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Abstract

The IL-17 family is an evolutionarily old cytokine family consisting of six members (IL-17A

F). IL-17 family cytokines signal through heterodimeric receptors that include the shared 

IL-17RA subunit which is widely expressed throughout the body on both hematopoietic and 

non-hematopoietic cells. The founding family member, IL-17A, is usually referred to as IL-17 

and has received most attention for proinflammatory roles in autoimmune diseases like psoriasis. 

However, IL-17 is associated with a wide array of diseases with perhaps surprisingly variable 

pathologies. This review will focus on recent advances in the known and emerging roles of 

IL-17 during health and in disease pathogenesis. To decipher the functions of IL-17 in diverse 

disease processes it is useful to first consider the physiological functions that IL-17 contributes 

to health. We will then discuss how these beneficial functions can be diverted towards pathogenic 

amplification of deleterious pathways driving chronic disease.
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Introduction: IL-17 protects barrier surfaces

In healthy humans and mice, IL-17 expression is limited to barrier surface tissues: 

intestine, gingiva, conjunctiva, vaginal mucosa, skin. At these surfaces, IL-17 is produced 

at low amounts in response to the beneficial resident microbiota, and induces production 

of antimicrobial peptides by the epithelium to maintain a healthy bacterial and fungal 

population. IL-17 also stimulates epithelial cells to produce GCSF and chemokines that 

recruit neutrophils, pro-inflammatory cytokines such as IL-6, and IL-17 supports antibody 

production (Figure 1). By inducing sub-clinical amounts of these acute-phase responses in 

local tissue, homeostatic IL-17 not only helps to maintain healthy populations of microbiota, 

IL-17 signaling raises the epithelial antimicrobial threshold to protect against infection(1, 2). 

Although much emphasis has been placed on bacterial microbiota roles in barrier surfaces, it 

is likely that fungal residents of the ‘mycobiome’ also contribute to IL-17 homeostatic roles 

as demonstrated recently in mice(2–4).

If pathogens breach epithelial barriers, then tissue damage along with increased immune 

activation increases the magnitude of the IL-17 response to control and clear the invasion, 
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with accompanying signs of inflammation. Mice or humans deficient in IL-17 signaling 

take longer to clear infections such as Candida albicans and Staphyloccocus aureus, and 

develop infections that spread across a wider surface area as well as penetrating underlying 

tissues(5, 6). Interestingly, the Kaplan lab recently demonstrated that local IL-17 responses 

are activated in the non-infected tissues adjacent to Candida infection, in a process termed 

‘anticipatory immunity” that acts to contain the infection and protect surrounding tissues(7).

The delicate balance between IL-17 and microbiota is most elegantly demonstrated in 

mice lacking IL-17 receptor specifically on intestinal epithelium: they develop intestinal 

dysbiosis due to outgrowth of normally IL-17-regulated bacterial strains. In turn, dysbiosis 

drives enhanced Th17 activation and IL-17 production in an attempt to restore balance. 

The consequence for the host of this enhanced mucosal IL-17 response is increased 

autoimmune disease severity in a model of multiple sclerosis. Indeed, it is now widely 

thought that dysregulation of healthy microbiota populations contributes to autoimmune 

disease susceptibility in humans, in part by disrupting the balance of type-17 responses 

in the gut that then influences systemic Th17 activation. The use of photoconvertible cell 

tracking in mice has shown that in some instances, Th17 cells that originate in the gut 

are found in inflamed peripheral tissues including kidney and joints, further supporting a 

role for microbiota-regulated Th17 cells in autoimmune disease(8, 9). Autoimmunity could 

thus be considered an unintended collateral damage outcome resulting from mucosal surface 

immunity.

IL-17 and lymphoid organs

A feature of chronically inflamed tissues is the generation of tertiary lymphoid organs 

(TLO), which are semi-organized structures resembling lymph nodes containing B and T 

cells. The role of TLO in autoimmune disease and cancer remains unclear, but it is thought 

that they help to sustain local activation of adaptive immunity that could contribute to 

the ongoing disease process. Both TLO and secondary lymphoid organs (lymph node and 

spleen) are maintained and architecturally zoned by specialized fibroblast-like stromal cells 

broadly termed fibroblastic reticular cells (FRC) and follicular dendritic cells (FDC). FRC 

produce CCL19 and IL-7 to sustain T cell zones, and FDC produce CXCL13 to recruit B 

cells and T follicular helper cells to form germinal centers. Chronic lung inflammation due 

to infection or repeated lps stimulation drives formation of TLO called inducible bronchial 

associated lymphoid tissue (iBALT) in an IL-17-dependent manner(10, 11). IL-17 induces 

chemokines CXCL13 and CCL19 to recruit lymphocytes to iBALT, implicating FRC 

involvement in establishing these structures(10, 11). IL-17 is also required for formation 

of TLO in meninges in a mouse model of multiple sclerosis by driving the expansion and 

differentiation of meningeal myofibroblasts into FRC-like cells(12, 13) (Figure 2).

Lymphoid tissue inducer (LTi) cells are similar to ILC3 and require RORγt for their ability 

to establish secondary lymphoid organs during fetal development. However, LTi produce 

lymphotoxin for this function, and mice deficient in IL-17 do not have obvious defects 

in their secondary lymphoid structures, with normal size LN and spleen. However, during 

adaptive immune responses the size of the LN increases, with an accompanying increase 

in numbers of supporting FRC cells. It was recently established that this expansion of 
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the existing FRC population does require IL-17 signaling, at least during type-17 driving 

inflammatory responses. When IL-17 receptor was specifically deleted in FRC cells, they 

failed to expand following immunization or colitis despite hypercellularity of the inflamed 

LN occurring as normal. While IL-17 is known to drive proliferation of epithelial cells, this 

study indicated that IL-17 supports proliferation and survival of activated stromal cells by 

increasing their metabolic fitness, a role that was not previously known for IL-17 but has 

interesting connotations in terms of regulating IL-17 driven inflammatory outcomes in other 

organs. On a related note, IL-17 has been shown to regulate metabolic thermogenesis in 

adipose tissues(14).

Similarly to peripheral inflamed tissues, IL-17 recruits neutrophils to the LN during Th17 

responses(15), which can provide an additional source of IL-1β for Th17 differentiation(16). 

However, it appears that FRC are not the predominant cell type that recruits neutrophils 

suggesting that other stromal cells also respond to IL-17 and influence the LN response(15). 

The consequence of failed FRC expansion in absence of IL-17 was instead reduced germinal 

center B cells and impaired autoantibody production(15). IL-17 cells have previously been 

shown to support antibody production in autoimmunity and infection and proposed to act 

directly on B cells(17, 18),(19, 20). It has also been suggested that Th17 cells convert to 

T follicular helper cells in Peyer’s patches to support IgA production against commensals 

and following oral immunization(19). This new data provides an alternative explanation by 

demonstrating that IL-17 can promote antibody responses via signaling to LN stromal cells 

to act as an intermediary between Th17 and B cells recognizing autoantigen. Whether the 

same principal applies to infections that require antibody and to Th1 or Th2 dominated 

immune responses has yet to be determined. However, as most autoimmune diseases are 

associated with both IL-17 and autoantibody (etiher as diagnostic or pathogenic markers), 

this link between IL-17 responses and enhanced autoantibody responses is intriguing.

Pathogenic versus homeostatic functions of IL-17: consider the source

IL-17 is predominantly produced by immune cells of the adaptive and innate lymphocyte 

lineages, including CD4+ Th17 cells, CD8+ Tc17 cells, γδT17 cells, MAIT cells, innate 

lymphoid cells ILC3, collectively the cells producing IL-17 are called ‘type-17’ hereafter. 

Commensal-driven type 17 immune responses tend to regulate microbiota without causing 

classical signs of inflammation, and instead promote healing of skin wounds and enhanced 

defense against invading pathogens(1). This is in contrast to now well-known inflammatory 

roles of IL-17-producing cells in autoimmune disease pathogenesis and the proposed roles in 

cancer and fibrosis discussed below. How are these pleiotropic functions of IL-17 achieved 

to cause different outcomes? Here we describe three main mechanisms: synergy at the 

responder cell level, feed-forward loops, and finally regulation of co-expressed cytokines at 

the producing cell level. The common theme is that IL-17 is rarely a lone driver, but rather 

acts to modulate and amplify signals in a local and context-dependent fashion.

One important aspect of IL-17 signaling is that it heavily relies on synergy with other 

cytokines for output. In fact, IL-17 by itself is a rather weak activator of signaling proteins 

and downstream gene expression. Instead, IL-17 synergizes with many cytokines from 

obvious pro-inflammatory cytokines such as TNF and IFNγ to seemingly anti-inflammatory 
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TGFβ, and can also promote LPS signaling through TLR4. In many instances, the 

mechanisms through which this synergy is achieved have not been established. IL-17 

signaling has been recently reviewed in detailed so we refer the reader to ref (21) and 

only briefly discuss mechanisms of synergy here. IL-17 and TNF synergy has been most 

intensively studied and includes induction and/or activation of RNA binding proteins that 

act to stabilize and promote translation of target mRNA transcripts, and induction of 

transcriptional regulators Iκbζ and C/EBP that further enhance cytokine receptor signaling 

outputs(21). For example, Iκbζ co-activates NF-κb for gene transcription of IL-6. Iκbζ 
expression is induced by IL-17 but not TNF(22), while TNF is a strong activator of NF-

κb compared to TNF, hence the result of both is synergistic increase in Iκbζ-regulated 

targets(22–24). IL-17 also enhances expression of cytokines that can then act on the 

responder cells in a feed-forward loop. An example is the induction of LIF in synovial 

fibroblasts that then acts to enhance and sustain IL-6 expression(25).

Another mechanism that has emerged as a key modulator of IL-17 effects is at the level 

of the cells that produce IL-17. Skin-resident Tc17 cells induced by the commensal 

S. epidermidis produce IL-17 along with immunoregulatory and tissue repair factors, 

including IL-10, TGFβ, FGF, amphiregulin and VEGF(1). In addition, they are poised 

for co-production of type-II cytokines depending on the tissue cytokine milieu, with IL-18 

identified as a switch towards type-II(26). In this context, it is interesting that γδT17 

and Th17 cells express IL-18R, but whether IL-18 alters the pro-inflammatory versus 

reparative bias of these cells is currently unknown. However, the balance of cytokines that 

activate Th17 cells is thought to be one factor driving a more pro-inflammatory (IL-23 

and IL-1β driven) versus non-pathogenic Th17 phenotype (TGFβ driven)(27, 28). Human 

Th17 cells can be induced in vitro against C albicans or Staphylococcus aureus, both 

opportunistic pathogens known to elicit protective Th17 responses. IL-23, IL-6 and IL-1β 
were both required, but concentration of IL-1β was identified as a switch that could inhibit 

IL-10 production while promoting IFNγ(29). A recent studied compared gene expression 

signatures of intestinal Th17 cells induced in response to infection with the commensal SFB 

or the pathogen Citrobacter rodentium, both attaching-effacing bacteria but with different 

outcomes in terms of clearance and inflammation(30). Commensal-induced Th17 cells co

expressed IL-10 and IL-22 along with IL-17, while pathogen-induced Th17 cells showed 

an increased propensity for plasticity towards Th1 phenotype, increased pathogenic Th17 

signature and metabolic activity suggesting greater activation and proliferation(30). An 

independent study has verified that commensal-driven gut Th17 cells express IL-17, IL-22 

and IL-10 and further identified that they are uniquely dependent on DC expression of the 

C-type lectin receptor Mincle, which induces IL-6 and IL-23 expression(31).

An interesting component of type-17 cell activation at barrier surfaces is the quite limited 

reliance on dendritic cell activation through classical pathways that drive DC activation 

and costimulation expression for T cell activation (Figure 3). IL-6 is produced by non

hematopoietic cells in response to mechanical stress and to cytokines including IL-17 

itself(32). Inflammasome activation by damaged cell death releases IL-1β. Epithelial cells 

can detect the pathogenic determinant Candidalysin and produce IL-1β in response to oral 

Candida infection(33). In the skin, cutaneous sensory neurons detect Candida albicans 
hyphal invasion and promote dendritic cell production of IL-23 through release of the 
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neuropeptide CGRP(7). Attaching-effacing bacteria in the gut induce epithelial serum 

amyloid A production that then drives IL-23 and IL-1β production in DC(34). For ILCs 

and γδT cells, major producers of IL-17 which do not express classical T cell receptors, 

cytokines are the critical drivers of their proliferation and effector functions in tissues(35–

37). Tc17 cells responding to skin commensals are activated through non-classical MHC 

Ib as well as cytokines(1). We recently described that STAT3 activation, downstream of 

IL-6 and IL-23 signaling, licenses effector Th17 cells to respond to antigen by maintaining 

mitochondrial membrane potential (Poholek et al, JEM 2020 In Press). This again suggests 

that the cytokine milieu is a strong regulator of IL-17 production even in antigen-specific 

Th17 cells. In addition, human Th17 cells do not require and in fact are inhibited by 

CD28 costimulation, unlike Th1 cells(38). Instead, IL-23 and IL-1β provide activation 

signals including metabolic reprogramming normally associated with CD28, albeit at a 

lower magnitude with correspondingly reduced proliferation(38). Hence, we propose that 

the cytokine conditions present in healthy barrier tissues promote the preferential induction 

of small populations of metabolically inert Th17 cells that in turn regulate barrier surface 

immunity without inducing overt inflammation. However, type-17 cells are poised to rapidly 

expand and increase their pro-inflammatory functions in case of tissue injury or pathogen 

invasion by sensing changes in cytokine composition.

IL-17 goes viral?

IL-17 is most critical for control of extracellular bacteria and fungi, as evidenced by the 

high susceptibility to these pathogens in humans with genetic mutations affecting the 

IL-17 pathway(6). Indeed, the well-established roles of IL-17 in promoting production of 

AMPs and recruitment of neutrophils are well-suited to controlling these types of infections. 

However, important contributions of IL-17 signaling have been found during infections with 

various viruses and intracellular bacteria. In mouse models, IL-17 has been reported to 

promote cytotoxic T cell function against West Nile virus, and to promote recruitment of 

CD8+ cytotoxic T cells to the liver during acute hepatitis (39),(40). During lung infection 

with Mycobacterium tuberculosis, early IL-17 supports the Th1 response by induction of 

chemokines that enhance recruitment to the site of infection(41). IL-17 has also been 

reported to promote the antibody response during H5N1 influenza infection by recruiting B 

cells to the lungs(42),(43). Similarly, CD4+ tissue-resident memory Th1 cells are recruited 

and maintained in the vaginal mucosa after HSV-2 infection in an IL-17-dependent manner, 

and IL-17−/− mice are highly susceptible to reinfection(44). Hence induction of chemokines 

to aid in positioning of the anti-viral immune response to the site of infection can be a 

beneficial function of IL-17 that is likely induced by viral tissue damage.

On the other hand, recruitment of immune cells and induction of pro-inflammatory 

cytokines, particularly neutrophils and IL-6, can have detrimental effects in an already

injured tissue(45). In a recent study with pediatric patients, the authors found that IL-17 

production is significantly increased in the bronchoalveolar lavages (BAL) of children with 

community-acquired pneumonia (CAP)(46). Profiling of immune cells identifies MAIT 

cells to be the major producers of IL-17 in BAL. Along with IL-22, IL-23 and IL-6, 

levels of IL-17 correlated to the CAP severity (46). IL-17 levels were found to increase 

in patients with severe pandemic Influenza A H5N1 associated disease, and neutralizing 
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IL-17 in a mouse model of H1N1 reduced lung injury (47). Similarly, infants with severe 

Respiratory Syncytial virus (RSV) infection had increased IL-17 and IL-6 in their BAL, 

and mouse models show that IL-17-mediated CXCl1 and MMP expression in the airways 

leads to increased neutrophil accumulation and amplified lung tissue destruction(48),(49). 

Overall then, increased IL-17 appears to have negative consequences in viral lung disease, 

contributing to increased pathology in damaged lungs.

The most extreme version of inflammatory lung damage results in acute respiratory distress 

syndrome (ARDS), where the lungs fill with debris, immune cells and mucus impeding 

their ability to perform oxygen exchange. The current COVID-19 coronavirus pandemic has 

dramatically illustrated the life or death consequences of an overactive cytokine response, 

as around 10–20% of confirmed cases require hospitalization and oxygen support in the 

second phase of the disease if the virus triggers ARDS. Another clinical feature of Covid-19 

induced lung damage has been the extensive fibrotic changes that further compromise 

respiration and may have long-term consequences for surviving patients. Although we are 

still in the preliminary stages of understanding the pathology associated with Covid-19 

induced ARDS, IL-17 and it’s downstream intermediary IL-6 have been proposed as drivers 

of immunopathology and at least one of the ongoing clinical trials in China is testing the 

potential role of ixekizumab (a neutralizing IL-17A antibody used for psoriasis) against 

SARS-CoV-2(50–52).

When tissue repair goes wrong: cancer, fibrosis, autoimmunity

Following injury, IL-17 plays dual roles in protecting the host, both protecting against 

microbes that invade the breached barrier and promoting healing. Chronic injury for 

example in persistent infection or autoimmune attack can lead to prolonged attempts at 

repair that become pathologic (Figure 4). There is now a multitude of evidence pointing 

towards a pro-tumorigenic role for IL-17 in human cancer (Table 1a), although a few 

studies point towards protective effects (Table 1b). Similarly, IL-17 is clearly associated with 

pathologic processes in autoimmune diseases and fibrotic disease. Here we will discuss the 

role of IL-17 in beneficial reparative processes and how those become pathogenic during 

chronic stimulation and tissue injury.

Following skin wounding, mice that are deficient in IL-17 have delayed wound closure. 

In the gut, IL-17 promotes epithelial repair following injury by promoting increased 

proliferation of epithelial stem cells to replace the damaged cells and enhancing the 

restoration of an effective barrier with expression of tight junction proteins that prevent 

microbial translocation from the gut. IL-17 neutralizing biologics are highly effective in 

treating psoriasis, supporting the pro-inflammatory and pro-proliferative roles of IL-17 in 

the skin. However, the same drugs were disappointingly ineffective in Crohn’s disease and 

exacerbated disease in some patients, suggesting that on balance the beneficial roles of IL-17 

in microbial homeostasis and repair of the gut outweigh the contributions to pathologic 

inflammation.

Pathologic proliferation of synovial fibroblasts also contributes to rheumatoid arthritis, 

where it is thought that IL-17 may contribute perhaps in the earlier phases of disease since 
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IL-17 targeting biologic therapy was only effective in a subset of patients with established 

RA. Another potential pathology that can result from excess proliferation is the depletion of 

precursor stem cells that ultimately contributes to failed repair of inflamed tissue. In a model 

of multiple sclerosis, hyperproliferation of oligodendrocyte precursors responding to IL-17 

has been proposed to increase their death, thus contributing to oligodendrocyte decline and 

increased demyelination in the central nervous system.

In spontaneous tumorigenesis models that combine tissue damage with a carcinogenic 

stimulus, IL-17 promotes increased proliferation of epithelial stem cells in response to tissue 

injury. Recently, a novel IL-17A-activated EGFR signaling pathway was discovered that 

drives the expansion and migration of Lrig1+ stem cells during skin injury, leading to skin 

tumorigenesis and suggesting repeated injuries can promote dysregulated IL-17-dependent 

wound repair leading to neoplastic growth (53). Similarly, another study from the same 

group, demonstrates that inhibition of IL-17 in a mouse gut-injury model of colitis resulted 

in restricted tumor growth (54).

Tissue injury rapidly recruits neutrophils for microbial control and debris clearance(55), and 

as already discussed IL-17 is a major recruiter of these cells during sustained inflammation. 

In cancer, myeloid-derived suppressor cells (MDSCs) and neutrophils are two important 

myeloid cells often found in the tumor microenvironment. IL-17 can recruit suppressive 

MDSCs and neutrophils that inhibit cytotoxic T cells and produce matrix metalloproteases 

(MMPs) to enhance metastasis of cancer cells (56–58).(59).(60). (61, 62). While IL-17 is 

primarily considered to act through non-hematopoeitic cells, it is worth noting a recent 

single cell analysis of foreign body induced fibrosis identified a pro-fibrotic macrophage 

subtype that expresses both IL-17 receptor subunits and responds to IL-17 by producing 

IL-36γ, an IL-1 family member also highly expressed by psoriatic keratinocytes. This 

suggests that tissue-resident macrophages could be subverted along with stromal cells 

towards an IL-17-responsive pro-fibrotic phenotype under chronic stimulation conditions.

Tissue growth and repair is an energy-intensive process. A recent immune-profiling study 

of more than 1000 breast cancer patients in the Cancer Genome Atlas project demonstrated 

that the cohort with highly glycolytic breast cancers were linked with lower infiltration 

of tumor killing cells, higher expression of checkpoint inhibitors such as PDL1 and poor 

prognosis. Interestingly, the top upregulated pathway in this group of patients is the 

IL-17 signaling pathway, further linking IL-17 with pro-tumorigenic functions (63). We 

recently demonstrated that IL-17 signaling has profound effects on lymph node stromal 

cell metabolism, boosting glucose uptake, glycolysis and oxidative phosphorylation(15). 

IL-17 receptor deficient fibroblastic reticular cells had very low spare respiratory capacity, 

displayed signs of nutrient stress and underwent increased apoptosis in vivo(15). We 

speculate that metabolic changes driven by IL-17 signaling through Iκbζ and NF-κb could 

also enhance the proliferation and survival of CAFS, or indeed tumor cells, though this has 

yet to be tested.

In addition to replacement of damaged cells, one of the critical aspects of wound healing 

is vascular repair to provide nutrients to the recovering organ, and this often requires 

angiogenesis (formation of new blood vessels). IL-17 drives the production of vascular 
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endothelial growth factor (VEGF) from epithelial and fibroblastic cells to stimulate 

angiogenesis, as observed in the highly vascularized red areas underlying psoriasis lesions. 

Fast-growing tumors require rapid vascularization in order to avoid necrosis, and one of the 

major pro-tumorigenic roles of IL-17 likely depends on these pro-angiogenic properties(64) 

(65),(66), (67, 68) (69).

Stromal cells, or fibroblast-like cells, produce and organize extracellular matrix components 

(ECM) to provide structural support of organs. In addition, stromal cells produce growth 

factors to promote the function of adjacent cells that are tissue-specific, and it is increasingly 

appreciated that they exist as heterogeneous and specialized functional subsets within a 

tissue and between organs. During wound healing, local fibroblasts provide a scaffold for 

migrating epithelium to help close the wound, and produce ECM with a balance of proteases 

to produce an organized scar that is as close to the original tissue as possible. Extensive or 

inappropriate production of ECM and scar formation, particularly over an extended period 

of time as occurs with chronic injury due to autoimmunity, infection or cancer ultimately 

results in dysfunction. During autoimmune attack of the CNS, astrocytes contribute to glial 

scarring in MS plaques. IL-17 certainly activates astrocytes to promote chemokine and 

inflammatory cytokine production in the mouse model of MS(70), but roles in aberrant 

astrocyte scar formation have not been investigated.

Systemic sclerosis (SSc) is an autoimmune connective tissue disease in which excess 

fibroblast proliferation and activation causes fibrosis, most commonly in the skin leading 

to decreased pliability and movement around joints that can be disabling. Even more 

severe morbidity and mortality occurs in SSc patients experiencing fibrosis of internal 

organs especially lungs, who ultimately require transplant for survival. Fibrotic tissues have 

signatures of inflammatory cytokines including IL-6 and IL-17, but with high expression 

of TGFβ considered the major driver of ECM production(71). Mice deficient in IL-17 are 

resistant to bleomycin-induced lung fibrosis(72). IL-6 is a major target of IL-17 signaling in 

almost every cell type tested to date, and IL17 has also been reported to enhance production 

of TGFβ in human lung alveolar epithelial cells(73). It is interesting to note that Th17 

cells themselves express TGFβ, which has been verified to act in an autocrine manner 

in mice(74). In both healthy and SSc dermal fibroblasts, IL-17 synergized with TGFβ to 

increase IL-6 production by approximately 100 fold compared to either cytokine alone(75). 

The authors in this study make the important point that fibroblasts do not express IL-6R and 

so rely on IL-6 trans-signaling through soluble IL-6R produced by other cells in the tissue in 

order to display the pro-fibrotic effects of IL-6: this is something that needs to be considered 

for the many in vitro studies of human fibroblast cells in which IL-17 function is assessed. 

Nevertheless, this study also revealed a potentially interesting dichotomy in which IL-17 

synergized with TGFβ for IL-6 production but inhibited TGFb-induced ECM production (in 

absence of IL-6 signaling), further emphasizing the complexity of cytokine interactions in 

fibrosis(75).

Patients with chronic viral hepatitis are at risk for developing fibrotic liver disease (cirrhosis) 

as well as liver cancer. Increased intrahepatic IL-17A and IL-22 at biopsy is considered a 

signature of advanced liver fibrosis with worse prognosis (76), (77). Hepatic stellate cells 

are the major driver of liver fibrosis, and IL-17 has been shown to drive collagen formation 
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by stellate cells, in part by increasing the expression of receptor for TGFβ (78). Similarly, 

we found that IL-17 enhanced expression of genes encoding collagen and fibronectin in 

lymph node stromal cells that were pre-activated in vivo by immunization, as well as 

promoting their proliferation(15). During chronic inflammation of LN, for example in HIV 

patients or third world residents experiencing frequent infections, fibrosis of the LN itself 

leads to reduced T cell survival and reduced response to vaccination(79, 80),(81). We 

speculate that repeated infections or exposure to gut microbes as occurs in ‘leaky gut’ of 

HIV patients could promote LN fibrosis through increased inflammation and locally induced 

IL-17 signaling. However, it is the local loss of gut-resident IL-17 producing T cells that is 

thought to lead to increased ‘leakiness’ due to reduced tight junction proteins in HIV and 

the non-human primate model SIV (82),(83).(84). As a side note, there is another interesting 

connection between HIV and IL-17: Human Th17 cells express receptors important for 

HIV entry and have been found to preferentially produce higher viral capsid proteins due 

to reduced expression of RNAse A, an important enzyme which limits HIV replication 

(85). Hence, a fraction of Th17 cells act as a reservoir to allow HIV persistence despite 

antiretroviral therapy (86).

Tumor stromal architecture not only guides initial tumor growth, but controls all stages of 

cancer progression by dynamically interacting with tumor cells and the immune system (87). 

Cancer associated fibroblasts (CAF) are increasingly appreciated for their role in limiting 

access and function of cytotoxic T cells into tumors, along with architectural support of 

invading cancer cells. It is still unclear exactly how CAFs promote immune evasion by 

tumors. One mechanism could be production and organization of ECM including collagen to 

‘wall off’ the tumor. TGFβ is a major driver of fibrosis as well as inhibitor of cytotoxic T 

cells. TGFβ-driven CAFs are a key indicator of non-responsiveness to anti-PD-L1 therapy in 

cancer patients, and it was noted that these tumors also more frequently had T cells that were 

trapped in the surrounding collagen-rich fibroblast zones(88, 89). CAF-derived IL-6 can 

promote IL-17 production by tumor-infiltrating T cells(90). As IL-17 drives and enhances 

IL-6 and TGFβ production, it is highly probable that IL-17 can also act on CAFs as a 

feed-forward loop to modulate their proliferation and function during cancer progression, 

thereby controlling the disease outcome.

Future horizons

IL-17 has now been associated with immunopathologies beyond classic inflammatory 

autoimmune disease, and mouse models support a functional role, but in many cases the 

definitive test in clinical trials has not been done. From the experience targeting IL-17 

in autoimmune disease, it appears that two components may be critical to evaluate the 

likelihood of success of anti-IL-17 therapy: 1) understanding whether IL-17 is an initiator, 

driver or amplifier of the disease, and 2) determining whether IL-17 is contributing any 

important benefit that may outweigh the pathological contribution as is now thought for 

Crohn’s disease (91). In many cases, it seems that targeting IL-17 as an adjunct therapy 

could improve the success of stand-alone therapies. An example would be in fibrosis where 

IL-17 appears to enhance the pro-fibrotic effects of TGFβ. Current evidence suggests that 

adjunct blockade of IL17 could improve immunotherapy and reduce chemoresistance in 

cancer. Studies of anti-PD-1 therapy response identified an increased IL-17 gene signature 
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in colorectal cancer patient non-responders and increased Th17 cell frequency in melanoma 

patient non-responders(92),(93). The potential to improve the autoimmune disease that can 

occur as a side effect to check point inhibitors is another attractive benefit of neutralizing 

IL-17 in these patients. It has also been suggested that IL-17 may promote development of 

cisplatin resistance in colorectal cancer (94). Given the mixed results of IL-17 neutralizing 

therapies in autoimmune diseases, determination of appropriate biomarkers to identify 

cancers in which IL-17 is a driver of disease progression is critical.

An exciting new frontier in IL-17 biology is in the growing field of neuro-immune 

interactions. Several lines of evidence already demonstrate that IL-17 is involved in neural

immune circuits that can affect inflammatory disease. Skin neurons promote local IL-17 

production to increase psoriatic or pathogen-induced inflammation(95, 96). IL-17 and IL-17 

inucing gut microbiota contribute to degree of lesion severity following ischemic stroke 

(97). Conversely, by regulating gut microbiota, IL-17 can alter systemic microbial products 

that are increasingly thought to affect mental health, and Th17 cells were increased and 

promoted depression-like symptoms in mouse models. In this context, it is interesting to 

note that depression is a relatively common co-morbidity in autoimmune patients, often 

attributed to effects of living with chronic disease but perhaps exacerbated by the underlying 

disease processes? Alcoholic humans have increased levels of IL-17 thought to be driven by 

liver injury, and in mice IL-17 was found to promote alcohol-seeking behavior suggesting 

an important feedback loop in addiction (101). IL-17 is increased in lesions from pediatric 

patients with intractable epilepsy and causes neuron hyperexcitablility in mouse models of 

epilepsy, multiple sclerosis and pain (98) (99, 100). In a mouse model of autism induced by 

causing inflammation in the pregnant dam, IL-17 is required for autistic trait development in 

the offspring(103). However, boosting IL-17 in autistic mice provided temporary restoration 

of non-autistic social behaviors(104). This study was initiated because of the clinical 

observation that autistic children experiencing infection with fever sometimes show transient 

increases in social behaviors, and the authors suggest that increased IL-17 during fetal 

development causes a heightened threshold for later IL-17 signaling that promotes typical 

social behaviors after birth(104). Although it is surprising to think that IL-17 could act 

in the brain to regulate behavior, there is precedent for cytokines acting this way: IFNγ 
increases in response to social interactions in mice and conversely regulates social behavior 

(105). In the current age of social distancing, it is seems timely to consider that our neuro

immune circuits may be evolutionarily far ahead of us in linking pathogen-induced immune 

responses with change in social behavior.
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Figure 1: IL-17 in health and disease overview.
IL-17 production and signaling is multifactorially regulated by interplay between genetics, 

environment and resulting microbiota populations at barrier surfaces, leading to homeostatic 

maintenance in healthy individuals. Injury or infection increase the IL17 effector functions 

that drive antimicrobial effector response and promote repair of the tissue. If the IL-17 

response is inappropriately amplified due to altered input from genetic and environment 

factors or due to chronic stimulation that occurs during autoimmunity, persistent infection or 

cancer, then the antimicrobial and repair functions convert towards pathologic inflammation 

and tissue remodeling that promote fibrosis, tumorigenesis or autoimmune disease. Figure 

adapted from image created with Biorender.com.
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Figure 2: IL-17 activates lymphoid structure stromal cells
A. During Th17-driving immune responses, fibroblastic reticular cells proliferate in 

inflamed draining LN, and IL-17 is required for increased metabolic fitness that promotes 

FRC survival and ECM production and optimizes B cell germinal center activation. B: 

During experimental autoimmune encephalomyelitis (EAE), IL-17 promotes development 

of tertiary lymphoid organ (TLO) structures by activating meningeal myofibroblasts 

differentiation to FRC-like stromal cells. C: IL-17 promotes inflammatory bronchial alveolar 

lymphoid tissue, a form of TLO, in chronically inflamed lung tissue by inducing chemokines 
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that recruit T and B cells to support anti-bacterial Th1 responses and antibody production. 

Figure adapted from image created with Biorender.com.

Majumder and McGeachy Page 21

Annu Rev Immunol. Author manuscript; available in PMC 2022 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://Biorender.com


Figure 3: Atypical signals induce IL-17 promoting cytokines IL-23, IL-1β and IL-6 at barrier 
surfaces
Cutaneous neurons detect Candida albicans hyphal invasion and release CGRP to promote 

dendritic cell production of IL-23. Both commensals and pathogens that activate type-17 

responses preferentially activate dendritic cells through C-type lectin receptors including 

Mincle. Attaching-effacing commensal bacteria drive production of the acute phase protein 

serum amyloid A by gut epithelia to activate DC. IL-6 is produced by non-hematopoietic 

cells in response to mechanical stress such as chewing hard food, and to cytokines including 

IL-17 itself in a positive feedback loop, and damaged and dying cells release IL-1β. Figure 

adapted from image created with Biorender.com.
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Figure 4: Pleotropic IL-17 regulates fibrosis, cancer development and wound healing:
(A) IL-17 promotes fibrosis by acting on fibroblasts, epithelial cells and pro-fibrotic 

macrophages. IL-17 signals on epithelial cells to secrete profibrotic TGF-β. TGF-β along 

with IL-17 act on fibroblasts to promote IL-6 production which has pro-fibrotic functions. 

Other than IL-6, Fibroblasts in presence of IL-17 signaling also secrete chemokines 

such as IL-8 and CXCL1. CXCL1 then recruits neutrophils, which synthesizes matrix 

metalloproteinases (MMP) critical for fibrosis development. Besides fibroblasts in presence 

of IL-17 also produce α-SMA, collagen and ECM proteins necessary for fibrosis. Similarly, 

IL-17 acting on macrophages produce IL-36g which is important for the generation of 

fibrosis. (B) Besides, directly promoting tumor formation, IL-17 mainly acts on cancers 

associated fibroblasts (CAFs) to manifest its pro-tumor functions. IL-17 signaling in CAFs 

generates VEGF, IL-6 and chemokines all of which has critical protumor roles. VEGF 
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is important for angiogenesis, one of the hallmarks of cancer. IL-6 can directly act of 

tumor infiltrating lymphocytes to produce more IL-17. CXCL1 on the other hand recruits’ 

neutrophils to synthesize MMP9 important for angiogenesis. Moreover, IL-17 can block 

anti-tumor CD8 T cells, critical for fighting cancers, either directly or though CXCL5 

driven myeloid derived suppressor cells (MDSCs.) (C) IL-17 function is indispensable 

for wound healing. IL-17 derived from either conventional CD4+ T cells, γδ+ T cells or 

CD8+ T cells (Tc17) plays critical role in repairing wounds. IL-17 acting on fibroblasts 

generate VEGF, CXCL1, REG3α all critical for wound healing. VEGF plays an important 

role in vascular repair following wound formation. CXCL1 again is important for the 

recruitment of neutrophils secreting MMP-9, critical for wound repair. Lgr5+ stem cells 

are also important for wound repair. Synergistic signaling of IL-17R and EGFR on these 

stem cells are critical for wound repair following injury. Beside IL-17 secretion, Tc17 cells 

also produce amphiregulin, an important protein for wound repair. Moreover, several studies 

reported that IL-17 secreted from γδ+ T cells is critical for repairing tight junction proteins 

such as ZO-1 following DSS mediated gut injuries. Figure adapted from image created with 

Biorender.com.
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Table 1a:

Pro-tumorigenic roles of IL-17

Species Cancer Type Major Findings/Mechanisms

Mouse Colorectal cancer Barrier disruption by microbial products trigger tumor-elicited inflammation, which in turn drives tumor 
growth (106)

Human Advanced colorectal 
cancer

Metastatic disease was associated with elevated Th17-associated cytokines such as IL-23, IL-17F in both 
colonic tissue and circulation (107)

Mouse Colorectal cancer IL-17RA signals directly within transformed colonic epithelial cells (enterocytes) to promote early tumor 
development via an ERK, p38 MAPK and NF-κB signaling pathway(108)

Human Advanced-stage 
colorectal cancer

Th17 cells Inhibit CD8+ T Cell Migration by downregulation of CXCR3 expression via IL-17A/STAT3 
axis. (109)

Human Colorectal cancer Patients with lower IL-17 levels have increased survival of 5 years. (110)

Mouse Sporadic colorectal 
cancer

Tumor-prone mice colonized with onco-toxin producing bacteria showed increased IL-17 in the colon 
and DNA damage in colonic epithelium with faster tumor onset and greater mortality.(111)

Mouse Colon cancer Damage to intestinal epithelium activates IL-17A signaling in PLET1 cells leading to aberrant wound 
healing favoring tumor growth. (54)

Mouse Colon cancer IL-17 targets colonic epithelial cells (CECs) to promote ETBF mediated carcinogenesis via NF-kb 
signaling triggering CXC chemokine to drive pro-tumoral neutrophil infiltration to distal colon. (62)

Mouse Multiple myeloma Gavaging tumor-prone mice with P. heparinolytica promotes differentiation of Th17 cells in gut and 
migration to bone marrow favoring multiple myeloma growth. (112)

Mouse Skin cancer IL-23 required for spontaneous skin tumors(113). Damage to skin activates IL-17A signaling in Lrig1+ 

stem cells leading to aberrant wound healing favoring tumor growth. (53)

Mouse Liver cancer IL-17A induced CXCL5 production by tumor cells enhance the infiltration of myeloid-derived suppressor 
cells thereby reducing anti-tumor immunity.(56)

Mouse Lung cancer IL-17A weakens the antitumor immunity by inhibiting apoptosis of MDSCs.(57)

Human Gastric cancer IL-17A from CD8+T cells regulates the influx of MDSCs to the tumor site via a CXCL12-CXCR4 axis 
to mitigate anti-tumor CD8+ T cell functions(60)

Human Gastric cancer Both IL-17A (rs2275913) and IL-17F (rs763780) polymorphisms significantly increase gastric cancer 
risk. (114, 115)

Mouse Breast cancer IL-17A from γδ+T cells induces the infiltration of neutrophils to suppress the CD8+ T cells function and 
promote metastasis.(59)

Mouse Lung cancer Commensal bacteria drive IL-17 production from γδ+ T cells to promote neutrophil infiltration and 
tumor cell proliferation. (61)

Mouse Non-Small-Cell Lung 
Cancer

lL-17 drives angiogenesis by stimulating VEGF production of cancer cells via STAT3/GIV signaling. 
(64)

Human Gall bladder cancer IL-17 producing γδ+T cells drive VEGF production to promote blood-vessel formation (66)

Human Gastric cancer IL-17 producing neutrophils drive MMP-9 production to promote angiogenesis and tumor growth. (116)

Mouse Liver Cancer, 
Pancreatic Cancer

IL-17 promotes chemokine signaling driven angiogenesis (68, 69)
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Table 1b:

Anti-tumor roles of IL-17

Species Cancer Type Mechanism/s

Human Cervical 
adenocarcinoma

Increased number of IL-17+ cells in patients were significantly correlated with the absence of vaso
invasion, less infiltration depths and smaller tumor growths. (117)

Mouse fibrosarcoma IL-17-overexpresssion drives upregulation of MHC I and II, thereby making fibrosarcoma cells 
increasingly susceptible to anti-tumor T cells. (118)

Human Esophageal cancer IL-17 drives chemokine production from the tumors, leading to the infiltration of cytotoxic neutrophils, 
CD8+CTLs and dendritic cells resulting in better tumor control and patient survival. (119, 120)

Mouse Lung Cancer IL-17 controls tumor growth and metastasis by enhancing the cytotoxic potential of anti-tumor CD8+ T 
cells (121), and by increasing IFN-γ production from anti-tumor T cells and NK cells. (122)

Mouse Breast Cancer IL-17 inhibits the accumulation of MDSCs in tumor microenvironment by suppressing their proliferation 
and triggering apoptosis. (123)

Human Colorectal cancer Individuals with higher IL-17 expression exhibited better disease control and survival which is linked to 
increased infiltration of cytotoxic CD15+ neutrophils (124).
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