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Abstract

The actin cytoskeleton is important for maintaining mechanical homeostasis in adherent cells, 

largely through its regulation of adhesion and cortical tension. The LIM (Lin-11, Isl1, MEC-3) 

domain-containing proteins are involved in a myriad of cellular mechanosensitive pathways. 

Recent work has discovered that LIM domains bind to mechanically stressed actin filaments, 

suggesting a novel and widely conserved mechanism of mechanosensing. This review summarizes 

the current state of knowledge of LIM protein mechanosensitivity.
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1 | CELLS SENSE AND RESPOND TO MECHANICAL FORCES

Mechanical force plays an essential role in the control of cell shape and motion and serves 

as a key input in mechanotransduction pathways controlling cell survival, growth, and fate. 

Cells are subject to a myriad of external forces, including those from neighboring cells, fluid 

flow, or osmolarity. In addition to these, mechanoenzymes within the cell interior generate 

forces that are transmitted across cellular scales via the cytoskeleton. These internally 

generated forces enable cell shape change and are critical to cellular mechanosensing 

(e.g., environmental stiffness sensing; Trappmann & Chen, 2013). Cells sense and convert 

mechanical stimuli into chemical signals to initiate downstream signaling pathways (Wang, 

Tytell, & Ingber, 2009). Examples of force-sensitive chemistries of cytoplasmic proteins 

include force-dependent changes in binding affinity (e.g., integrins, actin binding proteins) 

or enzymatic activity (e.g., myosin II; Greenberg, Arpağ, Tüzel, & Ostap, 2016; Jégou & 

Romet-Lemonne, 2021). These molecular-scale transducers can then give rise to mechanical 
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sensitivities of cytoskeletal arrays and/or regulate signaling and transcriptional pathways. 

While mechanotransduction pathways are well appreciated in cell physiology, we are just 

beginning to understand the diversity of force-sensing mechanisms within the cytoskeleton.

2 | MECHANOSENSING IN ADHERENT CELLS

Cells are mechanically coupled to their local environment through adhesions to the 

extracellular matrix (ECM; e.g., focal adhesions, FAs) and surrounding cells (e.g., adherens 

junctions, AJs; Figure 1a). The actin cytoskeleton connects adhesions and transmits forces 

across the cell. Force sensitivity of adherent cells underlies adhesion regulation, cellular 

force generation, and mechanical properties of cells and tissues (Bieling et al., 2016; 

Courtemanche, Lee, Pollard, & Greene, 2013; Fletcher & Mullins, 2010; Moore, Roca

Cusachs, & Sheetz, 2010; Ohashi, Fujiwara, & Mizuno, 2017; Wang, Butler, & Ingber, 

1993; Yusko & Asbury, 2014; Zhong et al., 1998). The mechanical properties of a cell’s 

environment are reflected by the actin cytoskeleton architecture. For example, F-actin 

networks in cells that are growing on rigid matrices, or within tissues that are being 

stretched, respond by self-organizing into thick bundles and larger FAs, which is thought 

to be important for generating and withstanding increased force (Smith et al., 2010; Yoshigi, 

Hoffman, Jensen, Yost, & Beckerle, 2005).

The actin cytoskeleton includes many different actin filament (F-actin)-based networks 

that vary in organization and composition. The architecture of FAs and AJs is comprised 

of stratified layers of distinct proteins that work together to transmit forces sensed by 

membrane-spanning adhesion receptors to actin filaments (Chen & Singer, 1982; Franz 

& Müller, 2005; Kanchanawong et al., 2010; Zaidel-Bar, Itzkovitz, Ma’ayan, Iyengar, & 

Geiger, 2007). Both FAs and AJs exhibit force-dependent changes to their composition and 

size, which is typically mediated by myosin-II activity within the actin cytoskeleton (Kuo, 

Han, Hsiao, Yates Iii, & Waterman, 2011) but can also be driven by external force (Riveline 

et al., 2001).

Stress fibers (SFs) are contractile bundles of 10–30 actin filaments of mixed polarity 

and alternating regions of the crosslinker α-actinin and nonmuscle myosin, reminiscent 

of the sarcomeric organization in striated myofibrils (Cramer, Siebert, & Mitchison, 

1997; Hotulainen & Lappalainen, 2006; Tojkander, Gateva, & Lappalainen, 2012). While 

sarcomere architecture allows for recurring contraction and relaxation cycles, the less 

organized SF is built for continuous isometric contraction (Burridge, 1981; Pellegrin & 

Mellor, 2007). SF formation, growth, orientation, and maintenance are sensitive to both 

externally and internally generated forces (Chrzanowska-Wodnicka & Burr idge, 1996). The 

constant tension makes SFs susceptible to damage, and localized damaged regions form 

spontaneously or in response to the application of external forces (Smith et al., 2010). 

Thus, repair of such SF strain sites (SFSS) is important for maintaining the mechanical 

homeostasis of the actin cytoskeleton, allowing cells to maintain their integrity and adapt 

to force fluctuations. It is likely that the rearrangements of actin cytoskeleton networks in 

response to external force may also be driven by a similar force-induced remodeling. For 

instance, repeated cycles of uniaxial stretch results in both SF thickening and reorientation 
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perpendicular to the stretch axis (Hayakawa, Sato, & Obinata, 2001; Kaunas, Nguyen, 

Usami, & Chien, 2005; Kim-Kaneyama et al., 2005; Yoshigi et al., 2005).

Recent progress has elucidated the force-dependent biochemistry of actin binding proteins 

(e.g., cadherins, vinculin, talin, alpha-catenin; Buckley et al., 2014; Huang, Bax, Buckley, 

Weis, & Dunn, 2017; Huveneers & de Rooij, 2013; Mei et al., 2020; Vigouroux, Henriot, 

& Le Clainche, 2020). These studies have primarily considered how forces applied to 

actin binding proteins (ABPs) alter their binding affinity to F-actin. However, the actin 

filament itself can twist, stretch, and compress, which may also alter the binding affinity 

of ABPs (Galkin, Orlova, & Egelman, 2012). In this scenario, the actin filament itself is 

the force responsive element and could confer mechanical information about the cell and 

its environment to various signaling and transcriptional pathways (Discher, Mooney, & 

Zandstra, 2009; Engler, Sen, Sweeney, & Discher, 2006).

3 | LIM DOMAIN PROTEINS IN MECHANOTRANSDUCTION PATHWAYS

Proteomic screens of mechanotransduction pathways have revealed an abundance of proteins 

that contain one or more LIM (Lin-11, Isl1, MEC-3) domains (Freyd, Kim, & Horvitz, 

1990; Karlsson, Thor, Norberg, Ohlsson, & Edlund, 1990; Way & Chalfie, 1988). The LIM 

domain is a ~ 60 amino acid sequence that forms a double zinc finger protein–protein or 

protein-DNA binding interface (Michelsen, Schmeichel, Beckerle, & Winge, 1993; Figure 

1b). LIM domains occur in diverse multidomain protein organizations and are found in a 

wide range of eukaryotic proteins (LIM proteins), including ~70 human genes that can be 

divided into 14 classes (Figure 1c; Koch, Ryan, & Baxevanis, 2012). Early in the evolution 

of animal multicellularity, there was a large expansion in the number of LIM proteins as well 

as LIM “promiscuity”, that is, LIM has combined within multidomain proteins with many 

other domains of different structure and function (Basu, Carmel, Rogozin, & Koonin, 2008; 

Koch et al., 2012). This domain promiscuity has resulted in a functionally diverse LIM 

protein family whose members play roles in a variety of biological processes but especially 

those implicated in generating and responding to mechanical forces (Figure 1c; Table 1; 

Kadrmas & Beckerle, 2004; Smith et al., 2014).

There are 41 LIM proteins found to be enriched at cell adhesions and/or the actomyosin 

cytoskeleton (Smith et al., 2014; Figure 1d). To date, 26 LIM proteins have been identified 

in FAs (including zyxin, paxillin, and LIMD1), and the localization of 21 of these is 

sensitive to myosin II activity (Kuo et al., 2011; Schiller, Friedel, Boulegue, & Fässler, 

2011). Similarly, at least 11 LIM proteins display force-sensitive localization to AJs. 

Numerous LIM proteins co-localize to both FAs and SFs, FAs and AJs, or all three 

organelles (Figure 1d). Some LIM proteins contain known actin binding domains (e.g., 

the [CH] domain) that could drive their localization to F-actin networks. However, many 

that localize to the actin cytoskeleton lack these. Standard biochemical approaches have 

not detected binding of LIM domains to actin filaments. One notable exception is the 

CRP class, which canonically binds and bundles actin filaments via their LIM domains 

(Grubinger & Gimona, 2004; Hoffmann et al., 2014; Thomas et al., 2006). CRP is an ancient 

class as it is the only mammalian LIM protein class also found in plants, suggesting the 

possibility that canonical actin binding could be an ancestral function of the LIM domain. 
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For instance, Muscle LIM protein (MLP) is a CRP class protein that has been implicated in 

mechanoresponse to muscle sarcomere stretching (Vafiadaki, Arvanitis, & Sanoudou, 2015).

Several studies have implicated LIM proteins in cell signaling and gene expression 

mechanotransduction pathways (Ibar et al., 2018; Martin et al., 2002). For instance, four

and-a-half LIM domains 2 (FHL2) is implicated in mechanical regulation of the cell cycle. 

On a soft matrix, FHL2 dissociates from F-actin networks and becomes more concentrated 

in the nucleus where it acts as a transcriptional cofactor to increase p21 gene expression, 

which regulates cell cycle progression and inhibits growth (Nakazawa et al., 2016). Most 

force-sensitive LIM proteins display nuclear shuttling raising questions as to whether 

detection of forces via LIM proteins is connected to localization and function inside the 

nucleus (Figure 2). Similarly, several LIM proteins in the Ajuba/Zyxin classes exhibit force

dependent binding to AJs to regulate hippo and Yap/Taz signaling pathways (Rauskolb, Pan, 

Reddy, Oh, & Irvine, 2011; Rauskolb, Sun, Sun, Pan, & Irvine, 2014).

4 | FORCE-SENSITIVE LOCALIZATION OF LIM PROTEINS IN ADHERENT 

CELLS

The LIM domain-containing region (LCR) has been found to drive the subcellular 

localization for a large number of LIM proteins (Brown et al., 1996; Hoffman et al., 2012; 

Smith et al., 2013). This has been dissected most carefully for the LIM protein zyxin, 

which localizes to SFs, FAs, and AJs in a force-dependent manner. Zyxin is necessary for 

stretch-mediated SF remodeling, SFSS repair, and FA maturation (Hoffman et al., 2012; 

Smith et al., 2013, 2014; Yoshigi et al., 2005).

The LCR of zyxin resides at the C-terminus and contains three LIM domains in tandem 

separated by short unstructured linkers. The LCR is required for zyxin recruitment to SFSS 

and FAs. For full length zyxin, any one of the individual LIM domains are not sufficient 

for its localization (Uemura et al., 2011). Recent results demonstrate that at least two 

tandem repeats of LIM1 or LIM3 are sufficient for LCR localization to SFSS (Winkelman, 

Anderson, Suarez, Kovar, & Gardel, 2020), but further work is needed to demonstrate 

this sufficiency for the full-length protein. Once localized, zyxin’s N-terminal functionality 

mediates SFSS repair by recruiting factors that promote actin filament polymerization (Ena/

VASP) and crosslinking (α-actinin; Smith et al., 2014). Therefore, the LCR regulates force

sensitive recruitment, while the functional role is dependent on the additional domains 

(Smith et al., 2010).

5 | LIM DOMAINS FROM DIVERSE PROTEINS BIND STRESSED ACTIN 

FILAMENTS

Recent research has made progress in understanding the mechanism of LIM protein 

force-sensitive localization to the actin cytoskeleton. Two studies used complementary 

experimental approaches to screen LIM proteins for force-sensitivity in cells. One employed 

cell stretching experiments to systematically quantify the enrichment of full length and LCR 

constructs of LIM proteins on stretched SFs (Sun et al., 2020), while the other quantified 
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LCR recruitment to SFSS (Winkelman et al., 2020). Together, these studies identified force

sensitive LCRs in 18 LIM proteins from Zyxin, Paxillin, Tes, and Enigma classes from 

both animals and yeasts (Sun et al., 2020; Winkelman et al., 2020). These complementary 

experimental approaches revealed that cytoskeletal strain sensing via the LIM domains is 

widespread in cells and existed in the last common ancestor of yeasts and animals.

To isolate the force-sensitive substrate of LIM, both groups used in vitro approaches to 

reconstitute force-sensitive recruitment with a minimal set of purified components (Sun 

et al., 2020; Winkelman et al., 2020). Two types of in vitro reconstitution assays were 

utilized to test the stress sensitivity of a subset of LIM proteins, and both showed localized 

recruitment of LIM domains directly to mechanically stressed regions of F-actin. Sun et al. 

applied tensile stresses to actin filaments with a modified gliding filament assay. Single 

filaments were pulled in opposite directions via surface-attached myosins with barbed 

(myosin V) and pointed (myosin VI) end directionality. LIM proteins localize to actin 

filaments only after initiation of myosin activity facilitates tensed filaments. Actin filament 

breakage, coinciding with stress relief, results in LIM protein dissociation. Similarly, 

Winkelman et al. reconstituted contractile actin networks comprised of F-actin, α-actinin, 

and myosin II. After addition of myosin II to initiate contraction, LCRs localize to stressed 

regions of the network due to contractile forces, particularly to bundle sites just prior to their 

rupture, after which the LCR dissociates from the actin filaments.

To understand the mechanism by which LIM domains bind F-actin, these studies identified 

particular amino acids and LIM domain architectures that are necessary for binding. With 

the exception of eight well-conserved residues (cysteine and histidine) responsible for Zn2+ 

chelation, the sequence of LIM domains is highly variable. However, a phenylalanine resides 

at a similar position in all strain sensing LIM domains and was found to be necessary for 

force sensitivity (Sun et al., 2020). Additionally, force-sensitive LCR all have three or more 

LIM domains in tandem, each separated by a short linker. Alterations to this organization 

in the LIM protein zyxin revealed that multiple LIM domains, when organized in tandem 

and connected by short linkers (serial), but not when oligomerized (parallel), contribute 

additively to stressed F-actin binding (Sun et al., 2020; Winkelman et al., 2020). Together, 

these data lead to a hypothesis that multiple LIM domains that are appropriately positioned 

interact via a hydrophobic interaction with a strained actin filament (Figure 3).

6 | EVOLUTIONARILY CONSERVED MECHANISM OF LIM DOMAIN-BASED 

FORCE SENSING

Interestingly, despite the lack of sequence conservation, binding to stressed actin filaments 

appears to be an ancient and conserved function of the LIM domain. Strain sensing LIM 

domains may have a conserved tertiary structure despite primary sequence variability, 

similar to other well studied protein folds (Dominguez, 2010). For instance, the LCR of 

the fission yeast paxillin 1 (Pxl1) binds to both SFSS in mammalian cells and purified 

mammalian stressed F-actin (Winkelman et al., 2020). Fission yeast do not have stress 

fibers (or SFSS), but there is a phenomenon analogous to SFSS that occurs within the 

yeast cell. Pxl1 localizes to the cytokinetic contractile ring (CR), and its deletion results in 
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fragmentation of the ring during contraction (Ge & Balasubramanian, 2008). The rupture 

of the contractile ring in Pxl1 mutants is reminiscent of increase rupturing of stress fibers 

observed in zyxin null cells (Smith et al., 2010). Indeed, there are many interesting parallels 

between CRs and SFs. Both are composed of similar molecular components and are 

arranged in an architecturally similar way: antiparallel bundled actin filaments crosslinked 

by α-actinin and pulled on by myosin II. Both may also display a rough sarcomeric pattern 

where α-actinin and myosin form complementary domains (Tojkander et al., 2012). The 

contractility of these networks must be regulated so that they remain tense but do not rip 

themselves apart. While SFs remain roughly the same length, the CR must shorten during 

constriction to pinch the mother cell into two daughters. The organization of the CR, SF, and 

muscle sarcomere may be a coincidence or belie a common origin. Since we first see clear 

versions of myosin II, α-actinin, and strain-sensing LIM proteins in the unikont branch of 

eukaryotes, the ancestral version of these contractile networks may have emerged near this 

branch.

Once contractile machinery arose in evolution, the cell must have evolved regulatory 

mechanisms for their maintenance and repair. The strain sensing LIM domain may represent 

one way in which cells learned to detect stressed F-actin. Other domains may be added to 

this LIM containing protein to tailor responses to LIM-detected stress, for example, some 

LIM proteins contain domains that bind actin assembly factors that enable these proteins 

to recruit actin assembly factors to sites of mechanical stress that has been detected by 

LIM (Hoffman et al., 2012; Smith et al., 2010). One hypothesis for the development of 

strain sensitive LIM domains is that general actin binding by LIM was tinkered with by 

evolution to tune it to bind strained actin filaments. The most ancient and widespread LIM 

proteins are in the CRP family and have been shown in multiple studies to bind unstressed 

actin filaments (Grubinger & Gimona, 2004; Weiskirchen & Günther, 2003), suggesting the 

possibility that generic actin binding may be an ancestral function of LIM domains that was 

tuned to bind strained F-actin (Figure 4).

7 | THE ACTIN FILAMENT IS A SUBSTRATE FOR FORCE-SENSITIVE 

BINDING

The load dependent mechanical response of F-actin networks is likely to arise from force

sensitive biochemistry of ABPs. A recent review summarizes evidence for force-sensitivity 

for several ABPs (e.g., Arp2/3 complex, cofilin, alpha-catenin; Jégou & Romet-Lemonne, 

2021). Filament curvature promotes the binding of Arp2/3 complex binding to F-actin, while 

tension decreases the stability of an Arp2/3 complex-mediated daughter branch (Pandit et 

al., 2020; Risca et al., 2012). There are conflicting reports of how tension may impact 

the binding of F-actin depolymerizing factor cofilin (Hayakawa, Tatsumi, & Sokabe, 2011; 

Wioland, Jegou, & Romet-Lemonne, 2019), while additional research suggests torsion may 

impact cofilin’s F-actin severing rate (Mizuno, Tanaka, Yamashiro, Narita, & Watanabe, 

2018; Wioland et al., 2019). Low tension applied directly to an actin filament increases the 

binding of alpha-catenin to adjacent actin subunits, and the force detection is attributed to 

a 35 amino acid region at the C-terminus (Mei et al., 2020). We hypothesize that similar 

sensing may occur in LIM protein, but will require further investigations.
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As a common component in these mechanosensitive networks, it is likely that the actin 

filament itself is a force sensor whereby the force-induced conformation of actin filaments 

affects the binding interactions of the ABPs. There are many studies and hypotheses about 

how mechanical forces may alter filament conformation, but there is no explicit structural 

data comparing stressed and unstressed actin filaments (Galkin et al., 2012). Modeling has 

shown that due to the twist of an actin filament, strain is not distributed homogenously 

throughout the filament, and localized regions of strain may result (Schramm, Hocky, 

Voth, Martiel, & De La Cruz, 2019). Therefore, the filament level force can impact the 

conformation of and interactions between adjacent subunits. These subunit level alterations 

could possibly reveal additional binding sites for ABPs. We hypothesize that LCRs 

recognize a binding site along an actin filament that is revealed under tensile or compressive 

stress (Winkelman et al., 2020). Additional research will be required to fully understand the 

binding interface of LCRs and mechanically stressed actin filaments. LIM domain proteins, 

and even isolated strain sensing LCRs, display overlapping but non-identical localization to 

stressed actin networks, raising the question of how specificity for particular networks arise. 

Additionally, stressed actin binding is distributed across several protein families involved 

in diverse cellular processes. Lastly, an important remaining question that will require 

extensive investigation is how binding by LIM to stressed actin filaments might regulate 

these diverse cellular processes.
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FIGURE 1. 
Mechanically stressed cells and LIM domain proteins. (a) Schematic of a layer of epithelial 

cells on top of an extracellular matrix (ECM). (b) Simple schematic of a LIM domain: 

Two zinc finger motifs. The magenta circles represent the well-conserved residues (typically 

cysteine or histidine) that chelate the zinc molecules. The remaining amino acid sequence 

varies between LIM domains. (c) Domain organization of the 14 classes of LIM domain 

proteins. Magenta ovals represent individual LIM domains. Dotted lines are used to 

abbreviate a few rather long structures. Other domain abbreviations: LD, Leucine rich 

aspartate domains; PET, prickle, espinas, testin; PDZ, membrane anchoring domain; HP, 

headpiece domain for F-actin binding; M, Myo5B interacting domain; N, nebulin; SH3, 

Src homology 3; CH, calponin homology; HB, homeobox. (d) Venn diagram showing the 

overlap of LIM domain proteins that associate with the three main networks: FA, Focal 

adhesions; AJ, adhesion junctions; SF, stress fibers
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FIGURE 2. 
Schematic of LIM domain protein localization in cells. (a) Nuclear shuttling of LIM domain 

proteins (magenta ovals) occurs when cells spread out on stiff matrices. (b) LIM domain 

proteins (black and magenta ovals) localize to FAs and SFs under high tension. A subset of 

LIM domain proteins localizes to stress fiber strain sites (SFSS)
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FIGURE 3. 
Schematic of mechanosensitive LCR localization to stressed actin filaments. The constitutive 

actin binding CRP class LIM proteins bind actin filaments in the absence or presence of 

force. The dashed lines indicate that CRP localization is suspected to occur for stressed actin 

filaments but has not been fully investigated. Mechanosensitive LIM domain protein LCR 

constructs bind with high affinity to actin filaments under tension or compression but with 

low affinity to relaxed filaments (adapted from Winkelman et al., 2020)
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FIGURE 4. 
Evolution of LIM domain proteins. LIM domains have evolved over time to become 

mechanosensitive. The family then expanded to include a diverse population of proteins 

in mammals (adapted from Winkelman et al., 2020)
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