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Abstract
The use of chemotherapeutic regimens for the treatment of pancreatic cancer is 
still limited because pancreatic cancer is usually diagnosed at an advanced stage 
as a refractory disease in which symptoms are difficult to recognize in the early 
stages. Furthermore, at advanced stages, there are important challenges to achieve 
clinical benefit and symptom resolution, even with the use of an expanded 
spectrum of anticancer drugs. Recently, a point of reduced susceptibility to 
conventional chemotherapies by breast cancer susceptibility gene (BRCA) 
mutations led to a new perspective for overcoming the resistance of pancreatic 
cancer within the framework of increased genome instability. Poly (ADP-Ribose) 
polymerase (PARP) -1 is an enzyme that can regulate intrinsic functions, such as 
response to DNA damage. Therefore, in an environment where germline 
mutations in BRCAs (BRCAness) inhibit homologous recombination in DNA 
damage, resulting in a lack of DNA damage response, a key role of PARP-1 for the 
adaptation of the genome instability could be further emphasized. Here, we 
summarized the key functional role of PARP-1 in genomic instability of pancreatic 
cancer with the BRCAness phenotype and listed clinical applications and 
outcomes of PARP-1 inhibitors to highlight the importance of targeting PARP-1 
activity.
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Core Tip: The incidence of germline mutations of the breast cancer susceptibility gene 
(BRCA), defined as BRCAness, that can be targeted for pancreatic cancer is 9%-17%. 
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Mutations in BRCAs are responsible for causing genetic instability and worsening the 
prognosis. Therefore, inhibition of poly (ADP-Ribose) polymerase-1 has emerged as a 
promising therapeutic target for BRCAness pancreatic cancer within the framework of 
an increase in genome instability.
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INTRODUCTION
Therapeutic perspectives in pancreatic cancer
Pancreatic cancer is usually diagnosed at an advanced stage as a refractory disease in 
which symptoms are difficult to recognize in the early stages. The 5-year survival rate 
is extremely low (less than 9%), and about two-thirds of all patients with pancreatic 
cancer die within one year of diagnosis[1]. Furthermore, at advanced stages of the 
disease, there are major challenges to achieving clinical benefit and symptom 
resolution, even after expanding the range of anticancer drugs targeting pancreatic 
cancer, and to date, few options for treating pancreatic cancer have been proposed, 
such as gemcitabine alone, gemcitabine with nanoparticle albumin-bound paclitaxel 
(nab-paclitaxel), or gemcitabine in combination with capecitabine, fluorouracil, 
leucovorin, irinotecan, and oxaliplatin[2]. The main cause of pancreatic carcinogenesis 
is genomic instability, and it is well established that cancer development is related to 
defects in DNA damage response[3]. Recent genome-wide studies have made great 
strides in identifying distinct subpopulations of pancreatic cancer constituent cells 
with unstable genomic properties due to mutations in the DNA repair gene[3,4]. Based 
on this background, there has been a focus on the high frequency of deleterious 
changes which lead to a truncated/faulty response to DNA damage in cancer cells. In 
particular, since breast cancer susceptibility genes (BRCA) mutations have been 
reported to decrease susceptibility to gemcitabine and platinum-based chemotherapy, 
a new perspective on the molecular mechanisms overcoming resistance in pancreatic 
cancer is required[5,6]. Therefore, the recent approach targeting poly (ADP-Ribose) 
polymerase (PARP) -1 has emerged as an encouraging therapeutic strategy for 
inhibiting the pathogenesis of BRCAness pancreatic cancer within the framework of an 
increase in genome instability[7].

PARP-1 AND DNA DAMAGE RESPONSE IN PANCREATIC CANCER
PARP-1 is an enzyme that can regulate the intrinsic functions of several cytoplasmic 
and nuclear proteins based on inducing poly (ADP-Ribose) synthesis[8]. In various 
cellular physiological functions led by PARP-1, the reaction to DNA damage is known 
as the most important biochemical function, and with its well-established crucial role 
in DNA damage repair, the upregulation of PARP-1 in cancer could lead to investig-
ations into the potential for targeting this important enzyme[9]. PARP-1 comprises a 
multi-domain structure that shares the catalytic domain showing structural homology 
with other ADP-ribosyl transferases for DNA damage repair[10]. The N-terminal 
region contains a DNA-binding domain with three zinc fingers and an auto-modifying 
domain, and the C-terminal region comprises a protein interaction domain and a 
catalytic subdomain accountable for the poly ADP-ribosylation reaction[10,11]. The 
construction of such domains enables genetic relations by catalyzing the covalent 
attachment of poly-ADP-Ribose polymers to DNA repair proteins and other receptor 
proteins, including transcription factors and chromatin modulators. Based on these 
structural interactions, PARP-1 can mediate ADP-Ribose synthesis and attach it to 
acceptor proteins[10,11]. The PARP-1 signature motif includes an NAD+-binding site 
and comprises an acceptor of adenosine and the donor of nicotinamide wherein ADP-
Ribose from NAD+ is transferred to target proteins for ADP-Ribose synthesis[11,12]. It 

https://www.wjgnet.com/1948-5204/full/v13/i11/1544.htm
https://dx.doi.org/10.4251/wjgo.v13.i11.1544


Jeong KY et al. Significance of PARP-1 inhibition targeting BRCAness pancreatic cancer

WJGO https://www.wjgnet.com 1546 November 15, 2021 Volume 13 Issue 11

is an integrative and dynamic biochemical process defined as poly ADP-ribosylation 
(PARylation), and the hypothesis has recently been established that the synthesis 
process is determined by following potential pathways[11,12]. PARP-1 catalyzes the 
transfer of ADP-Ribose units from NAD+ to compose the poly ADP-Ribose branches, 
which is negatively charged to several amino acid residues in PARP-1 or other 
receptor proteins[11]. Besides, poly (ADP-Ribose) synthesis is based on the attachment 
of ADP-Ribose to the 2'-OH end of the growing chain by sequentially adding the next 
ADP-Ribose residues to the end of the ADP-Ribose moiety[11]. The biochemical action 
of linking the long and negatively charged poly ADP-Ribose polymer to PARP-1 itself 
or a variety of acceptor proteins can be attributed to its primary function of repairing 
DNA damage during potential changes for cancer cell survival[11,13]. In DNA damage 
repair, PARP-1 and PARylation are universally involved in both single-strand and 
double-strand DNA damage repairs, such as base excision repair, homologous 
recombination (HR), and non-homologous end-joining (NHEJ)[14]. PARP-1 can 
functionally interact with X-ray repair cross-complementing protein 1, which plays a 
major role in signal pathways for single-strand DNA damage repair[14,15]. The 
BRCA1 C-terminus directly binds to the poly ADP-Ribose chain and mediates early 
recruitment of DNA repair proteins to DNA lesions[16]. Further, PARP-1 has been 
associated with HR-mediated repair and reactivation of stalled replication forks, thus 
promoting DNA replication for restarting stalled replication BRCA-dependent early 
double-strand DNA damage repair[17]. Interestingly, the role of PARP-1 in an 
environment where germline mutations in BRCAs inhibit the HR-mediated repair of 
DNA double-strand breaks, thus resulting in a deficiency in the DNA damage 
response, can be further emphasized[6,18].

BRCANESS IN PANCREATIC CANCER AND PARP-1
BRCAness is defined as a set of traits in which BRCA1 or BRCA2 mutation 
phenocopies result in a lack of double-strand DNA damage repair, and a tumor cell 
has an HR obstruction with a germline BRCA1 or BRCA2 deficiency[19]. The incidence 
of germline mutations of BRCAs that can be targeted for pancreatic cancer is estimated 
to be about 9%, but the incidence of these BRCA mutations (particularly BRCA2) in 
familial pancreatic cancer patients has increased to about 17%[20]. Mutations in BRCA 
are responsible for causing genetic instability and worsening prognosis. BRCAness 
leading to the phenotype of HR deficiency is an indispensable marker for recognizing 
an increase in the pancreatic cancer risk, and the sensor defect of double-strand DNA 
break is an error-prone repair pathway, such as NHEJ, which accumulates increased 
genomic instability. In this context, the HR deficiency by BRCAness may rely on a 
process of overcoming genetic instability that is reliant on PARP-1 activation[21]. As 
mentioned above, PARP-1 is an important nuclear enzyme in cellular homeostasis as it 
transforms various nuclear proteins by PARylation[8,11-14]. The key feature of PARP-
1 is the DNA repair responding to DNA damage by targeting the histone core and 
linker histone proteins in the nucleus[22]. A serine group-binding ADP-ribose relies on 
a protein, histone PARylation factor 1 (HPF1), which has been identified as a key 
protein that controls DNA damage-induced PARylation and is responsible for 
adaptation to genomic instability[23,24]. Because PARP-1 continuously recruits DNA 
repair elements through PARylation in several receptor regions during genomic 
instability, HPF1 is used to regulate the excessive PARP-1 transformation to avoid 
apoptosis[14,15,24]. Taken together, PARP-1 activity and PARylation may play an 
important role in adapting to genomic instability in pancreatic cancer in a tumor 
microenvironment undergoing persistent genomic instability by BRCAness[13-15,20,
21,23,24].

CLINICAL STUDIES ON BRCANESS PANCREATIC CANCER BY PARP 
INHIBITORS
BRCAness is unstable NHEJ-dependent and drives distinctive DNA repair systems 
creating specific genotypic and phenotypic features[19]. Therefore, it can be inferred 
that the sensitization of PARP-1 inhibitors has potential benefits for the treatment of 
BRCAness pancreatic cancer, and PARP inhibitors have recently emerged as a novel 
class of a targeted therapy specifically targeting BRCAness pancreatic cancer[18]. To 
date, five PARP inhibitors have drawn significant clinical results targeting BRCAness 
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Table 1 Clinical trials of Poly (ADP-Ribose) polymerase-1 inhibitor for the treatment of breast cancer susceptibility gene mutant 
pancreatic cancer

Drugs Trial ID Stage Outcomes

Olaparib NCT02184195 Phase 
II

Median OS (drug/placebo): 19.0/19.2 mo; Median PFS (drug/placebo): 16.9/9.3 mo; Toxicity: Grade ≥ 3 anemia, 
hyperglycemia, pain

Olaparib NCT02677038 Phase 
II

5 SD, 12 PD in Israel; 2 PR, 6 SD, 3 PD in United States; PFS: 14 wk in Israel; 24.7 wk in United States; Toxicity: 
grade 1-2 anemia, fatigue, nausea

Niraparip NCT03553004 Phase 
II

No results posted

Veliparib NCT01585805 Phase 
II

4 SD, 10 PD; Median PFS: 52 d; Toxicity: Grade 3 fatigue, hematologic, nausea

Rucaparib NCT02042378 Phase 
II

≥ 2 prior chemotherapy: 1 PR, 1 CR; 1 prior chemotherapy: 4 SD, 9 PD; Toxicity: Grade ≥ 3 anemia, 
thrombocytopenia, fatigue

Talazoparib NCT01286987 Phase I 2 PR, 2 SD, 6 PD; Median PFS: 5.3 wk; Toxicity: Hyperbilirubinemia, fever, bacteremia

OS: Overall survival; PFS: Progression-free survival; SD: Stable disease; PD: Progression disease; PR: Partial response; CR: Complete response.

pancreatic cancer, and these agents bind to the catalytic domain of PARP and interfere 
with the base repair or suppress PARP synthesis[25]. Olaparib is first approved for the 
treatment of advanced ovarian cancer; however, presently, it is also being admi-
nistered to patients having pancreatic cancer with BRCA mutations. Niraparib is a 
functionally selective inhibitor of PARP used for the treatment of advanced pancreatic 
cancer with BRCA mutations. Veliparib is being studied for its applicability to treating 
non-small-cell lung cancer and breast cancer with BRCA mutations, as well as ad-
vanced pancreatic cancer. Rucaparib is a small-molecule PARP inhibitor targeting 
germline BRCA-mutated pancreatic cancer. Talazoparib is an orally bioavailable PARP 
inhibitor with the potential antineoplastic activity that targets pancreatic cancer with 
BRCA mutations[25,26]. A pancreatic cancer olaparib ongoing (POLO) study was 
conducted on pancreatic cancer patients with BRCA mutations; these were the patients 
who did not show progression by platinum-based chemotherapy randomized to 92 
patients in the phase 3 clinical trial. The results showed that median progression-free 
survival was increased to 31.3 mo in the olaparib group compared with 23.9 mo in the 
placebo group[27,28]. Another phase 2 trial has also demonstrated the efficacy of 
targeting metastatic pancreatic cancer with the germline BRCA mutant. A total of 32 
patients was recruited, with one-two showing the partial response (PR), and eleven 
showing the stable disease (SD)[29,30]. Niraparib is undergoing a phase 2 clinical trial 
to test its safety and efficacy in patients with pancreatic cancer with HR deficiency, 
such as a BRCA mutation. This study is recruiting patients, and there are no interim 
reports[31,32]. The combination effect of cisplatin and gemcitabine with or without 
veliparib was reported by a phase 2 study in pancreatic cancer patients with germline 
BRCA mutations. A total number of 52 patients were enrolled in the trial and were 
randomly assigned to be treated with triple combination (gemcitabine, cisplatin, and 
veliparib) or double combination (gemcitabine and cisplatin). The objective response 
rate (ORR) in the former was higher at 74.1% compared with 65.2% in the latter[33,34]. 
A phase 2 trial of rucaparib in patients with pancreatic cancer with deleterious 
germline or somatic BRCA mutations was reported. In this study, 19 patients were 
treated, and the confirmed ORR was 11% (1 PR and 1 complete response). The disease 
control rate (PR or SD for above 12 wk) was 32% in all patients[35,36]. A dose-
escalation, phase 1 study was organized to validate the antitumor activity of 
talazoparib. This study reported clinical benefits in 4 of the 13 patients with pancreatic 
cancer. The tumor response rate was 15% PR and 15% SD, and the median 
progression-free survival was 5.3 wk[37,38]. Table 1 presents a list of clinical trials for 
PARP inhibitors targeting BRCA mutant pancreatic cancer. However, while acknow-
ledging the promising clinical outcomes of PARP-1 inhibitors, unexpected toxicity is 
an important concern to be considered. It can cause unacceptably high hematologic 
toxicity and adverse effects that are sporadically associated with acute myeloid 
leukemia. The combination of conventional chemotherapy, such as gemcitabine with 
veliparip or olaparip, was primarily associated with a marked increase in hemato-
logical toxicity above grade 3. Further, 40% of pancreatic cancer patients who received 
only olaparib showed gastrointestinal disorders, fatigue, and lethargy, as well as 
hematologic toxicity (Table 1)[25,39-42]. Therefore, potential solutions that can 
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optimize treatment with sophisticated applied therapies through the development of 
new formulations are currently unmet medical needs.

CONCLUSION
The possibility that PARP-1 inhibitors effectively improve the prognosis by targeting 
pancreatic cancer with the BRCAness phenotype appears to deserve scientific 
attention, and the accumulation of such possibilities could be a key point in 
understanding whether PARP inhibitors can be used as a major therapeutic strategy as 
a single therapeutic agent or in combination with existing DNA damage agents to 
overcome resistance.
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