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A B S T R A C T   

Photoacoustic (PA) microscopy allows imaging of the soft biological tissue based on optical absorption contrast 
and spatial ultrasound resolution. One of the major applications of PA imaging is its characterization of 
microvasculature. However, the strong PA signal from skin layer overshadowed the subcutaneous blood vessels 
leading to indirectly reconstruct the PA images in human study. Addressing the present situation, we examined a 
deep learning (DL) automatic algorithm to achieve high-resolution and high-contrast segmentation for widening 
PA imaging applications. In this research, we propose a DL model based on modified U-Net for extracting the 
relationship features between amplitudes of the generated PA signal from skin and underlying vessels. This study 
illustrates the broader potential of hybrid complex network as an automatic segmentation tool for the in vivo PA 
imaging. With DL-infused solution, our result outperforms the previous studies with achieved real-time semantic 
segmentation on large-size high-resolution PA images.   

1. Introduction 

Photoacoustic microscopy (PAM) is described as a kind of hybrid 
biomedical imaging modality based on combining ultrasonic emission 
and optical excitation [1,2]. In PAM, a short-pulse laser is absorbed by 
biological tissues, inducing photothermal effect which includes 
thermal-elastic expansion that generates an ultrasonic pressure. The 
rising pressure emits the photoacoustic (PA) waves, which are acquired 
by an ultrasonic transducer to transform PA images deposition inside the 
tissue for preclinical and clinical research. PAM provides a 
three-dimensional (3D) high-resolution images in combination with 
point-by-point scanning, which utilizes either focused optical beam 
excitation or focused acoustic beam detection [3]. The present trends are 
usually research on improving PAM imaging speed while maintaining a 
highly sensitive detection and high spatial resolution, such as micro
electromechanical system (MEMS), galvanometer scanner, polygon 

scanners, and voice-coil and slider-crank scanning system [3–9]. Due to 
the fast imaging with high-quality standards, fast computational tech
nique based on deep learning is essentially important. 

PAM has been found to be safe to humans; it has been widely used to 
image the structure of microvasculature [9–11]. Furthermore, PAM has 
great advantages for imaging the functional properties (such as oxygen 
saturation, hemoglobin concentration, and blood flow), which are 
crucial for the diagnosis, staging, and study of vascular diseases like 
diabetes, stroke, cancer, and neural degenerative diseases [12]. How
ever, in human imaging, the generated PA signals on skin (highly ab
sorption of melanin) dominate the inside PA signals leading to 
unrevealed the internal structure tissue directly. Therefore, blood ves
sels segmentation and reconstruction in PAM is a vital step in imaging 
functions and structures of subcutaneous microvasculature. Many ef
forts have focused on blood vessels segmentation in PAM images, which 
is a basic method performed by clinical experts who have experience on 
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anatomical tissues. With every B-scan image, skin profile and vessels 
profile were selected manually [13]. Therefore, this method is not 
suitable with high-resolution imaging, due to the large number of B-scan 
images which might exceed over a thousand; most clinical experts 
identify the manual operation as a time-consuming process to perform. 
Khodaverdi et al. [14] demonstrated segmentation by approaching 
adaptive threshold based on statistical characteristics of the back
ground, but the result led to over-segmentation due to the low 
morphological sensitivity of PA blood vessels signal. In another method, 
Baik et al. [15] used multilayered based on image depth threshold, by 
using a local maximum amplitude projection (MAP), instead of the 
global maximum value, which is commonly used in ultrasonic testing 
system (also call gate selection) [16]. However, the choice of depth 
location and threshold is fixed for all the images; signal might be out of 
range depending on the gate length due to motion artifacts and different 
tissue types, which could affect the accuracy of the imaging. An early 
automatically detectable skin profile in volumetric PAM data was 
developed to find the skin contour on the B-scan images [17], but this 
technique requires two-round scanning, making it inappropriate for 
preclinical or clinical application. 

Deep learning (DL) approaches, e.g., convolutional neural networks 
(CNN), have recently exhibited state-of-the-art performance on PA im
aging applications. Several review articles as regard to DL applications 
for PAM imaging have been discussed by Yang et al. and Deng et al., 
wherein different relevant research articles were explained [18,19]. 
Another important review article by Grohl et al. [20] presented the 
current advancement regarding DL in PA imaging. DL has been deter
mined to be applicable in a variety of aspects for PAM such as image 
reconstruction [21–25], image classification [26], quantitative imaging 
[27], image detection, [28] and, especially, image segmentation [26, 
29–33]. However, those studies almost have been reported about seg
mentation of the C-scan image (MAP image domain) [26,29,31–33], not 
widely applied to 3D PA images for separating skin and blood vessels 
areas. Unlike other works, Chlis et al. [30] used a DL method for pro
cessing the cross-sectional B-scan image to avoid the rigorous and 
time-consuming manual segmentation. However, the requirement input 
image for this algorithm is fixed, that is, 400 × 400 pixels; it may likely 
be difficult to fully view small vessel features in the axial and lateral 
resolution. Thus, an automatic algorithm for segmentation in 
high-resolution PA images using DL is deemed necessary. 

In this research work, we propose a DL method for the segmentation 
of skin and blood vessels profile PAM images in 3D volumetric data, 
leveraging the pre-trained 2D model on B-scan dataset. By performing 
full-form CNN semantic segmentation approaches (U-Net) [34], the 
technique proposes an automatic skin and vessels segmentation ability 
for in vivo PA imaging of humans. The key approaches of our research 
are 3D volumetric segmentation and full-image reconstruction, as it 
offers a solution in keeping the standards quality high with excellent 
imaging. However, we could not compare the explicit and quantity 
metrics because it was not specified in the references [17,30]. The re
sults are often evaluated in terms of accuracy, Intersection over Union 
(IoU), sensitivity, and boundary F1 (BF) score and are compared with 
other popular semantic segmentation models such as SegNet [35], and 
fully convolutional networks (FCN) [36]. Skin and vessels profiles on 
each B-scan image were detected automatically in approximately 30 ms, 
which can be achieved in real-time estimation on high-resolution image 
data (1000 × 1200 pixels), and motion artifacts problem in in vivo ex
periments [17] could be resolved. Moreover, the DL model was trained 
on a large number of B-scan images for in vivo testing results of humans 
as the ground truth; thus, it was validated in preclinical and biomedical 
research. 

2. Methods 

2.1. Data preparation 

In this study, all of the data were acquired using a dual-fast scanning 
photoacoustic microscopy system (Ohlabs, Busan, 48513, Republic of 
Korea) [9]. The three-dimension imaging is acquired by raster scanning 
of the PA probe over the field of view (FOV) with a step size along both 
X-axis and Y-axis (Fig. 1(B)). All procedures were performed on a human 
volunteer following the regulations and guidelines approved by Insti
tutional Review Board of Pukyong National University. The system used 
532 nm laser for achieving high absorption coefficients of oxygenated 
blood with low illumination energy which is under the American Na
tional Standards Institute standards safety limit (20 mJ/cm2 for 532 nm 
wavelength) [37]. The acoustic signal was performed by Olympus flat 
transducer with the central frequency of 50 MHz. Ultrasound signal was 
acquired for each illumination pulse under a sampling rate of 200 MHz 
by National Instruments digitizer and was directly fed in to a time series 

Fig. 1. Experimental setup: (A) Photograph of the experimental set up; (B) Photograph of region of interest (ROI). It represented by red dash box. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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data (A-scan) line. The motion control, laser pulsing and data acquisition 
are synchronized using LabVIEW software. Fig. 1(A) showed the 
experimental scheme, images have been obtained from the foot of a 
volunteer. 

2.2. Framework description 

Fig. 2 shows the flowchart for the comprehensive segmentation, 

which includes preparation input images (1), extraction images (2), DL 
segmentation network, (3) model comparison, post-processing in skin 
and blood vessels extraction (4), and (5) 3D rendering. First, human 
palm and foot were scanned using the PAM system, with rescanning 
done thrice: D1 and D2 for the palm imaging corresponding to the step 
size of 0.1 mm and 0.04 mm, and D3 for the foot imaging with the step 
size of 0.04 mm. All the scanned data was acquired with a 
100 × 80 mm2 field of view, same step size along both X-axis and Y-axis 

Fig. 2. Deep learning based skin and blood vessels profile segmentation framework for in vivo photoacoustic image.  

Fig. 3. U-Net architecture. The variables L1, L2, L3, L4, L5 refer to the image size (w × h) at the level of different compression depth.  
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(Fig. 1(B)), and 1200-sample record along Z-axis at a sample rate of 200 
MS/s. By using Hilbert transform in each A-scan, the 2D B-scan images 
were reconstructed. In total, 800 B-scan images were acquired in D1, 
while 2000 B-scan images were acquired in D2 and D3. A normalize 
method was adopted to scale the pixel values to range 0–1, which is 
preferred for neural network models. For training process, 60 images 
were chosen randomly from D1 dataset. The original images were 
extended by sliding window extraction architecture with the stride of SW 
= 248 and SH = 236, which were calculated by sub-multiple finding 
function. Therefore, the final dataset contains 1200 pairs of the extrac
tion patches (1000 patches for training and validation, 200 patches for 
testing). In the training process, two classes of object were considered 
(skin, blood vessels) and the performance of U-Net, SegNet-5 and FCN-8 
approach was examined for semantic segmentation of PA images. The 
accuracy segmented was then compared to other models to evaluate 
different solutions and find the best results. The highest performance 
model was utilized to segment the images on D2 and D3 data. For sig
nificant standard deviation, the predicted pixel values of each class were 
arranged in an order from 0 to 1, and the upper 50% (from 0.5 to 1) were 
set to 1 and lower 50% (less than 0.5) to 0. Bitwise operations were used 
to extract skin and blood vessels from the images by using a mask which 
was created by segmentation result via the model. Predicted images 
were back into original size by inverse sliding window extraction. 
Finally, 3D geometry and structure of the scanning data were recon
structed by concatenating multiple 2D B-scan images. 

2.3. CNN networks 

2.3.1. U-Net architecture 
Our method is a direct modification of the completely convolution 

architecture of U-Net [34], which is well known for its biomedical image 
segmentation using information from the skip connections. The network 
consists of a pair of encoder (contraction path) and decoder (expansion 
path), similar to the original U-Net (Fig. 3). The network takes input size 
image of 256 × 256 × 1 and then passes through the first convolution 
block which has two convolution layers; 64 convolution filters, 
measuring 3 × 3, were then used across the input image to extract 
256 × 256 × 64 feature map data. Rectified linear unit (ReLU) activa
tion function was used in converting negative values to 0. Max-pooling 
process 2 × 2 for downsize of first feature map to 128 × 128 × 64. In 
the second convolution block, the same convolution layer with keeping 
the first two dimension of the previous layer and increase the third 
dimension from 2-times to 128. Max-pooling was used to reduce the 

dimension to 64 × 64 × 128. The process was repeated twice to reach 
the bottommost convolution block, which is still built with two convo
lution layers without max-pooling. Furthermore, dropout was added 
between two hidden layers having the two largest number of convolu
tional parameters [38,39]. Up-sampling path to expand the feature map 
size from lower resolution to a higher resolution by add some padding 
on the previous layer followed by a convolution operation. At each 
up-sampling path, feature map was concatenated with the correspond
ing feature from the encoder to combine the information from the 
encoder layer. The process was repeated three more times to back the 
layer input resolution. The output of the final decoder is fed into a sig
moid activation layer to give the segmentation mask representing the 
pixel-wise classification. 

2.3.2. SegNet-5 with Vgg16 backbone 
SegNet [35] is described as a semantic segmentation convolutional 

neural network that consists of an encoder-decoder architecture; it can 
be classified into SegNet-3 and Segnet-5, depending on the number of 
convolution blocks inside the model. SegNet-5 is based on Vgg16 [40], 
which is a popular CNN model in image classification. But the resulting 
use for segments the image instead of classifying it. In SegNet-5, the 
encoder path has five convolution blocks (consisting of 13 convolutional 
layers and 5 max-pooling layers), whereas the decoder path is the 
opposite of the encoder; however, its max-pooling layer is replaced by 
pooling indices to match the feature map in up-sampling process. For 
our modified SegNet-5, we changed the input to grayscale image instead 
of RGB image. Due to the scanning result, PA image is a grayscale 
correspond to color images with equal values in all 3-channel. Hence, 
reducing the input to 1-channel also minimize model parameters [41] 
without affecting to the input feature map. Moreover, unlike normal 
classification, medical images classification might belong to more than 
one class label (mutually inclusive classes) such as many diseases in the 
same organ [42]. Therefore, we opted for choosing classifications, 
instead of multiclassification for easily improving our future research 
with a multi-label segmentation. In the encoders process, the model 
takes an input image of 256 × 256 × 1 and the passes through five 
convolution blocks. Each convolution block performs with a dense 
convolution layer, batch normalization, ReLU activation and 2 × 2 
max-pooling layer. Meanwhile, the decoder process is the opposite to 
that of encoder, wherein it helps in upsizing the feature map at the end 
of the encoder to the full-size predicted image. Different from the U-Net, 
during up-sampling process, the max pooling indices at the corre
sponding encoder layer are recalled to up-sample instead of 

Fig. 4. Architecture of SegNet-5. Where variables L1, L2, L3, L4, L5, L6 refer to the image size (w × h) at the level of different compression depth.  
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concatenation to perform convolution. The SegNet-5 architecture is 
shown in Fig. 4. 

2.3.3. FCN-8 with Vgg16 backbone 
Fully convolutional network (FCN) [36] is one of the first proposed 

DL method for semantic segmentation. Unlike other approaches where 
up-sampling process uses mathematical interpolations, FCN uses trans
posed convolutions layer. Three types of variation are FCN-8, FCN-16 
and FCN-32. FCN-32 uses the 32-stride up-sampling at the final pre
diction layer, whereas FCN-16 and FCN-8 combine with lower layers 
with more detail in the up-sampling process. In this study, we opted to 
use FCN-8, which has been identified to have the highest detail feature 
maps in the up-sampling process. Same with SegNet-5, FCN-8 is also 
based on Vgg16 network architecture. There are some innovations of 
using FCN-8 with Vgg16 backbone [43]: Vgg16 use only 3 × 3 convo
lution filter instead of variable size convolution filter in Alexnet [44] 
(11 × 11, 5 × 5, 3 × 3), which can reduce parameters and improve the 
training time; moreover, Vgg16 give the deeper networks and achieve 
the effect of variable size kernel by implementing the stack of con
volutional layers before performing 2 × 2 max pooling layer. FCN-8 
takes the input image size of 256 × 256 × 1, in order to obtain the 
output image of the same size, and transposed convolution was used at 
the last three down-sampling layers. For up-sampling process, FCN-8 
consist 3 deconvolution layers: the first deconvolution layer is 2×
up-sample from the last max-pooling layer prediction; the second 
deconvolution is 2× up-sample from the combination of the first 
deconvolution layer and second-last max-pooling prediction; the final 
deconvolution layer performs 8× up-sampling from the fusion of the 
second deconvolution layer and third-last max-pooling prediction. The 
number of channels and feature map size corresponding to each step 
process in FCN-8 are shown in Fig. 5. 

2.4. Sliding window architecture 

All the models should take 256 × 256 pixel in B-scan images as the 
input and output images. However, a full B-scan data image might be 
larger than the required input size; thus, it cannot be directly fed into the 

model. To overcome this image size limitation concern, we developed 
sliding window architecture to transform larger images to subset 
256 × 256 pixels patches that could be processed using U-Net, SegNet-5, 
and FCN-8 model and recompose overlap algorithm to transform pre
dicted patches back into the original image size. 

Sliding window architecture requires three arguments: first is the 
image size that the sliding window is going to loop over; second is the 
window size defined as the width and height of the desired window 
extract from the full image; and third is the stride size which is indicated 
as the step size in pixels the sliding window is going to skip. 

In order to perform sliding window image selection, the window 
with size of 256 × 256 like a 2D convolution of a single extractor 
through the full-sized image and extract the part of the image before 
were assessed by the trained and predicted model. Stride is the number 
of pixels shifts over the input matrix, the value of stride height and stride 
width depends on the full size of the image and sliding window size, 
were calculated under sub-multiple finding function in Python code. The 
complete output of the image patches can be calculated using Eq. 1: 

O =

(
FH − KH

SH
+ 1

)

∗

(
FW − KW

SW
+ 1

)

(1)  

where FH and FW are the height and width of the full-sized image, KH and 
KW are the sliding window height and width (each being 256), and SH 
and SW are stride height and stride width of the sliding window opera
tion. The total patches image O indicates the number of part image after 
extract through full-sized image given by sliding window technique. 

For the inverse sliding window extraction, predicted patches are 
assumed to overlap and the full-size B-scan image is reconstructed by 
fulling in the patches from left to right and top to bottom. The over
lapping regions were combined by average based on linear blend 
operator [45]: 

g(x) =
f0(x) + f1(x)

2
(2)  

where g(x) is overlapping regions image, f0(x) and f1(x) is two patches 
which might have some overlapping region. 

In this way, we can cover the whole image without resizing the input 

Fig. 5. Architecture of FCN-8. The variable L refers to the image size (w × h) at the level of different compression depth.  
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images. The combination of sliding window architecture and DL model 
is represented in Fig. 6. The goal of sliding window is to transform high 
resolution input image into a probability map that corresponds to a 
ground truth segmentation mask. 

2.5. Training dataset 

The D1 dataset contained 800 B-scan images of human palm, all 
acquired using the PAM system. The data was then randomly split into 
training set, validation set (50 images), and test set (10 images). Each B- 
scan image has normalized pixel values, ranging from 0 to 1. For the 
ground truth image dataset, segmentation mask is a grayscale image 
(0–255) which was normalized to (0–1), extracted from raw data in PAM 
system, which were manually segmented by an experienced researcher. 
For data augmentation, random rotational transform (90, 180 and 270 
degrees), random lateral and vertical shift (up to 10% of the image size) 
[46] were applied to the training set images to tackle model over fitting 
due to the similarities of images presented by the PA system. The vali
dation dataset used the same data augmentation techniques utilized on 
the training dataset; none of the augmentation process was used on the 
testing datasets. The use of sliding window extraction focuses on the 
segmentation of multiresolution images without resizing method. All the 
models used the same training parameter in evaluating their perfor
mance. The model was trained using a batch size of four images of subset 
training due to memory constraints. The output layer uses a sigmoid 
activation to score a prediction of each pixel on patch images. Activation 
functions are specially used in artificial neural networks to transform an 
input signal to an output signal [47]. There are many different types of 
activation functions used in neural networks, depending on the type of 
neural network and network’s prediction accuracy. Sigmoid function, 
which can transform the value in range of 0–1, could be defined as f(x) =

1
1+e− x. The model’s accuracy and model’s loss correspond to the accuracy 
and loss of the 256 × 256 binary segmentation. The total binary cross 
entropy loss function L, is used to train the model. 

L = −
1

H ∗W
∑H

h=1

∑W

w=1
(yhw ∗ ln(phw)+ (1 − yhw) ∗ ln(1 − phw) ) (3)  

where H and W correspond to the image height and width in pixels (in 
this case is 256), yhw and phw correspond to the ground truth segmen
tations value and the predicted value for the corresponding pixel at 
position (h, w), and ln corresponds to the natural logarithm. 

TensorFlow [48] is used in implementing the proposed DL approach. 
The hardware platform we used in this study is a high-performance 
computer consisting of eight Intel Core i7-6700 (4.00 GHz) and 
high-speed graphics computing unit NVIDIA GeForce GTX 1060 with 
32 GB memory. The networks were set up using Python 3.7 in Keras with 
a TensorFlow backend. The learning rate of the program is 0.0001 with 
Adam [49] optimizer algorithm, where the number of iterations is set for 
200 epochs. To prevent overfitting, the program is also set for early 

stopping if the model’s loss on the validation set did not improve for the 
next 10 patience epochs. ModelCheckPoint callbacks are used to keep 
the best weight of the model build at each iteration if it achieved min
imum validation loss. 

2.6. Evaluation methods 

To quantify model performance in segmentation tasks, the perfor
mances of U-Net, SegNet-5, and FCN-8 were tested on the testing data
set. Model evaluation is based on four parameters: pixel accuracy, 
Intersection Over Union (IoU) (Fig. 7), recall (also known as sensitivity), 
and BF-score [50]. Global accuracy represents the ratio of the highest 
correctly classified pixels, regardless of all the classes, while accuracy 
indicates the average percentage of correctly identified pixels for each 
class. 

accuracy =
TP + TN

TP + TN + FP + FN
(4) 

IoU is an evaluation metric used to measure the accuracy of pre
dicted bounding box on a ground truth bounding box, whereas mean IoU 
is defined as the average value over classes. IoU is defined in Eq. 5. 

IoU =
TP

TP + FP + FN
(5)  

where TP, TN, FP, and FN correspond to true positive, true negative, false 
positive and false negative pixels, respectively. A true positive is a 
correctly predicted pixels in positive class, a false positive is a falsely 
predicted pixels in positive class, and the false negative corresponds to a 
falsely predicted pixels in negative class. 

The IoU has been known to be well suited to evaluate the dataset 
with imbalance class, where more than 90% of the pixels are back
ground. The IoU range from 0–1, where 1 signifying the greatest simi
larity between ground truth and predicted image. 

BF-score measures the proximity and similarity between the pre

Fig. 6. Block diagram of the Sliding window architecture.  

Fig. 7. Definition of intersection over union (IoU).  
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dicted boundary and the ground truth boundary, and is given by 
weighted mean of precision and recall, as defined in Eq. 6. 

BF =
2 ∗ (precision ∗ recall)

precision+ recall
(6)  

where precision is the ratio of true positives and all pixels classified as 
positives, while ‘recall’ is the ratio of true positives and all positive el
ements (ground truth). 

precision =
TP

TP + FP
(7)  

recall (sensitivity) =
TP

TP + FN
(8)  

2.7. Segmentation in 3D volumetric 

The output generated by CNN model is 2-channel tensor binary 
segmentation mask which is same dimension as the input image. The 
first channel representing segmentation mask for skin layer and second 
channel representing for blood vessels layer. In order to divide skin and 
blood vessels in a 3D volume, mask bitwise operation AND was 
computed between original 3D data and segmentation mask 3D data. 
The skin signals were removed by logical bitwise operator AND with 
blood vessels mask (inversely for blood vessel signal). Finally, the output 

Fig. 8. Model accuracy and loss comparison with respect to the corresponding number of epochs. (A) U-Net accuracy; (B) U-Net loss; (C) SegNet-5 accuracy; (D) 
SegNet-5 loss; (E) FCN-8 accuracy; (F) FCN-8 loss. 
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consists of two 3D segmentation maps for each class (also see in Sup
plementary Fig. S1). 

For processing 3D image formats, the input data from segmented 
image was converted in to NRRD (nearly raw raster data) file, which is a 
common medical data format for visualization and processing involving 
three-dimensional raster data. Besides that, the 3D image rendering 
process is powered by the Visualization Toolkit (VTK) open-source li
brary and CUDA Toolkit GPU-accelerated libraries, which is a powerful 
tool in visualizing a 3D perspective from multiple 3D images. The im
aging results were visualized in graphical user interface designed by Qt 
creator on C++ platform. To distinguish between the two profiles in a 
3D volumetric rendering, scalars to colors converting was applied for 
each profile with a different colormap (gray-colormap for skin profile 
and hot-colormap for blood vessels profile). The 3D volumetric seg
mentation image was show in Fig. 12. 

3. Results 

3.1. Model architecture comparison 

U-Net is trained for 33 epochs due to the early stopping callbacks; the 
training loss was noted to keep on decreasing, but the validation loss did 
not improve and started to increase which might be due to overfitting. 
The SegNet-5 is trained for 32 epochs, where model overfitting is pre
vented by early stopping callback and dropout layers. FCN-8 is then 
trained on the same dataset using the same cross entropy loss of function 
and Adam optimizer with U-Net and SegNet-5. The model is trained for 
74 epochs after the early stopping callbacks and stopped it. The training 
loss kept on decreasing with the number of epochs but the validation did 
not decrease after the 64th epoch. The accuracy and loss of training and 
validation are shown in Fig. 8. 

To quantify model performance in segmentation tasks, five evalua
tion indicators can be observed on testing dataset. The testing dataset 
includes 10 full-size B-scan images (1000 × 1200 pixels) split randomly 
from D1 data without any augmentation performance (also see in Fig. 10 
and Supplementary Fig. S2). The performance of three models is re
ported in Table 1 and constructed in Fig. 9. Among the DL methods, 
FCN-8 exhibited very poor performance, while U-Net was noted to have 
the best performance. U-Net outperforms FCN-8 by 0.48% in pixel ac
curacy, 17.12% in IoU, 18.64% in sensitivity, and 18.66% in BF-score. 
Moreover, the epoch time was reduced by two-times. The SegNet-5 
model performance is equivalent to FCN-8, but the number of itera
tions is not more than twice. SegNet-5 outperforms FCN-8 by 0.16% in 
pixel accuracy, 3.77% in IoU, 1.86% in sensitivity, and 7.75% in BF- 
score. To visualize the performance comparison of three model, five 
examples of segmentation results from the testing dataset are shown in  

Table 1 
Statistical metrics (Mean ± standard deviation) comparison of segmentation 
performance on testing dataset.   

U-Net SegNet-5 FCN-8 

Global accuracy 0.9953 ± 0.0015 0.9938 ± 0.0013 0.9920 ± 0.0019 
Accuracy 0.9908 ± 0.0013 0.9876 ± 0.0022 0.9860 ± 0.0025 
IoU 0.7406 ± 0.0144 0.6071 ± 0.0091 0.5694 ± 0.0127 
Sensitivity 0.8084 ± 0.0109 0.6406 ± 0.0230 0.6220 ± 0.0268 
BF-score 0.7529 ± 0.0205 0.6438 ± 0.0231 0.5663 ± 0.0245  

Fig. 9. Boxplots of averaged statistical metrics of U-Net, SegNet-5 and FCN-8 as represented in Table 1. (A) Accuracy; (B) Intersection over Union (IoU); (C) 
Sensitivity; (D) BF-score. 
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Fig. 10. From column A to D, the image is Ground truth, U-Net, SegNet- 
5, FCN-8. 

As shown from visualization results (Figs. 9 and 10), it can be 
observed that U-Net outperforms SegNet-5 and FCN-8 and demonstrates 
good reliability and stability. Furthermore, a comparison of training 
time and memory requirements to train the models is summarized in  
Table 2. 

3.2. Performance in in vivo PA imaging 

U-Net architectures archive the best evaluation in all the perfor
mance of CNN models. The U-Net produced better results in segmenting 
the skin and blood vessels with IoU of 0.74 and BF score of 0.75. These 
values are reliable for the imbalance class dataset, where background is 
more than 90% of pixels. Thus, U-Net is the best-suited solution and was 
chosen to perform segmentation in in vivo PA imaging. 

To show the possibility of our model, skin surface and blood vessels 
profile segmentation were performed on two-sample test: D2 and D3 (PA 

imaging of a human palm and PA imaging of a human foot). Region of 
interest inside the red dashed area with an area of 100 × 80 mm2 was 
imaged as shown in Fig. 12(A, B). B-scan images from the scanning data 
were then fed to the Slide-U-Net (combination of sliding window ar
chitecture and U-Net) algorithm, which gives the segmented image. Due 
to the result of scanning, B-scan image included only two kinds of PA 
signal: skin and subcutaneous vessels. After feeding B-scan image into 
the model, images were segmented into two classes binary mask (one- 
hot encoding) in two-dimensional predicted image. By decode one-hot 
labels, each segmentation B-scan image is a segmentation map where 
each pixel contains a class label represented as an integer (as show in 
Fig. 10): 0 represents background, 1 represents blood vessels profile and 
2 represents skin profile. The comparison of in vivo MAP images which 
were visualized using maximum amplitude projection on each 3D 
volumetric data (before and after segmentation) along Z-axis is shown in  
Fig. 11. The detailed PA amplitude image that is overshadowed by 
mixture signals between the skin surface and underlying vasculature is 
shown in Fig. 11(A) and Fig. 11(D), but it is clearly visualized in Fig. 11 
(B, C) and Fig. 11(E, F). 

The 3D volume was reconstructed by leveraging the union of 2D B- 
scan images. Each B-scan image was segmented by pre-trained Slide-U- 
Net algorithm. For illustrative purposes, the image of 3D volumetric 
segmentation was shown in Fig. 12(C, D) (also see Supplementary 
Movies 1 and 2). In order to facilitate visualization, results have been 
projected on the coronal cross-sectional and sagittal cross-sectional 

Fig. 10. Visualization of segmentation comparison using different methods on five examples from testing dataset. Column A to D correspond to different method, 
from left to right: Ground truth, U-Net, SegNet-5, FCN-8; the five examples correspond to five rows from 1 to 5 (please find Supplementary Fig. S2 for examples 6–10). 

Table 2 
Comparison of training time and memory requirements for different model.   

U-Net SegNet-5 FCN-8 

Training time (min)  55  59  121 
Memory (MB)  3012  2989  2992  
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planes (Fig. 12(C1, C2, D1, D2)). It is possible to enhance and detect the 
skin surface and underlying vasculature in a first-person viewpoint. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.pacs.2021.100310. 

Further, for comparison of the visibility of the structures in PA 
image, the peak signal-to-noise ratio (PSNR) between the B-scan image 
after and before segmentation was approximately 21.3 dB (also see 
Supplementary Fig. S3). PSNR is defined in the following Eq. 9: 

PSNR = 20 ∗ log10

(
MAXI
̅̅̅̅̅̅̅̅̅̅
MSE

√

)

(9)  

where MAXI is the maximum pixel value of the image (in this case is 
255), MSE is mean squared error between the reconstructed PA image 
before and after segmentation. 

4. Discussion 

In summary, we designed the DL network architecture for blood 
vessel segmentation in in vivo PAM imaging. The advantage of this 
proposed Slide-U-Net approach to learn how to reconstruct and segment 
images in 3D volumetric data, which might cause mixture signal by 
using threshold, gate selection and local MAP method. The network 
architectures require more training time, depending on the number of 
layers and training parameters, but it gives a segmentation by using the 
trained model in a few seconds. Our results show a good performance 

segmentation in two types of PA samples (Fig. 12(A) and (B)) in high- 
resolution (2500 × 2000 × 1200 in pixel). Slide-U-Net model is not 
dependent on the size of the input image. Many other studies are re
ported for image in small resolution (depending on model re
quirements). Therefore, the segmentation in Slide-U-Net without using 
the downsize method enables full view with small vessels reconstructing 
features. 

However, there are several restrictions Slide-U-Net algorithm. 
Firstly, although the sample data (60 full-size B-scan images) in our 
research is moderately sufficient enough to support the training of the 
network, the number of data is still limited. Additionally, in data 
acquisition, our method still has not focused on the impact of ultrasonic 
frequency, optical wavelength, and scanning method on PAM imaging 
system. Hence, we plan to conduct more experimental study with more 
sample data and analyze other effects which have been mentioned 
above. Secondly, signal processing should be considered for the exper
imental study. At present, the segmentation model uses the raw data 
without filtering and denoising signal, which may have some effects on 
the results. Therefore, we are planning to implement signal processing 
methods in future study. Thirdly, manual segmentation of the skin and 
microvasculature requires an experience researcher or clinical expert in 
photoacoustic imaging. Moving forward, to keep the fully sampled 
image size, the segmentation procedure for ground truth image dataset 
may take hours. Finally, our method automatically calculated the stride 
of sliding window extraction to extract overlap the input image for 

Fig. 11. Comparison of in vivo MAP image of skin and underlying vasculature in a human palm and foot before and after performing segmentation in Slide-UNET. PA 
MAP image of human palm (A) and human foot (D) before segmentation. PA image of skin surface structure of human palm (B) and human foot (E) after seg
mentation. PA image of subcutaneous vasculature structure of human palm (C) and human foot (F) after segmentation. Close-up images of the dashed box regions 
(1–2) are shown to the right side as (A1), (A2). 
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prediction and reconstruction. If the size of the input image is a prime 
number, the stride will be one. It can take a longer time for extraction 
and out of memory when we fed sub-dataset into the model. It will 
slightly affect the performance of the Slide-U-Net automatic segmenta
tion algorithm in photoacoustic imaging. 

5. Conclusions 

In conclusion, we were able to successfully apply DL model in 
reconstructing and segmenting the full-view imaging of PAM. In this 
study, we have tested and compared on different models and found that 
U-Net architecture demonstrated the best performance (as described in 
Table 1). Our Slide-U-Net model outperformed all scanning step-size 
imaging datasets. The purposed image segmentation techniques are 
fast and accurate and could help clinical experts in the diagnosis of 
microvasculature. Furthermore, the results provide a 3D volumetric 
segmentation image in NRRD file, which is a common type of file format 
for scientific and medical visualization and could be opened by various 
medical 3D viewer software. 

In the future, the proposed models should be improved in image 
analysis, along with other modalities of the PAM imaging such as lipids, 
tumor cells, oxygen saturation, melanoma, and organs. Also, we plan to 
upgrade the network by incorporating super-resolution training in 
enhancement of PA images, which can define native image resolution on 

smaller tissue structures. 
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Fig. 12. Segmentation of skin and blood vessels 
in 3D volumetric. Photograph of human palm 
(A), foot (B) with marked region of interest 
(ROI), represented by dash box; 3D PA images 
for separating skin and blood vessels areas in
side the ROI for (C) human palm, (D) human 
foot. 3D cross section image at coronal plane 
(C1) and sagittal plane (C2) as marked in (C). 
3D cross section image at coronal plane (D1) 
and sagittal plane (D2) as marked in (D). White 
dashed boxes in C1, C2, D1, D2 are the enlarged 
images of small dashed boxes in each figure. S: 
Skin and V: Vessel. (For interpretation of the 
references to color in this figure legend, the 
reader is referred to the web version of this 
article.)   
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