genes,

and xij 2 RN�D as the gene expression data. We first find the

k most similar neighbors (include itself) of each cell through



Figure 1 Overview of DTFLOW algorithm

A. Pre-process a single-cell dataset into a gene expression matrix XN�D with N cells and D genes. B. Compute the k nearest neighbors for

each cell, get a nearest neighbor graph structure, and then transform the dataset into a Markov transition matrix M. C. Use the random

walk with restart method to get a diffusion matrix S, in which each cell is represented by a discrete distribution vector. D. Construct a

Bhattacharyya kernel matrix G and a matrix logG based on the properties of the kernel method. E. Perform singular value decomposition

on logG to get the low-dimensional embedding Y. F. Calculate the new distance metric Dri based on the row of the matrix logG

corresponding to the root cell r, and unitize it to get the pseudotime distances T. G. Identify the multi-branches of cellular differentiation

by reverse searching based on the nearest neighbor graph structure.
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kNN algorithm based on the pairwise cell–cell Euclidean dis-
tance. Using the procedure in [36], we transform the cell–cell

Euclidean distances into the symmetric Gaussian kernel
weights to represent the affinities/similarities between cells.
The transition probability between any two neighbor cells is

defined by the Gaussian kernel

K xi; xj

� � ¼ exp � xi � xj

�� ���� ��2
2rirj

 !
ð1Þ

where ri and rj are the local kernel widths of cell xi and xj,

respectively. The value of ri is based on the local density with
its distance to the k-th nearest neighbor.

If cell xi is a neighbor of xj but xj is not a neighbor of xi, we

let K xj; xi

� � ¼ K xi; xj

� �
to generate a symmetric kernel matrix.

If xi and xj are not the neighbor of each other, K xi; xj

� � ¼ 0.

Then we normalize the kernel as

K xi; xj

� � ¼ K xi; xj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z xið ÞZ xj

� �q
Z xið Þ ¼

X
j

K xi; xj

� � ð2Þ

Finally, we define the Markov transition probability matrix
using the normalization over rows, defined by

Mij ¼
K
�

xi; xj

� �
P
j

K
�

xi; xj

� � ð3Þ
BKFD

The RWR algorithm considers each cell as a node, and itera-
tively calculates the relevance (proximity) score of each node
with regard to a given seed node in the kNN graph [37,38].

At each step, this algorithm selects a move from the current
node either to its neighbors with probability p, or return to
itself with the restart probability 1� p. Then the distribution

vector satisfies the following equation:

si
t ¼ psi

t�1Mþ 1� pð Þei; 0 < p < 1 ð4Þ

where si
t is an N-dimensional row distribution vector for the

visiting probability of each node from the seed node i after t

steps, M is defined by Equation (3), and si
0 ¼ ei is a unit direc-

tion row vector, which means that the propagation starts from
node i. Thus, the RWR algorithm can be regarded as a more
general approach and DPT is a special case of the RWR algo-

rithm (i.e., p ¼ 1) (see Section 1 in File S1).
Rather than calculating Equation (4) iteratively in DPT, we

introduce the stationary distribution by letting t ! 1, which
is defined by

si ¼ si
1 ¼ 1� pð Þei I� pMð Þ�1 ð5Þ

where I is the identity matrix. The diffusion matrix

S ¼ s1; � � � ; sN½ �T is written as

S ¼ 1� pð Þ I� pMð Þ�1 ð6Þ
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The diffusion distribution of each node is a non-vanishing

distribution, i.e., sij > 0 and
PN
j¼1

sij ¼ 1, where element sij of

matrix S is the similarity score of node j towards node i.
Suppose that p and q are two discrete probability distribu-

tions over the same space X ¼ fx1; � � � ; xNg, and let pi ¼ p xið Þ
and qi ¼ q xið Þ. Then Bhattacharyya coefficient measures the
similarity between p and q, given by

BC p; qð Þ ¼
XN
i¼1

ffiffiffiffiffiffiffiffi
piqi

p ð7Þ

Based on the definition Equation (7), the Bhattacharyya
kernel matrix [39] is defined by

G ¼
ffiffiffi
S

p ffiffiffi
S

p T ¼ h ffiffiffi
si

p
;
ffiffiffi
sj

p i
i;j¼1;���;N

h i
N�N

ð8Þ
where the square root operation is conducted for every element

of the matrix, and �; �h i is the inner product of two vectors.
Apparently, the diagonal element of matrix G is the inner pro-
duct of vector

ffiffiffi
si

p
and has the value of unit one. Because G is a

kernel matrix, its eigenvalues are greater than or equal to 0.

According to Mercer’s Theorem, there exists a kernel func-
tion k, satisfying that

k si; sj
� � ¼ Gij ¼ h ffiffiffi

si
p

;
ffiffiffi
sj

p i; 8i; j 2 1; � � � ;N½ � ð9Þ
Based on the properties of kernel functions, we construct a

new kernel k1 with the mapping operator /, defined by

Gij ¼ k si; sj
� �

,ek1 si ; sjð Þ ¼ eh/ sið Þ; / sjð Þi ð10Þ
Let yi ¼ / sið Þ, Equation (10) can be written as

hyi; yji ¼ logGij. Then we rewrite it in the matrix form

logG ¼ YTY ð11Þ
where Y ¼ y1; � � � ; yN½ �T, and the logarithm operation is
applied to every element of matrix G.

Equation (11) is a linear transformation, and we perform the

singular value decomposition (SVD) to obtain decomposition

logG ¼ VRVT ð12Þ
where V 2 RN�N is a unitary matrix which satisfies VTV ¼ I,
and R is a diagonal matrix whose elements are the singular

values of matrix logG. We use the largest d (positive) singular
values to represent the major feature of matrix logG. The d
low-dimensional embedding of Y, defined by

Yd ¼ VdR
1=2
d ð13Þ

is used to represent the single-cell dataset. Here Rd is a matrix
that includes only the largest d singular values and Vd is the

corresponding vectors. Normally we use d ¼ 2 or d ¼ 3 for
2-dimensional or 3-dimensional visualization. Then we use
the low-dimensional dataset Yd to visualize the underlying
structure of the original high-dimensional single-cell dataset.

Pseudotime ordering

Note that the Bhattacharyya distance [40] is a measure of sim-

ilarity between two probability distributions, which is defined
by

DB i; jð Þ ¼ � logh ffiffiffi
si

p
;
ffiffiffi
sj

p i ¼ � logGij ð14Þ
However, this metric does not satisfy the triangle inequality in
the inner product space.
To address this issue, we introduce a new distance metric to
measure the distance between two cells. From Equation (11),
we obtain the distance of two cells i and j as

yi � yj
�� ���� ��2 ¼ yij jj j2 þ yj

�� ���� ��2 � 2hyi; yji ¼ �2 logGij ð15Þ
Since yij jj j2 ¼ logGii ¼ 0, we define the new distance metric

as

Dij ¼ yi � yj
�� ���� �� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 logGij

p
ð16Þ

It can be shown that this new distance satisfies the triangle
inequality in the inner product space, which is essentially a ker-
nel distance [41].

If the root cell xr is known, the distance between the root
cell and the i-th cell is denoted as Dri, and we use the vector
Tr ¼ Dr;: to denote the pseudotime of single cells. However,

if we do not know the root cell in advance, we can select a
group of cells as the root cells based on the sum of distances

between a particular cell and all other cells. Suppose we select
R cells as the group of root cells, the pseudotime of single cells

is given by Tr ¼
PR
r¼1

Dr;:. Finally, we normalize the pseudotime

to values between 0 and 1, given by

T ¼ Tr �minfTrg
maxfTrg �minfTrg ð17Þ
RSKG for branch detection

Based on the constructed kNN graph and pseudotime of each
cell, we next propose a new method for branching detection

using RSKG. Figure S1 shows a brief description of RSKG
for identifying multi-branching processes. The major steps of
this algorithm are described in Algorithm 2 and Figure S1.

In this algorithm, n is the minimum number of cells
required for forming one sub-branch, T the set of pseudotime
of all cells, and A the set of indices array of the kNN graph of
all cells. For the id-th cell, A id½ � is the set of its k nearest neigh-

bors. In addition, we use Rseq to store the reverse index

ordering based on T. We also use a nested list prop-groups to
store the candidate sub-branches/groups and a nested list
sub-branches to store the determined sub-branches. Initially

these two nested lists are empty.
This algorithm starts from the cell with the largest pseudo-

time, whose index id1 is the first element in Rseq. We put the

indexes of its neighbor A id1½ � in the nested list prop-groups as
the first candidate group. Then we consider the next element

id2 in Rseq and its neighbor A id2½ �. If set A id2½ � has intersections
with the list A id1½ �, then extend A id2½ � to the list A id1½ � in
prop-groups. Otherwise, append the list A id2½ � to prop-groups
as a separate group. The similar procedure is applied to the
following elements with index idiði ¼ 3; 4; � � �Þ.

For the following cells, if A idj
� �

has intersections with two

or more candidate lists in prop-groups, and if the length of

two or more intersected lists reaches n, these lists will be moved
from prop-groups to sub-branches and become a determined
branch; otherwise, if the length of the merged list does not reach

n, merge these lists together as one new list in prop-groups. If

A idj
� �

has intersections with lists in both prop-groups and sub-

branches, and if the length of A idj
� �

and the intersected list in

prop-groups reaches n, A idj
� �

and the intersected list will be
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moved from prop-groups to sub-branches to become a

determined branch; otherwise, the elements of A idj
� �

and the

intersected list in prop-groups will be assigned to the branches
in sub-branches that are closer to them.

Datasets

Four datasets are used in this work to rigorously examine the
performance of the proposed algorithm DTFLOW. The first

three datasets are used to test the accuracy and robustness
properties of DTFLOW by the inference of pseudo-temporal
ordering and dimensionality reduction, while the last one is

used to study the efficiency of DTFLOW by the low-
dimensional visualization for large datasets. Table 1 provides
the summary of these datasets.

The first dataset is the high-throughput RT-PCR dataset

[42] that describes the early-stages of the developmental pro-
cess for mouse embryo (ME). This dataset includes the expres-
sion levels of 48 selected genes in 438 single cells at seven

different developmental stages, namely from the 1-cell zygote
stage to the 64-cell blastocyst stage.

The second dataset is the mouse myeloid progenitor

(MMP) MARS-seq dataset that contains 2730 single cells
and 3451 informative genes [43]. Note that 10 genes with cor-
rupted names are removed from our analysis based on the pre-

processing of Scanpy. In the experimental study, 19 distinct,
transcriptionally homogeneous progenitor types/clusters have
been identified through an EM-based clustering approach.
Among these clusters, clusters 1–6 represent erythroid lineage

progenitor (Ery) subpopulations, clusters 7–10 represent com-
mon myeloid progenitor (CMP) subpopulations, cluster 11 is
for the dendritic cell (DC) fate, clusters 12–18 correspond to

granulocyte/macrophage progenitor (GMP) subpopulations,
and cluster 19 is the lymphoid lineage progenitors (outlier
class) with only 31 cells.

The third dataset is themouse female gonad (MFG) scRNA-
seq dataset that contains 563 single cells and 822 genes at six
developmental stages of gonadal differentiation, namely,

E10.5, E11.5, E12.5, E13.5, E16.5, and post-natal day 6 (P6)
[44].

The final one is the mouse hematopoietic (MH) microwell-
seq dataset that contains 51,252 cells and 25,912 genes [45].

After the data pre-processing, the dataset is reduced to
40,210 cells with 100 approximate principal components [46].
Results

In this section, four datasets are used to evaluate the robust-

ness, accuracy, and efficiency of our proposed algorithm
Table 1 Summary information of the four datasets used in this study

Dataset Cell count Gene count Cell classification Web link
ME 438 48 7 stages https://githu

MMP 2730 3451 19 clusters https://githu

MFG 563 822 6 stages https://githu

MH 51,252 25,912 8 types https://githu
DTFLOW for the inference of pseudotime ordering using
single-cell datasets. This work does not include any work for
the pre-processing of experimental data. We use the datasets

with the same input (namely, the same genes and same single
cells) from the published papers directly.

Accuracy and robustness of DTFLOW

We first apply DTFLOW to the ME dataset [42] for projecting
the 48-dimensional gene expression data into the two-

dimensional feature space by using the BKFD algorithm.
Figure 2A provides the visualization of single cells at different
stages. It clearly reveals the seven developmental stages/labels

(namely the 1-cell stage, 2-cell stage, . . ., and 64-cell stage),
which also validates the effectiveness of our proposed dimen-
sional reduction technique. Since not knowing the root cell
in the dataset, we select a cell in the initial time stage, which

has the largest sum of distances to all other cells, as the root
cell. The differentiation process of single cells is characterized
by the calculated pseudotime in Figure 2B. These results sug-

gest that the pseudotime of individual cells is recovered
successfully.

We also test the influence of the minimal cell number n

required for forming a sub-branch. When we set a small value
(i.e., n � 11), the individual cells in the lineage process is
divided into five sub-branches (Figure 2C). There are two
bifurcation points that separate cells into two distinct sub-

branches along the differentiation process. Figure 2C shows
that the main lineage trajectory contains two major branches
and one of them further differentiates into two smaller

branches. It also suggests that cell differentiation does not
occur in the early stages, but cells in the 32-cell stage differen-
tiate distinctly into trophectoderm (TE) and inner cell mass

(ICM). Subsequently, cells in the ICM stage further differenti-
ate into epiblast (EPI) and primitive endoderm (PE) in the
64-cell stage. After the second bifurcating event, the embryo

cells are divided into three distinct types: namely TE, PE,
and EPI. However, if we use a relatively large value (i.e.,
n ¼ 12� 112), the single cells will form only three sub-
branches with the first bifurcation event occurred (Figure 2D).

The second bifurcation event is not identified since the lengths
of sub-branches are less than the minimal cell number n. Note
that the distances between cells in our algorithm are calculated

based on the high-dimensional Bhattacharyya kernel matrix.
However, the data visualized in Figure 2 are the low-
dimensional data after the application of SVD.

In our proposed algorithm, there are two free parameters
that should be determined based on the datasets. The first
one is the number of closest neighbors k of each data point,
which is taken into account for the determination of affinity
Ref.
b.com/gcyuan/SCUBA/tree/ master/sample_data/guo2010 [42]

b.com/ theislab/scanpy_usage /tree/master/170502_paul15 [43]

b.com/IStevant /XX-XY-mouse-gonad-scRNA-seq [44]

b.com/ebecht/DR_benchmark [45]



Figure 2 Developmental trajectories inferred by DTFLOW for the ME dataset

A. Visualization of the seven developmental stages in the ME single-cell dataset with 48 genes and 438 single cells [42]. B. Visualization of

the calculated pseudotime of each single cell, whose values range from 0 to 1. C. Visualization of inferred 5 sub-branches when the minimal

cell number required for forming a sub-branch satisfies n � 11. D. Visualization of inferred 3 sub-branches when the minimal cell number

required for forming a sub-branch is larger (n ¼ 12� 122). Red triangles in (C) and (D) indicate the bifurcation points. ME, mouse

embryo.
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with classes. To place greater emphasis on the local properties
of the manifold structure, a smaller value of k is preferred.

Meanwhile, the value of k should also be large enough for
the connectivity of the kNN graph. The value of k in BKFD
is usually smaller than that in diffusion maps for dimension

reduction, which implies that BKFD can capture the local
structure of manifold better than diffusion maps. We test dif-
ferent values of k and find that the results are better if k ¼ 10,

which will be used in this work for analyzing other datasets.
The second parameter is the restart probability 1� p that con-
trols the relative influence of both local and global topological
structure. To smooth the noise of data, a larger value of p (i.e.,

a smaller value of 1� p) may be preferred. To test the influence
of p, we calculate the pseudo-ordering of single cells using dif-
ferent values of p. We use the Kendall rank correlation coeffi-

cient of the inference results to compare the accuracy of the
algorithms. Since knowing the stage number of each cell in
the experimental data, we determine the stage number of each

cell in the inferred trajectories and then calculate the Kendall
rank correlation coefficient of these two types of stage
numbers. An algorithm has better accuracy if the value of this
correlation coefficient is larger. As shown in Figure 3A, the
ordering accuracy is better when the value of p is around
0.9. Thus, we use p ¼ 0:9 in this work, including the results

shown in Figure 2.
To demonstrate the effectiveness of our proposed algo-

rithm, we compare the performance of DTFLOW with two

published state-of-the-art methods, namely DPT and Mono-
cle2 [9] (Figures S2 and S3). We use the Python toolkit Scanpy
[47] for the implementation of DPT. As shwon in Figure S2C,

Scanpy detects only three groups/sub-branches. It fails to iden-
tify the number of terminal states correctly, and also obtains
the wrong location of bifurcation point. Although Monocle2
identifies three types of the terminal cells correctly

(Figure S3C), it does not reveal the intermediate state between
state 1 and states 3 and 4 (i.e., the ICM stage) using the dimen-
sional reduction method DDRTree.

For this dataset, we use Kendall rank correlation coefficient
to compare the accuracy of these three algorithms. The calcu-
lated Kendall rank correlation coefficients are 0.862, 0.796,

0.761 for DTFLOW, Scanpy, and Monocle2, respectively,
which suggests that our proposed method has better accuracy
than the two published methods.



Figure 3 Accuracy and robustness of three inference methods for

the ME dataset

A. The accuracy of DTFLOW determined by different values of

restart probability p for the ME dataset with 48 genes and 438

single cells [42]. The Kendall rank correlation coefficient is

calculated using the stage number of each cell in experimental

data and that in the inferred trajectories. B. Mean and standard

deviation of the Spearman rank correlation coefficient for three

inference methods, including DTFLOW, Scanpy, and Monocle2.

The correlation coefficient is calculated using the trajectory of

randomly sampled 90% of single cells from the whole dataset and

that of the whole dataset. Fifty repeated tests are conducted.

312 Genomics Proteomics Bioinformatics 19 (2021) 306–318
Figure S4 shows the expression levels of two genes, Gata3

and Sox2, based on the inferred pseudotime using the three
methods, which are consistent with the results of visualization.
It shows that only DTFLOW detects the ICM stage correctly.
The intermediate states of cell development in Monocle2 are

not revealed properly possibly because the differences between
clusters are amplified by the DDRTree method with the cluster
centroids. In addition, DPT uses diffusion maps for dimen-

sional reduction, which may not be sensitive enough to the
noise in dataset.

We further conduct the robustness analysis of each algo-

rithm. We first use the whole dataset to infer a trajectory
and determine the position of each cell in this trajectory. Then
we sample part of the cells from the whole dataset and use the
same algorithm to determine the trajectory of cells in the sub-

dataset. We calculate the Spearman rank correlation coeffi-
cient between the positions of subset cells in the trajectory of
the whole dataset and those of the sub-dataset. An algorithm

is more robust if the value of the correlation coefficient is lar-
ger. We conduct 50 tests to measure the robustness properties
of these three algorithms. In each test we randomly sample

90% of cells (i.e., 394 cells) from the dataset and then calculate
the Spearman rank correlation coefficient of the pseudotime
ordering of the sub-dataset. Then we use the mean and stan-

dard deviation of the correlation coefficient based on these
50 test results to measure the robustness properties of algo-
rithms. As shown in Figure 3B, the robustness properties of
DTFOLW and Scanpy are better than that of Monocle2. In

addition, the variance of correlation coefficients obtained by
DTFLOW is smaller than that of Scanpy. These results suggest
that the performance of DTFLOW is more stable than the two

published methods. To examine the influence of the sampling
size, we conduct further robustness test by randomly sampling
80% of cells (i.e., 350 cells) from the dataset. The Spearman

rank correlation coefficients shown in Figure S5 are consistent
with those shown in Figure 3B.

Identification of multiple sub-branches

After successfully demonstrating the accuracy and robustness
of DTFLOW, we next examine its ability to identify sub-
branches. We apply DTFLOW to project the MMP dataset

[43] into the two-dimensional feature space. Figure 4A eluci-
dates that CMP and its progenitors (namely, Ery and GMP)
are nearly separated in three different regions, while DC and

lymphoid cells deviate away from the main differentiation pro-
gression process.

To reveal the cellular differentiation process, we select the

same cell in [34] as the root cell (i.e., the 840-th cell in cluster
8). Figure 4B demonstrates the pseudotime ordering results
from the themyeloid progenitor stage. Figure 4C and D show
different branching detection results that are determined by a

smaller cell number of n ¼ 6� 22 and a relatively larger num-
ber of n ¼ 23� 124 for forming sub-branches, respectively.
As shonw in Figure 4C, sub-branch 1 contains only a small

number of cells. DTFLOW ensures that the pseudotime of
each cell in the initial branch is less than that of any other
cells in the following sub-branches. Then cells differentiate

into three different terminal branches. Sub-branch 2 corre-
sponds to the erythroid evolutionary branch, sub-branch 3
is formed by cells within clusters 11 and 19, and sub-

branch 4 corresponds to the GMP branch. This result shows
the ability of DTFLOW to identify multiple sub-branches
simultaneously. However, when a larger value of n is used,
sub-branches 3 and 4 merge together and form a large sub-

branch as shown in Figure 4D.
We next compare the branching detection results of

DTFLOW, Scanpy, and Monocle2 (Figures S6 and S7). As

shown in Figure S6C, Scanpy is also able to identify four
sub-branches. However, the root cell identified by Scanpy is
not in the initial group, which is unreasonable for the develop-

mental process. Although Monocle2 successfully estimates 12
states (Figure S7C), which is consistent with the experimental
observation, it is difficult to analysis the changes of gene
expression over time based on this large branch number.

We then carry out robustness analysis of the three methods.
For each method, we randomly sample 2500 single cells from
2730 cells and then use the same methods to infer the pseudo-

time of the selected cells. Then we compare the pseudotime of
cells in the sampled set with that of the corresponding cells in
the whole dataset by using the Spearman rank correlation

coefficient. We conduct 50 repeated tests to measure the
robustness property of each method. Figure 5A shows that
the robustness properties of DTFOLW and Scanpy are better

than that of Monocle2. In addition, the variance of correlation
coefficients obtained by DTFLOW is smaller than that of



Figure 4 Developmental trajectories inferred by DTFLOW for the MMP dataset

A. Visualization of different cell types in the MMP dataset with 3451 genes and 2730 single cells [43]. B. Visualization of inferred temporal

trajectory, whose values range from 0 to 1. C. Visualization of calculated 4 sub-branches when the minimal cell number required for

forming a sub-branch satisfies n ¼ 6� 22. D. Visualization of calculated 3 sub-branches when the minimal cell number required for

forming a sub-branch is larger (n ¼ 23� 124). Red triangles in (C) and (D) indicate the bifurcation points. MMP, mouse myeloid

progenitor.

Figure 5 Robustness properties of three inference methods

A. Mean and standard deviation of the Spearman rank correlation coefficient for the MMP dataset with 3451 genes and 2730 single cells

[43]. B.Mean and standard deviation of the Spearman rank correlation coefficient for the MFG dataset with 822 genes and 563 single cells

[44]. The correlation coefficient is calculated using the trajectory of randomly sampled 90% of single cells from the whole dataset and that

of the whole dataset. Fifty repeated tests are conducted. MFG, mouse female gonad.
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Scanpy. These results suggest that the performance of
DTFLOW is more stable than the two published methods.

Note that the gene expression levels in this dataset are not

continuous and the three terminal branches have different
lengths. To illustrate this, Figure S8 presents the expression
visualization of two marker genes, Elane and Klf1. These mar-

ker genes show similar significance in different branches for
different dimensionality reduction algorithms. Figure S8A
shows that the expression levels of Elane are essential for the

GMP process while the expression levels of Klf1 increase grad-
ually on the erythroid branch. The expression trends of these
marker genes are different along the constructed trajectories,
which provides important information for developing gene

regulatory networks.

Confirmation of accuracy and robustness for DTFLOW

To further confirm the accuracy and robustness of DTFLOW,
we use a recently published dataset to test the performance of
DTFLOW. For the MFG dataset [44], we project it into the 3-

dimensional space using our proposed algorithm BKFD. In
Figure 6A all the cells are presented by different colors for dif-
ferent stages. It shows that the early progenitor cells subse-

quently lead to the differentiation to the granulosa cell
lineage and stromal progenitor cell lineage in around stages
E11.5–E12.5. Figure 6B gives the ordered pseudotime of differ-
ent single cells and Figure 6C presents the inferred three sub-

branches by our proposed DTFLOW.
We first compare the pseudotime ordering accuracy of

DTFLOW with Scanpy and Monocle2. Figures S9 and S10

show the analysis results of Scanpy and Monocle2 for this
dataset, respectively. The calculated Kendall rank correlation
coefficients are 0.761, 0.702, and 0.569 for DTFLOW, Scanpy,

and Monocle2, correspondingly. We also compare the robust-
ness properties of DTFOLW with those of Scanpy and Mon-
ocle2. We conduct 50 tests to measure the robustness

properties of these three algorithms. In each test we randomly
sample 90% of cells (i.e., ~ 507 cells) from the dataset and find
the pseudotime of these cells. Then we compare the pseudo-
time of these cells in the sampled set with that of the
Figure 6 Developmental trajectories inferred by DTFLOW for the M

A. Visualization of different cell types in the MFG dataset with 822 ge

trajectory, whose values range from 0 to 1. C. Visualization of the ca
corresponding cells in the whole dataset by using the Spear-
man rank correlation. Figure 5B gives the robustness proper-
ties of these three methods. Numerical results suggest that

the robustness properties of DTFOLW are better than those
of Scanpy and Monocle2.

Effectiveness and efficiency of DTFLOW

After successfully demonstrating the accuracy and robustness
of DTFLOW, the next question is the effectiveness of

DTFLOW in dimensional reduction and efficiency for ana-
lyzing large-scale single-cell datasets. To answer this question,
we first compare our dimensional reduction algorithm BKFD

in DTFLOW with several popular and widely used methods,
including principal component analysis (PCA), t-distributed
stochastic neighbor embedding (tSNE) [48], and uniform
manifold approximation and projection (UMAP) [46].

Figure 7 shows the visualization results of the ME single-
cell dataset [42]. Based on the idea of diffusion propagation,
BKFD represents the cellular development reasonably

(Figure 7A). PCA cannot distinguish differentiation stages
very well (Figure 7B). Although tSNE and UMAP can sep-
arate different cell types clearly for this dataset, the distance

intervals of different cell types are relatively large, which can-
not be used to indicate the cellular developmental process
properly (Figure 7C and D).

To test the efficiency, we next apply BKFD in

DTFLOW to a large-scale dataset, which is the MH data-
set that contains 40,210 cells and 25,912 genes [45]. We use
four methods for dimensional reduction. Figure 8 shows the

visualization results of this dataset with eight major cell
clusters. It suggests that BKFD can capture the develop-
mental trajectories in a better way (Figure 8A). In addition,

tSNE and UMAP can also distinguish different cell types
clearly (Figure 8C and D). However, PCA cannot show
good visualization results with distinguishable cell clusters

for this dataset (Figure 8B). Numerical results show that
our designed dimensional reduction algorithm in DTFLOW
has similar or better performance than the three widely
used algorithms.
FG dataset

nes and 563 single cells [44]. B. Visualization of inferred temporal

lculated three sub-branches.



Figure 7 Dimensional reduction results of four different methods applied to the ME dataset

A. BFKD in DTFLOW reasonably represents the cellular developmental process of the ME dataset with 48 genes and 438 single cells [42].

B. PCA cannot distinguish differentiation stages very well. C. and D. tSNE (C) and UMAP (D) do not indicate the cellular developmental

process properly. BKFD, Bhattacharyya kernel feature decomposition; PCA, principal component analysis; tSNE, t-distributed stochastic

neighbor embedding; UMAP, uniform manifold approximation and projection.
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Discussion

In this study, we propose a new method DTFLOW for con-
ducting pseudotime analysis of single-cell data. This method
has twomajor steps: a new dimension reduction method BKFD

and a novel approach RSKG to identify the underlying multi-
branching processes of cellular differentiation. In BKFD we
first establish a stationary distribution for each cell to represent
the transition of cellular developmental states based on the

RWR algorithm, and then propose a new Bhattacharyya kernel
matrix to measure the distances between the distributions
obtained by RWR. We use this novel distance metric to calcu-

late the pseudotime distances between single cells before dimen-
sion reduction. Thus, our method can reduce the information
loss in data processing and increase the inference accuracy.

The combination of RWR and the Bhattacharyya kernel
matrix shows great power to explore the global structure of
the developmental processes using single-cell datasets. In addi-
tion, we design the RSKG algorithm to identify the multi-

branching of cellular processes. Four datasets are used to com-
pare the accuracy, robustness, and branch detection of the pro-
posed algorithm with two popular published methods.
Inference results suggest that our proposed method is more

accurate and robust than the published algorithms for inferring
the pseudotime trajectories of single cells.

The RWR algorithm is a popular method to estimate the

global similarity between a particular node with other nodes
in the graph structure. We use this method to transform the
data of each node to a stationary discrete distribution. Thus,

the input space becomes a set of distributions over the same
space. The performance of DTFLOW is affected by the choice
of Gaussian kernel function, the number of closest neighbors
k, and the restart probability 1� p in the RWR algorithm.

Although we have examined the performance of the proposed
algorithm by using four datasets, the values of these parame-
ters may vary from dataset to dataset. In addition, BKFD uses

the same restart probability for all the nodes, and this may
limit the effectiveness of random walk [49]. It is still a challenge
to express each cell by a distribution vector in a better way,

which needs to be studied in the future.
The continuously topological structure of cellular develop-

mental processes can be analyzed by using the kNN graph,

which lays the basis of the DTFLOW algorithm. The kNN
graph describes the similarities between a cell and its neighbor



Figure 8 Dimensional reduction results of four different methods applied to the MH dataset

A. BFKD in DTFLOW captures the developmental trajectory in the MH dataset with 40,210 single cells and 25,912 genes [45] in a better

way. B. PCA cannot show good visualization results with distinguishable cell clusters. C. and D. tSNE (C) and UMAP (D) can distinguish

different cell types clearly. MH, mouse hematopoietic.
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cells, and has been used twice in the proposed method, namely
the definition of transition probability matrix, which leads to
the low-dimensional visualization via the Bhattacharyya kernel

matrix, and the determination of branching processes in the
RSKG algorithm. The new branch detection algorithm identi-
fies the sub-branches through reverse searching on the
sequence of indices ordering and provides biological insights

into developmental bifurcations. It can ensure that the sub-
branches can be connected through the kNN graph, which in
turn also verifies its consistency with the pseudotime inference

and visualization results of BKFD.
Scalability is an important issue for the implementation of

algorithms. Our algorithm is connected to the dataset size (i.e.,

the number of cells) in two major steps: the computation of
matrix S by finding the inverse of matrix (I � pM) in Equation
(6), and the SVD computation in Equation (12). In this study

we consider four datasets with cell numbers of 438, 2730, 563,
and 40,210, respectively. The computational time of our algo-
rithm is 0.224 s, 11.65 s, 0.246 s, and 3108.35 s on a Lenovo
ThinkPad P53 mobile workstation with 2.6 GHz CPU for

these four datasets, respectively, which is close to the comput-
ing time of other algorithms. In addition, the computing time

is in the order of OðN2Þ in terms of the dataset size N, which
suggests our program is scalable to dataset size.
In summary, the proposed algorithm DTFLOW provides a
new framework for inferring the pseudotime of single cells.
Numerical results suggest that it is a power tool for the infer-

ence and visualization of cellular developmental trajectories.
Potential future work may include the selection of parameters
in the proposed method in order to achieve optimal perfor-
mance in single-cell data analysis.

Code availability

The Python source code of DTFLOW can be freely accessed at
https://github.com/statway/DTFLOW.
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