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Review

The Glymphatic System: A Novel Component of
Fundamental Neurobiology
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Throughout the body, lymphatic fluid movement supports critical functions including clearance of excess fluid and metabolic
waste. The glymphatic system is the analog of the lymphatic system in the CNS. As such, the glymphatic system plays a key
role in regulating directional interstitial fluid movement, waste clearance, and, potentially, brain immunity. The glymphatic
system enables bulk movement of CSF from the subarachnoid space along periarterial spaces, where it mixes with interstitial
fluid within the parenchyma before ultimately exiting from the parenchyma via perivenous spaces. This review focuses on im-
portant questions about the structure of this system, why the brain needs a fluid transport system, and unexplored aspects of
brain fluid transport. We provide evidence that astrocytes and blood vessels determine the shape of the perivascular space,
ultimately controlling the movement of perivascular fluid. Glymphatic fluid movement has the potential to alter local as well
as global transport of signaling molecules and metabolites. We also highlight the evidence for cross talk among the glym-
phatic system, cardiovascular system, gastrointestinal tract, and lymphatic system. Much remains to be studied, but we pro-

pose that the glymphatic/lymphatic system acts as a cornerstone in signaling between the brain and body.
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Introduction

The awake, active brain builds up metabolic waste such as amy-
loid- B, which negatively affects neural functions if not removed.
The glymphatic hypothesis postulates that the restorative func-
tion of sleep is a consequence of basic housekeeping whereby the
glymphatic system “sweeps” the brain clear of waste by providing
a continuous flow of fluid across the brain and out to the periph-
ery, thereby counteracting protein accumulation and the devel-
opment of neurodegenerative diseases such as Alzheimer’s
disease (Nedergaard and Goldman, 2020).

The glymphatic system enables bulk movement of CSF from
the subarachnoid space along periarterial spaces, where it mixes
with interstitial fluid (ISF) within the parenchyma before ulti-
mately exiting from the parenchyma via perivenous spaces (Fig.
1) and drains into the peripheral lymphatic system (Iliff et al.,
2012). This fluid movement occurs through a mixture of ad-
vection and diffusion, and enables rapid exchange of fluid
between the tissue and the perivascular space with a net direc-
tionality toward the venous system (Thomas, 2019). Physiologic
drivers such as arterial pulsatility, vasomotion, and respiration
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establish this directionality (Rennels et al., 1985; Iliff et al., 2013b;
Kiviniemi et al., 2016; Mestre et al., 2018a; Fultz et al., 2019; van
Veluw et al., 2020).

Evidence of CSF entering the periarterial space is not novel
(Brierley, 1950; Rennels et al., 1985; Hadaczek et al., 2006); nor is
the concept that CSF mixes with interstitial fluid (Levin et al,,
1970; Kimelberg et al., 1978; Vladic et al., 2009) or even the hy-
pothesis that this pathway may be a waste removal system
(Lewis, 1877; Obersteiner, 1890), although the concept was insuf-
ficiently tested and thus prematurely discounted (Woollam and
Millen, 1954). The features unique to discovery of the glymphatic
system were as follows: (1) the direction of fluid transport, start-
ing with entry of CSF at the periarterial space followed by exit of
“dirty” interstitial fluid along the perivenous spaces; (2) a meta-
bolic waste product, amyloid- 3, was shown to be exported via
the glymphatic system; (3) the fluid transport depends on polar-
ized expression of the water channel aquaporin 4 (AQP4) in the
vascular end feet of astrocytes; and (4) fluid transport and CSF
entry into the neuropil exhibit a striking upregulation during
sleep, paralleled by an increase in the clearance of metabolic
waste (ILff et al, 2012; Xie et al., 2013; Kress et al., 2014;
Lundgaard et al., 2017, 2018; Mestre et al., 2018b).

Since its elucidation in 2012, the glymphatic system has pro-
voked controversy, primarily because of a lack of data and
adequate tools to characterize noninvasively a low-pressure fluid
transport system residing in an electrically active organ encased
within the rigid walls of the skull (Mestre et al, 2020a).
Procedures associated with acute injection of tracers, such as
opening the skull and insertion of a cannula, will effectively inac-
tivate the glymphatic system (Mestre et al., 2018b; Plog et al.,
2019). An equally troublesome issue is presented by the postmor-
tem disappearance of fluid-filled CSF perivascular spaces and the
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Figure 1. The vascular network is a scaffold for glymphatic fluid transport along the peri-
vascular spaces. Glymphatic fluid (light blue) enters the brain via the perivascular space of
the major arteries (red; left). Arteries and veins are lined by perivascular spaces, where astro-
cyte end feet (green) cover smooth muscle cells (gray) and the endothelial wall of the vascu-
lature (pink; right). This perivascular unit is a critical component of the glymphatic system,
and its geometry is biologically optimized to promote fluid movement (blue arrows).

reallocation of CSF tracers to other compartments, which inva-
lidates the use of histology for characterization of brain
fluid transport (Mestre et al., 2018a; Ma et al., 2019). Similar
phenomena are quite commonly reported in the broader litera-
ture pertaining to interstitial fluid movement. For example, lym-
phatic capillaries were thought to be absent from skeletal muscle
be cause the capillaries fully collapse in tissue preparations
(Schmid-Schonbein, 1990). The more recent discovery of pre-
lymphatic chambers in peripheral human interstitium demon-
strates that large interstitial fluid compartments exist in all
organs, but disappear during histologic procedures, highlighting
the necessity of microscopy in vivo for the study of basic fluid
transport (Benias et al., 2018). Finally, the new knowledge that
bulk fluid movement through the brain is actively regulated by
sleep (Xie et al, 2013; Lundgaard et al, 2017), anesthesia
(Benveniste et al., 2017; Gakuba et al., 2018; Hablitz et al., 2019;
Lilius et al,, 2019), and time of day (Taoka et al., 2018; Cai et al,,
2020; Hablitz et al., 2020) makes it inappropriate to compare pre-
vious studies in anesthetized animals with current work that
includes the state of brain activity and time of day as important
variables.

Caveats and controversies of the glymphatic hypothesis, along
with their implications for neuropathology, have been reviewed
at length in the recent literature (Kent and Mistlberger, 2017;
Abbott et al, 2018; Rasmussen et al., 2018; Sun et al., 2018;
Thomas, 2019; Nedergaard and Goldman, 2020; Troili et al.,
2020; Wardlaw et al., 2020; Mestre et al., 2020a). For this reason,
we place more focus in this review on important questions that
remain to be addressed, fundamental questions about why the
brain needs a fluid transport system, and the most exciting unex-
plored aspects of brain fluid transport.

In this review, we first compare and contrast the glymphatic
system in the brain with the more traditional lymphatic system
of the periphery, as both systems are essential for tissue homeo-
stasis, interstitial fluid movement, immune function, and waste
clearance. From there, we focus our efforts onto the perivascular
space: what is known and unknown about the anatomy, and how
differential regulation of the astrocytes and vasculature might al-
ter global and local waste clearance. Then, we expand our ques-
tions beyond the perivascular space to how neuronal activity,
intrinsically unique to the CNS, may alter interstitial fluid flow.
In the final sections of this review, we ask the following question:
does the glymphatic system have a role beyond simply “cleaning
the brain”? We provide potential mechanisms of glymphatic
bulk fluid signaling, whereby CSF may carry neuromodulators
and/or vasoactive compounds to the perivascular space, chang-
ing interstitial fluid dynamics and brain activity. Finally, it has
become increasingly clear that the brain does not work in isola-
tion. We discuss known models of cross talk among the CNS,
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circulatory system, gastrointestinal (GI) track, and immune sys-
tem, and how the glymphatic system may be a cornerstone in the
communication between the brain and the body.

Comparison of glymphatic and lymphatic
functions

Throughout the body, lymphatic fluid movement supports
critical functions including clearance of excess fluid and meta-
bolic waste and regulating tissue immunity (Miteva et al., 2010;
Petrova and Koh, 2020). Tissues lacking traditional lymphatic
capillaries develop alternative means of waste clearance and
immune surveillance. In the eye, for example, Schlemm’s canal,
an endothelial-lined compartment that exhibits lymphatic
markers (Griintzig and Hollmann, 2019), drains fluid from the
cornea (Petrova and Koh, 2018). Additionally, there is a glym-
phatic clearance system that exports intraocular fluid along the
optic nerve (Wang et al., 2020). Both pathways ultimately convey
fluid to the traditional lymphatic system. Based on the physiolog-
ical requirements for local distribution of blood-derived
nutrients and removal of metabolic waste, it is not surprising
that the brain has compensated for its lack of lymphatic capilla-
ries by developing an analogous perivascular perfusion system to
maintain tissue homeostasis.

In peripheral tissue, blood capillaries provide a constant
influx of an ultrafiltrate of plasma. The inflowing fluid percolates
around the cells, dispersing glucose and other nutrients, while
removing waste products via drainage to lymphatic vessels,
which ultimately return the fluid to the venous circulation
(Scallan et al., 2016; Breslin et al., 2018). In the brain, the blood-
brain barrier (BBB) restricts ultrafiltration of plasma in most
regions. Likely as a compensation, the CNS produces its own
fluid, CSF, in the choroid plexus (Redzic et al., 2005). However, a
portion of CSF production may still occur via the influx of
plasma across the vast surface area of the microvasculature
(Rasmussen et al., 2021). After production, CSF is, in part, circu-
lated into the brain parenchyma along the periarterial spaces
(Fig. 1; Mestre, 2018a). Thus, both in peripheral tissues and
CNS, fluid entry occurs at the arterial segment of the microvas-
cular bed, likely driven by arterial pulsatility that propels fluid
influx into the tissue. However, the efflux routes of interstitial
fluid differ. While lymphatic capillaries are the primary drainage
path in peripheral tissues, interstitial fluid exits the CNS along
the perivenous spaces and cranial/spinal nerves (Iliff et al., 2012,
2013b; Rangroo Thrane et al,, 2013). CSF and interstitial fluid
eventually drain from the CNS via a traditional lymphatic net-
work located in the meninges (Aspelund et al., 2015; Louveau et
al,, 2015, 2018; Da Mesquita et al., 2018a; Ahn et al., 2019), as
well as along nerve sheaths in the cribriform plate, which lead to
cervical lymphatic vessels (Kida et al., 1993), with both pathways
leading to the superficial and deep cervical lymphatic nodes
(Raper et al., 2016; Cao et al., 2018; Zou et al., 2019). Ultimately,
all CSF drains into the venous circulatory system, either indi-
rectly through the lymphatic system or directly via the arachnoid
villi. Thus, interstitial fluid transport is directional, with distinct
influx and efflux routes both in peripheral tissues and the CNS.
Lymphatic vessels are endowed with valves to prevent fluid back-
flow (Breslin, 2014). Whether the glymphatic system exhibits
analogous one-way gating mechanisms within the neuropil to
support directional fluid movement remains to be explored.

The glymphatic system can clear potassium, waste metabo-
lites such as lactate, and peptides/proteins including amyloid- 3
and tau, along with a variety of contrast agents and tracers (Iliff et
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The perivascular space (PVS) can be modulated by changes to both astrocytes and the vasculature. The normal perivascular unit is composed of astrocyte end feet (green) covering

smooth muscle cells (tan) and endothelial cell walls (pink) of the vascular network, promoting CSF (blue) movement along these channels. AQP4 (purple) is located in square arrays on the vas-
cular-adjacent end feet of astrocytes. Acute changes to either the vasculature or astrocyte end feet can alter glymphatic fluid movement. Vasoconstriction increases the PVS, increasing flow
(indicated by blue arrows; Mestre et al., 2020b). This is in contrast to vasodilation that is expected to decrease flow. Swelling of astrocytic end feet can alter the size of the PVS space in the set-
ting of pathology (e.g., spreading depression; Schain et al., 2017), but it is possible that changes in the vascular end feet of astrocytes are a physiological mechanism by which glymphatic func-
tion is controlled. Chronic pathologic changes may also impair CSF influx (bottom). We hypothesize that vasculature changes such as increased tortuosity with aging alter fluid flow. Reactive
gliosis (shown as a dark green color and mislocalized AQP4), is a common hallmark of neuropathology (lkeshima-Kataoka, 2016; Verkhratsky et al., 2016; Wang and Parpura, 2016; Kovacs et
al., 2018), which will, most likely decrease flow. Vascular amyloidosis, characterized by amyloid-3 plaques (brown) accumulating between the smooth muscle cells and the endothelial cell
wall, and small-vessel disease, characterized by altered vascular shape and enlarged perivascular spaces, both decrease glymphatic flow.

al., 2012, 2013a; Xie et al., 2013; Kress et al., 2014; Lundgaard et al,,
2017; Eide and Ringstad, 2019; Monai et al, 2019). Clearance
kinetics of tracer injected into the neuropil depends on the injection
site (Cserr et al., 1981; Szentistvanyi et al., 1984), suggesting the exis-
tence of regional differences in waste clearance. Also, in support of
regional differences in glymphatic function, Alzheimer’s disease
model mice exhibited lower CSF/ISF exchange in the rostral cortex
compared with caudal cortex, which favored tau protein deposition
in posterior regions (Harrison et al., 2020). These findings in brain
parallel results in the gastrointestinal tract, where lymph composi-
tion and immune function differ between anatomic regions of the
organ (Esterhazy et al, 2019). Glymphatic clearance kinetics also
vary across sleep state (Xie et al, 2013) as well as time of day
(Hablitz et al,, 2020), with increased clearance during both sleep
and the inactive phase, demonstrating that the mechanism and
routes of fluid efflux from brain are more complex than a simple
plumbing system.

We still do not know precisely where in the brain interstitial
fluid moves, and whether there are areas of pooling or slow flow
within the brain. Additionally, details of where and how the glym-
phatic system connects to the lymphatic system remain unknown.
Indeed, our current knowledge of the anatomic pathways of intersti-
tial fluid clearance within the brain is rudimentary, relying on ex-
perimental procedures with invasive intracranial injections,
sampling at discrete time points, and bulk transfer of tracers.

Open questions about the perivascular space,

astrocytes, and flow

The perivascular space (PVS) is distinct from the highly complex
and convoluted interstitial space of the brain parenchyma, and is
a critical feature of the glymphatic system. The PVS surrounds

the cerebral vasculature and is lined by astrocyte end-feet plas-
tered alongside the pericytes and endothelial cells that form the
BBB (Figs. 1, 2; Simard et al., 2003; Troili et al., 2020). Estimates
of the extent of astrocytic coverage around capillaries range from
64% to 100% (Sasaki and Mannen, 1981; Bertossi et al., 1993;
Simard et al., 2003; Oberheim et al., 2009; Korogod et al., 2015;
Munk et al., 2019), likely because of the variable effects of post-
mortem histologic analysis and low-resolution microscopy. For
example, three-dimensional electron microscopy reconstruction
of a single hippocampal capillary showed tiled and interlocking
end feet covering blood vessels and pericytes (Mathiisen et al.,
2010), whereas another study based on cryofixation reported a
coverage of only 64% in transversely sectioned capillaries
(Korogod et al., 2015). Recent work has demonstrated a better
correlation between astrocyte end foot size and vessel diameter
in arteries than for veins, though these correlations were eval-
uated only in penetrating and ascending vessels (Wang et al,,
2021). However, the thickness of the astrocyte ensheathment of
the vasculature is relatively consistent in arteries, capillaries, and
veins (McCaslin et al., 2011). Beyond these few studies limited to
cerebral cortex, there is very little detailed information on end
foot coverage of the arterial or venous walls, or how this may
relate to the perivascular space. This lack of quantitative infor-
mation about the PVS directly limits the applicability of models
of glymphatic fluid flow, in which the geometry of the perivascu-
lar space dictates the calculated rate of CSF influx into the neuro-
pil (Schain et al., 2017; Mestre et al., 2018a; Tithof et al., 2019).
Acute changes in the geometry of the PVS on vasoconstric-
tion, vasodilation, or astrocyte swelling have the potential to
affect the movement of glymphatic fluid (Fig. 2). Evidence for
this hypothesis comes from mouse disease models. For example,
in a model of acute stroke, ischemic spreading depolarization
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triggers the constriction of blood vessels, thus widening the PVS
(Fig. 2) and enabling a rapid influx of CSF to the parenchyma
(Mestre et al., 2020b). In cortical spreading depression, a rapid
neuronal depolarization event that is frequently associated with
migraine aura, the PVS closes, resulting in reduced interstitial
clearance of tracer (Schain et al.,, 2017). Spreading depression
causes rapid vasodilation followed by vasoconstriction. It has
been proposed that the vasoconstriction phase correlates with
astrocytic end foot swelling, and underlies a reduction of flow in
the PVS (Rosic et al., 2019). However, the magnitude of vaso-
reactivity or end foot swelling necessary to perturb glymphatic
flow is unknown.

The PVS and vascular compartments are dynamic volume
spaces that provide the brain with a mechanism to couple hyper-
emia and waste clearance. In humans, neuronal slow waves
occurring during sleep are coupled to hemodynamic oscillations,
which in turn are coupled to CSF flow. Specifically, a nocturnal
peak in 0.2-4Hz neuronal activity triggers increased cerebral
blood flow, which reduces the amount of CSF movement in the
ventricle and the brain parenchyma, directly supporting the con-
cept of blood/CSF volume switching (Fultz et al., 2019). Acute
hypertension increases the stiffness of the arterial wall, resulting
in decreased pulsatility and PVS fluid flow by as much as 50%
(Mestre et al., 2018a), highlighting the interplay between the vas-
culature and the PVS in glymphatic function. There is also evi-
dence that posture can effect glymphatic flow (Lee et al,
2015), but whether this is related to known changes in cere-
bral blood flow (Foley et al., 2005; Kose and Hatipoglu,
2012), changes in intracranial pressure (Andresen et al.,
2015), and/or changes in sympathetic noradrenergic tone
(Stewart, 2012) remain unknown. Given that astrocytes are a
critical component of the neurovascular unit and participate
directly in the regulation of cerebral blood flow (Iadecola
and Nedergaard, 2007), it seems likely that astrocytes regu-
late volume dynamics between the vasculature and perivas-
cular spaces.

The primary evidence for astrocytic regulation of glymphatic
fluid movement, beyond the spatial organization of the PVS, is
that AQP4 facilitates glymphatic fluid transport (Iliff et al., 2012;
Mestre et al., 2018b). The expression of AQP4 is normally highly
polarized toward the plasma membrane of the astrocytic end
feet facing the PVS (Fig. 2) and is anchored by the dystrophin-
associated complex (Waite et al., 2012; Zhang et al, 2014).
Mislocalization of AQP4 from astrocytic end feet has been linked
to glymphatic malfunction in multiple lines of work (Kress et al.,
2014; Ren et al, 2017; Lundgaard et al., 2018; Mestre et al,
2018b; Ohene et al., 2019; Wei et al,, 2019; Harrison et al., 2020,
Xue et al., 2020; Liu et al., 2020b). Though AQP4 polarization to-
ward the vascular end feet constitutes a key regulatory mecha-
nism, it is likely that astrocytes can alter glymphatic function by
additional mechanisms.

It is clear that glymphatic function is highly dependent on
optimized perivascular spaces with low resistance to fluid flow,
yet very few studies have tested whether long-term remodeling
of the shape, permeability, and patency of the PVS is linked to
glymphatic dysfunction. With increased age, glymphatic flow
decreases, alongside increased reactive gliosis and a reduction in
the polarized expression of AQP4 toward the vascular end feet of
astrocytes (Fig. 2; Kress et al., 2014). Reactive gliosis, particularly
manifested by increased GFAP and mislocalized AQP4, is a hall-
mark of neuropathology (Ikeshima-Kataoka, 2016; Verkhratsky
et al., 2016; Wang and Parpura, 2016; Kovacs et al.,, 2018) and
could potentially indicate alterations to astrocytic end foot
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morphology, although this conjecture has not been tested.
Additionally, the tortuosity of the brain vasculature increases
with aging (Fig. 2; Thore et al., 2007), which likely presents an
impediment to fluid flow.

The functionality and shape of the cerebrovasculature also
changes in disease. In cerebral amyloid angiopathy, A 8 40 accu-
mulates in vessel walls, causing vessel weakening and collapse of
the perivascular space (Smith, 2018; Gatti et al., 2020). In small-
vessel disease, which is a frequent complication of hypertension
and diabetes, arterial stiffening and remodeling of the cerebral
arteries cause enlargement of the PVS (Fig. 2; Mestre et al., 2017;
Lerman et al., 2019). The functional importance of this chronic
PVS remodeling has yet to be established, leading to several
unresolved questions, including the following. If the curvature
and surface area of the vasculature increases, can the astrocytic
end feet compensate? Would changes in astrocyte volume or
morphology, such as occurring during reactive gliosis, directly
impact local glymphatic flow? And, finally, do the borders of the
PVS ever break down, and how would this effect polarized fluid
flow?

Astrocytes are morphologically complex cells. In addition to
the vascular end feet, astrocytes extend innumerable fine, irregu-
lar processes that exhibit local Ca** signaling independent of the
soma and other processes (Tong et al., 2013; Shigetomi et al.,
2016; Verkhratsky and Nedergaard, 2018). The astrocyte and its
processes can change rapidly in volume, within a matter of sec-
onds (Takano et al., 2005; Risher et al., 2009; Sherpa et al., 2016).
This process appears to be independent of AQP4 and occurs
under conditions of high K™ such as during increased neuronal
activity (Walch et al., 2020). This is consistent with reduced in-
terstitial space measurements during wakefulness (Xie et al.,
2013), and most likely is a prime mechanism for rapid alterations
in glymphatic flow. More chronic changes to astrocyte morphol-
ogy have been found in the hypothalamus. Astrocytes can extend
and retract fine processes across sleep states (Bellesi et al., 2015),
hydration state (Hawrylak et al., 1998), during pregnancy and
lactation (Theodosis, 2002; Theodosis et al., 2008), and in
response to the light/dark cycle (Lavialle and Serviere, 1993;
Lavialle et al., 2001, 2011). Such morphologic changes can last
from several hours to days and are generally reversible. In the
case of lactation, glial processes retract from the supraoptic nu-
cleus (SON) of the hypothalamus (Fig. 3) and remain retracted
until pup weaning, when the glial processes extend back into the
region (Hatton, 1997). It is unknown whether astrocytic mor-
phologic changes alter glymphatic function.

Glymphatic-neuronal interactions

The brain is a unique organ because of the complexity of its neu-
ronal networks, which signal to execute complex behaviors,
tasks, and thought. Neural signaling (i.e., synaptic transmission
and propagation of action potentials) requires tight regulation
over interstitial ion concentrations (Rasmussen et al., 2020). For
example, simply changing the interstitial ion concentration can
induce arousal state changes, with lower interstitial Ca**, Mg*™,
and H", and higher K" inducing awake brain activity (Ding et
al., 2016). Astrocytes are highly dynamic regulators of interstitial
K" concentrations and pH, and likely influence the concentra-
tions of several other ions, as well as the interstitial space volume
(Verkhratsky and Nedergaard, 2018). It is presently unknown
whether the glymphatic system independently contributes to
state-dependent changes in interstitial ion concentrations, but
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Figure 3.  Anatomical localization of key brain regions is strategically placed around CSF
reservoirs. The hypothalamus is located along the third ventricle and base of the brain above
the basal cisterns, a prime position for CSF signaling. It contains the suprachiasmatic nucleus
(red), arcuate nucleus (orange), paraventricular nucleus (yellow), ventromedial hypothalamus
(green), and the supraoptic nucleus (navy), which is a hub of peptidergic signaling that con-
trols basic biological functions such as circadian timing, reproduction, feeding, hydration, and
more. The nucleus basalis of Meynert (blue), dorsal raphe nucleus (purple), and locus coeru-
leus (gray) are also primed for brain-wide CSF-mediated cholinergic, serotonergic, and nor-
adrenaline signaling.

there are grounds to speculate that fluid transport and the ion
composition of the interstitial fluid are intimately linked.

The strongest evidence linking brain-wide neuronal activity
and glymphatic activity is derived from sleep studies. Non-rapid
eye movement (NREM) sleep consists of four stages with differ-
ent patterns of brain electrical activity including the phase domi-
nated by large amplitude, synchronous, slow oscillations of 1-
4 Hz. There is strong evidence that glymphatic flow increases to
promote the delivery of larger CSF volumes to the brain during
NREM sleep (Xie et al., 2013), and under anesthetic regimens
characterized by a high prevalence of 1-4 Hz activity (Hablitz et
al., 2019). In humans, the volume of CSF movement within the
fourth ventricle is also increased during NREM sleep (Fultz et al.,
2019), and AQP4 haplotype is associated with changes in NREM
sleep architecture (Ulv Larsen et al., 2020), suggesting a link
between fluid movement within the brain and neuronal activity.
During REM sleep, the cortex exhibits low-voltage, rapid
desynchronized neuronal activity that superficially resembles the
pattern during wakefulness. It remains to be established whether
glymphatic flow declines during REM sleep, as during waking.
Mechanisms mediating the functional relationship between neu-
ronal activity and bulk fluid movement have not been tested; nor
have the above observations been applied to investigations of
sleep deprivation or insomnia.

Synchronizing distinct populations of neurons may influence
local hemodynamics and fluid flow to ultimately change local
solute transport. This phenomenon has been shown for CSF dy-
namics across the brain as a whole (Fultz et al., 2019), but has yet
to be demonstrated for regional brain or perivascular-localized
waste clearance. Sensory manipulations targeted to network ac-
tivity that were reduced in different pathologic states including
aging and neurodegeneration, such as gamma oscillations
(~40Hz) seen during response to external stimuli (Jafari et al.,
2020), may improve glymphatic clearance. Support for this hy-
pothesis is found in mouse models of Alzheimer’s disease, where
the stimulation of sensory systems can alter local waste buildup.
Inducing synchronous gamma oscillations via 40 Hz light flickers
is reported to decrease amyloid burden in the visual cortex
(Taccarino et al., 2016). Entraining the auditory system via 40 Hz
tone evokes decreased amyloid protein buildup across the entire
cortex via a glia- and vascular-dependent mechanism (Martorell
etal., 2019).
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Glymphatic bulk fluid signaling

To this point, we have focused on CSF/ISF exchange and waste
clearance, which is likely the primary function of the glymphatic
system. Albeit less studied, glymphatic transport may fulfill addi-
tional roles, including the widespread distribution of signaling
molecules within brain. CSF may also play a largely unacknowl-
edged role in transporting CNS signaling molecules to peripheral
tissues, which we shall discuss here.

CSF is primarily produced by the choroid plexus located in
the ventricles and then undergoes directional transport from the
lateral ventricle to the third ventricle, through the aqueduct of
Sylvius, and finally to the fourth ventricle, where it exits the brain
via the foramina of Magendie and Luschka. From the foramina,
CSF enters the cisterna magna and is either shunted out of CNS
via the meningeal lymphatic system or redirected back into the
brain by the glymphatic system. The entry path for the glym-
phatic system is via the pontine cistern, where CSF moves along
the perivascular space surrounding the basilar artery to the circle
of Willis. CSF then ascends along the perivascular spaces of the
anterior, middle, and posterior cerebral arteries. Rodent studies
have demonstrated that during sleep, CSF transport along the
glymphatic system is fast (minutes to hours; Xie et al., 2013)
compared with during the active phase, where CSF redistributes
to the mandibular lymph nodes in an equally fast manner
(Hablitz et al., 2020).

The choroid plexus secretes or transfers from blood a host of
solutes, metabolites, vitamins, and carrier proteins to CSF (please
see next section for details). Remarkably, most of the brain
regions that produce signaling molecules with the potential for
long-range volume transmission are located along the ventricular
path of CSF transport (Fig. 3). The classical neuromodulators
such as acetylcholine, noradrenaline, and serotonin, which are
thought to participate in volume transmission, are produced by
cell groups generally lying just below the ependymal lining of the
ventricles or the pial lining of the ventral brain surface. The nu-
cleus basalis of Meynert, which contains most of the cholinergic
neurons in the CNS, is located in the basal forebrain region just
on top of the pial membrane facing the optic nerve, while its
medial boundary meets the wall of the lateral ventricle (Liu et al.,
2015). The locus coeruleus, which is the main source of norepi-
nephrine in the CNS, is located along the lateral wall of the
fourth ventricle. The serotonergic dorsal raphé nucleus is posi-
tioned centrally in the midline of the brainstem, but sends exten-
sive ascending projections to the wall of the lateral, third, and
fourth ventricles (Simpson et al., 1998). Although it remains to
be demonstrated, the spatial distribution of acetylcholine-, nor-
epinephrine-, and serotonin-secreting neurons or their projec-
tions suggests that these neuromodulators may be distributed by
CSF transport following their release from the axonal terminals
(Agnati et al., 1986; Vizi et al., 2010; Taber and Hurley, 2014;
Veening and Barendregt, 2015). In contrast, the dopamine neu-
rons of the substantia nigra are located in the ventral midbrain
posterior to the cerebral peduncle and are thus not in direct con-
tact with the brain surfaces. Neither do projections from these
dopaminergic neurons terminate at the ventricular surface. This
may reflect a necessity for local, tightly regulated dopaminergic
signaling and/or a mechanism to protect the rest of the brain
from CSF-driven global dopaminergic neuromodulation.

Perhaps the most important example of brain-CSF commu-
nication is presented by the hypothalamus. The hypothalamus
controls fundamental physiological and behavioral functions
such as eating, drinking, regulating body temperature, neuroen-
docrine release, and internal circadian timing. Anatomically, the
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hypothalamus is in prime position to access the CSF, as it sur-
rounds the third ventricle, is ventrally in contact with the CSF
pool of the basal cisterns (Fig. 3), and has specialized cells, tany-
cytes, that can directly interact with the CSF pool in the ven-
tricles (Rodriguez et al.,, 2010). The hypothalamus is a hub of
peptidergic signaling, including neuropeptide Y and pro-opio-
melanocortin in the arcuate nucleus, arginine vasopressin (AVP)
and vasoactive intestinal peptide (VIP) in the suprachiasmatic
nucleus, and oxytocin and AVP in the supraoptic and paraven-
tricular nuclei. Biomarkers of the melanocortin system are impli-
cated in appetite suppression, and melanin-concentrating
hormone, which is important for initiation of feeding, is present
in the CSF, enabling brain- and body-wide signaling (Kim et al.,
2014; Page-Wilson et al., 2017; Noble et al., 2018). Hypothalamic
peptides such as VIP and AVP are present in CSF (Burbach,
1982) and can directly alter vascular tone (Henning and
Sawmiller, 2001; Pelletier et al., 2014), thus potentially regulating
glymphatic flow through the neuropil. The plethora of peptider-
gic neuromodulators that participate in CSF/ISF-mediated vol-
ume transmission, and the vasoreactive action of many of these
peptides, support a model of hypothalamic bulk fluid signaling.

Nuclei of hypothalamus densely innervate the pituitary gland,
an endocrine organ at the base of the brain (Spencer and Deak,
2017; Qin et al,, 2018). A distinct feature of the pituitary is its
localization outside the CNS barriers of the brain, spinal cord,
and CSF. The pituitary gland is positioned in an indentation of
the skull known as the sella turcica and is separated from the
subarachnoid space by the diaphragma sellae, a dural membrane
that prevents CSF from accessing the gland (Fig. 4). As a conse-
quence of this arrangement, pituitary hormones are secreted
directly into the blood, avoiding CSF transport within CNS
(Patel et al., 2021; Rawindraraj et al., 2021).

The pituitary is divided into two lobes that are functionally
and developmentally distinct (Kiecker, 2018). The posterior pitu-
itary gland contains axonal projections from magnocellular neu-
rosecretory neurons located in the SON and paraventricular
nucleus (PVN) of hypothalamus. These neurons secrete oxytocin
and AVP, which are stored in the posterior pituitary and then
are released into the blood. In addition, the magnocellular neuro-
secretory cells can release oxytocin and AVP from their dendrites
within the parenchyma of the hypothalamus. Dendrites from the
SON form a plexus lying just below the pial surface of the SON,
whereas the dendrites from PVN form a bundle at the subepen-
dymal region of the third ventricle, suggesting that oxytocin and
vasopressin are distributed via CSF transport within the CNS
(Heimer-McGinn et al., 2013), in addition to their peripheral
actions. Cortical signaling by oxytocin and AVP alter social and
cognitive function without having direct synaptic pathways
(Ludwig and Leng, 2006; Meyer-Lindenberg et al., 2011;
Abramova et al.,, 2020). The organization of the hypothalamus
and posterior pituitary suggests that oxytocin and AVP could
exert their effects on social and cognitive function through a
combination of central and peripheral regulation of glymphatic
function, where blood-borne peptides change vascular tone and
interstitial fluid-mediated peptidergic signaling changes synaptic
tone.

Parvocellular hypothalamic neurons secrete neurohormones
that are exported to the anterior pituitary via hypophyseal portal
blood vessels, thus avoiding CSF transport and distribution
within CNS. These neurohormones control the release of
growth hormone, prolactin, adrenocorticotropin, luteinizing
hormone, follicle-stimulating hormone, and thyroid-stimulat-
ing hormone, ultimately inducing body-wide stress, sex, and
metabolic  responses. Exploration of neuroendocrine
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regulation of glymphatic flow is in its infancy. Activation of
the adrenal gland is a classic example of a hypothalamic—pituitary
cascade, which initiates a concerted, body-wide stress response.
Chronic stress can cause glymphatic malfunction (Wei et al., 2019;
Liu et al., 2020b), but it remains unknown how acute stress changes
brain fluid movement.

Text box 1: Bringing it all together with the circadian
system

Sleep and circadian rhythmicity are evolutionarily con-
served behavioral and physiological states, serving to
restore bodily functions and, in the case of circadian
rhythms, predicting changes in food availability, tempera-
ture, predation, and other factors essential to ensure sur-
vival. Sleep and circadian timing both regulate glymphatic
function. In this section, we summarize the relevant litera-
ture and generate new hypotheses about the mechanisms
and function of circadian rhythms and sleep in glym-
phatic function.

In humans, most brain regions exhibit endogenous
rhythms in neuronal excitability, with peaks in excitability
occurring within a 4 h window across the brain (Muto et
al., 2016). This synchronized daily activity enables com-
plex behaviors to have phase-appropriate performance
peaks, such that learning and memory capacities peak
during the active phase (Iyer et al, 2014; Smarr et al,,
2014). Recent work has shown that, in addition to
synchronized neuronal excitability, the distribution of
CSF in the brain and lymph nodes is under circadian con-
trol, with increased glymphatic influx and clearance from
the brain during the rest phase, and increased lymphatic
drainage during the active phase (Hablitz et al., 2020). If
we consider rhythmic, synchronized neuronal activity, the
circadian cycle of glymphatic flow, and the earlier hypoth-
esis that synchronized neuronal activity can drive fluid
flow, one might suppose that fluid flow in the brain may
act as a circadian entrainment mediator, whereby individ-
ual brain oscillators drive rhythmic fluid flow to the next
oscillator in line, thus synchronizing brain activity across
the 24 h cycle.

We have already introduced the hypothesis that the hypo-
thalamus is a key signaling area for bulk flow, based on its
anatomic location and highly enriched concentrations of
neuropeptides. The mammalian suprachiasmatic nucleus
(SCN) of the hypothalamus is considered the circadian
pacemaker; synchronizing and driving daily rhythms in
gene expression, metabolism, physiology, and behavior
(Mohawk and Takahashi, 2011). Classic work demonstrated
that grafting SCNs of rhythmic animals into the third
ventricle of SCN-lesioned animals restores behavioral
rhythmicity (Silver and LeSauter, 1993) and showed
that this effect was dependent on a diffusible factor
(Silver et al., 1996), suggesting that the SCN may
directly communicate with the CSF pool to synchron-
ize circadian rhythms. The SCN has a very distinct
localization of neuropeptides (Morin et al.,, 2006).
VIP neurons, which are responsible for maintaining
intrinsic rhythmicity (Aton et al., 2005; Todd et al.,
2020), are located in the ventral portion above the
optic chiasm. AVP neurons, which regulate plasticity
of rhythms (Mieda, 2019; Rohr et al., 2020), are found
in the dorsal portion of the SCN along the third
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multisynaptic pathway that activates sympa-
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thetic preganglionic neurons in the spinal
cord to release norepinephrine from terminals
innervating the pineal gland, thus inducing
nighttime melatonin production on demand
for immediate release (Ganguly et al, 2002;
Saper et al, 2005). The primary function of
melatonin is to entrain circadian rhythms
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Figure 4.  The glymphatic system as an interface between the brain and body. The brain can communicate
to the circulatory, digestive, and lymphatic systems by secreting signaling molecules to CSF, driving fluid to
the meningeal lymphatics for antigen presentation, and ultimately draining to the lymph nodes of the lym-
phatic system. A unique feature of the brain is the hypothalamic signaling to the pituitary gland, where neu-
rons can either induce neuroendocrine signaling in the anterior pituitary, or directly release peptides such as
AVP and oxytocin into the blood vessels of the posterior pituitary. Feedback between these systems is poten-
tially bidirectional when considering blood composition, feeding and fasting metabolites, and immune surveil-
lance. The pituitary gland is uniquely shielded from direct interaction with the CSF pool and direct CNS
signaling by its location in an indentation of the skull covered by the diaphragma sellae, a dural membrane.

ventricle. Although both VIP and AVP are present
within CSF (Burbach, 1982), how these enter the CSF
pool remains unknown. Based on the localization of
these vasoactive peptides (Henning and Sawmiller,
2001; Pelletier et al., 2014), it is tempting to hypothe-
size that the mechanism of action whereby VIP
released near the basal cisterns impacts vascular tone of
the glymphatic system, whereas AVP release into the ven-
tricles—upstream in the CSF pathway—is able to tune
fluid flow in “downstream” areas. Whether AVP is
released by the SCN into the ventricles, perhaps via direct
innervation (Taub et al, 2021), a small portion of tany-
cytes within the SCN (Wen et al., 2020), or a separate
transependymal method, remains unknown.

One such downstream area may be the pineal gland,
which sits near the center of the parenchyma, is highly
vascularized, and is bathed in CSE. CSF tracers accumu-
late in the pineal gland of mice and rats (Iliff et al., 2013a;
Benveniste et al., 2017). In rodents, the SCN triggers a
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and improve sleep timing, along with a host
of other beneficial pleiotropic effects
(Aulinas, 2000; Pandi-Perumal et al., 2006).
Nightly melatonin secretion is the primary
biomarker for the circadian phase in
humans and declines with aging, leading to
alterations in sleep timing (Pace-Schott and
Spencer, 2011). Though it is widely accepted
that melatonin is secreted directly to the
blood, this is primarily because of early lit-
erature reports correlating melatonin pro-
duction in the pineal gland to blood plasma
levels (Hedlund et al., 1977; Illnerova et al.,
1978). Anatomical studies of the pineal
gland give conflicting results, suggesting an
intact BBB in fetal tissue (Moller, 1974) and,
perhaps, subregion differences in pineal
BBB permeability in adults (Duvernoy and
Risold, 2007). Although melatonin is found
in the CSF (Bruce et al., 1991; Skinner and
Malpaux, 1999), it is unclear whether this
melatonin pool derives from rapid diffusion
from blood across lipid membranes, or
whether the pineal gland directly secretes
this powerful chronobiotic molecule directly
to the CSF to entrain the brain.

The circadian system is just one example of
several concerted biological responses that
might be controlled by glymphatic—and CSF
—movement. We highlight the circadian sys-
tem as an example of how neuronal activity,
CSF movement, and bulk fluid signaling might
interact to impact neuronal function, physiol-
ogy, and, ultimately, behavior.

CSF goes to glymphatics and beyond

Above, we discussed how the glymphatic system can be regulated
by the cardiovascular system, neuronal function, and, perhaps,
by CSF/ISF bulk flow of neurotransmitters and peptides. We
have discussed the pathway of fluid movement from the ven-
tricles to the glymphatic and lymphatic systems of the body.
Finally, we hypothesized that the while the glymphatic system
clears waste, it is also a mechanism of brain-wide signaling that
could dramatically impact the survival of an organism adapting
to a new environment. Here, we expand on known CSF-localized
signaling cues originating from the blood, gut, or immune sys-
tem. We discuss how they impact glymphatic function and high-
light new questions in brain-body interactions.

Cross talk between the blood and the brain

The vascular system carries oxygen and glucose along with other
nutrients and immune cells throughout the body and is critical
to maintain tissue homeostasis. As discussed above, the BBB
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limits the transfer of solutes between blood and brain. The brain
obtains an ultrafiltrate of blood via the choroid plexus, a highly
vascularized ependymal cell layer lining the ventricles, which is
responsible for the bulk of CSF production (Redzic et al., 2005).
As such, the choroid plexus may be considered the “starting
point” of the glymphatic system. In addition to transferring sig-
naling molecules like growth factors from the blood into the
brain, the choroid plexus can also contribute to brain homeosta-
sis by producing and secreting into the CSF a host of enzymes
and growth factors such as transthyretin, insulin-like growth fac-
tor II, and interleukin-183 (Benarroch, 2016). Interestingly, the
choroid plexus also expresses receptors for norepinephrine, mel-
atonin, and AVP, among other hypothalamic-derived neuropep-
tides, which, on activation, can modulate the rate of CSF
production (Nilsson et al., 1992). How CSF production rates
impact glymphatic flow in rodent brain remains unexplored
because of a lack of proper techniques (Oreskovi¢ et al., 2003;
Oreskovi¢ and Klarica, 2014). Recent work has shown that physi-
ological processes that reduce glymphatic function like age and
wakefulness also suppress CSF production, yet other manipula-
tions showed that there is no correlation between CSF produc-
tion and glymphatic fluid transport (Liu et al.,, 2020a). It thus
remains unknown whether CSF production and glymphatic
function are interdependent, but it is clear that the choroid
plexus is a key player in the feedback loop among the brain,
glymphatic system, and CSF production from the blood (Fig. 4).

It is important to note that BBB restriction to influx of an
ultrafiltrate of plasma is not consistent across brain regions, spe-
cifically in the circumventricular organs in the hypothalamus
where the interstitial fluid of these regions are barricaded by
defined glial borders from the rest of the brain (Rodriguez et al.,
2010). Also, the BBB does not necessarily preclude the regulation
of transport between the blood and parenchyma of ions, oxygen,
molecules, and even cells under pathologic conditions (Daneman
and Prat, 2015). Although the BBB is clearly necessary for brain
health, how the BBB alters or interacts with glymphatic fluid flow is
at this point completely unknown.

There is bidirectional signaling between the vascular com-
partment and the brain. As discussed above, the vascular com-
partment uses the choroid plexus as a gateway to provide access
for signaling molecules to the CNS. The brain communicates
directly with the vascular compartment via the posterior pituitary
gland (Fig. 4). Peptidergic neuronal projections in the posterior pi-
tuitary from oxytocin and AVPergic neurons arising from the para-
ventricular nucleus (Fig. 3) release neuropeptides directly into the
vascular system, with downstream effects on cardiovascular tone,
kidney function, and other functions (Palkovits, 1984). Feedback
from this peripheral pathway can alter cerebral blood flow at a
more global level compared with local/bulk hypothalamic signaling,
perhaps altering PVS volume to increase or decrease glymphatic
flow depending on brain state.

The gut-brain axis

Above, we have discussed how the glymphatic system clears met-
abolic waste from the brain. One might anticipate that this fluid
pathway would be receptive to satiety and hunger cues. We now
discuss modes of cross talk between the gastrointestinal tract
itself and the brain (Fig. 4). Intravenous administration of tri-
glycerides alters the composition of CSF lipids (Hanson et al,,
2019), and glymphatic transport can distribute lipids across the
brain (Rangroo Thrane et al.,, 2013). Alterations in the blood/
brain/CSF distribution of triglycerides also cause a dysregulation
of central leptin signaling (Banks et al., 2018), which controls
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appetitive behavior. These pathways support the hypothesis that
after absorption in the GI tract and passage through the liver,
food-derived lipids and other hydrophobic molecules can enter
the CSF from the blood via the choroid plexus and across the
BBB. In the brain, the major carrier of cholesterol is apolipopro-
tein E (APOE), which is abundantly produced by astrocytes as
well as by the choroid plexus (Xu et al., 2006), suggesting that
APOE might be distributed in brain by fluid movement in the
perivascular space. APOE isoforms, when delivered by the CSF,
enter periarterial spaces with different efficacy (Achariyar et al.,
2016). Interestingly, APOE genotype is the strongest genetic risk
factor known for late-onset sporadic Alzheimer’s disease (Belloy
et al., 2019), and glymphatic function is reduced in mouse mod-
els of AD (Peng et al., 2016; Da Mesquita et al., 2018b; Harrison
et al., 2020). Thus, it is possible that differential distribution of
lipids derived from the gut along the perivascular spaces directly
contributes to brain pathology.

The vagus nerve provides a direct neural connection from the
gut to the brain. Upon feeding, the visceral branches of the vagus
nerve are activated by a variety of neuroendocrine cues, includ-
ing cholecystokinin (CCK) and glucagon-like peptide 1 (GLP-1),
that are produced by enteroendocrine cells of the gut (Dockray,
2009; Krieger et al, 2015). Upon food deprivation, grehlin,
orexin-a, and reduced CCK levels can reduce firing and retro-
grade signaling by the vagus nerve (Dockray, 2009). Vagus nerve
stimulation leads to increased glymphatic influx (Cheng et al.,
2020). Feeding may inherently increase glymphatic function to
promote the intracerebral circulation of hypothalamic satiety cues.
The gut peptide GLP-1 has also gained significant attention in
neurodegeneration research (Grieco et al., 2019), and it is a matter
of interest that treatment with a GLP-1 receptor agonist reduced
CSF production (Botfield et al., 2017). Similarly, fibroblast growth
factor 21 (FGF21) is produced by the liver (von Holstein-Rathlou
and Gillum, 2019) and, when injected into the CSF, can inhibit
sugar and alcohol appetite (von Holstein-Rathlou et al., 2016) via
activation of the paraventricular nucleus and regulation of the
hypothalamic-pituitary-thyroid axis (Yilmaz et al., 2018).

Vagal nerve stimulation, GLP-1 signaling, and CSF-derived
FGF21 regulation of the hypothalamic-pituitary-thyroid access
provide additional putative links among gut, brain, and glym-
phatic function extending beyond traditional cues such as insu-
lin, leptin, and glucagon signaling.

When discussing the gut-brain axis, it would be impossible
not to mention the microbiome, which is the host of bacteria pres-
ent within the digestive tract that is essential not only for digestion,
but can also impact neuroendocrine and inflammatory responses
in the gut. The microbiome has been implicated in almost every
disease of the nervous system, although the mechanisms of action
are relatively unclear (Martin et al., 2018). There is some evidence
that APOE isoform influences microbiota composition (Parikh et
al., 2020). The microbiota can regulate factors such as GLP-1, thus
ultimately changing vagus nerve activity (Everard and Cani, 2014;
Martin et al., 2018). Finally, microbiota composition can somehow
alter tight junctions at the BBB (Braniste et al., 2014), potentially
dysregulating the composition of CSF/ISF that the choroid plexus
normally maintains. Presently available evidence makes it tempt-
ing to suggest a link between the microbiome and glymphatic
function, though we cannot yet propose a pathway other than via
vagal retrograde signaling or BBB-glymphatic interactions.

Immune surveillance between the brain and the CNS
A primary feature of the traditional lymphatic system is to moni-
tor the state of tissue inflammation. It is thus no surprise that
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immune surveillance is at play at every point of the pathway for
CSF production and movement (Fig. 4). The choroid plexus is
host to numerous leukocyte immune cells residing in the space
between the leaky vessels and the ependymal cells, which provide
continuous immune surveillance and enable macrophage inva-
sion to the CSF after brain tissue damage (Shechter et al., 2013;
Schwartz and Baruch, 2014). Perivascular macrophages associ-
ated with large brain vessels clear cellular debris and monitor
CSF (Faraco et al., 2017). In the interstitial space, microglia and
astrocytes clear debris locally, and can secrete chemokines and
cytokines to the ISF/CSF (Pranzatelli, 2018; Afridi et al., 2020).
Ultimately, CSF drains to the cervical lymphatic vessels and
nodes (Kida et al., 1993; Louveau et al., 2018; Da Mesquita et al.,
2018a; Ahn et al, 2019), which modulate the recruitment of
immune cells from the blood (Breslin et al., 2018). In addition to
blood-derived immune cells, the meninges contain a pool of my-
eloid immune cells from the bone marrow in the skull and verte-
bra (Cugurra et al., 2021), and this new discovery may alter our
understanding of immune cell recruitment to perivascular spaces
during CNS repair.

Though immune cross talk between the brain and periphery is
anatomically possible, it remains completely unexplored whether/
how glymphatic function may change systemic immune responses.
Immune challenges, such as acute lipopolysaccharide injections,
impairs glymphatic function (Manouchehrian et al,, 2021). There
is evidence that CSF distribution between the lymph nodes and
brain is dependent on AQP4 and is controlled by circadian timing
(Hablitz et al., 2020). Perhaps such a pathway for increasing CSF
delivery directly to the lymph nodes is the key to mobilization of
immune responses during the day (Haspel et al, 2020).
Additionally, we note that AQP4 knock-out mice have reduced
neuroimmune pathology in models of meningitis and experimental
autoimmune encephalomyelitis (Papadopoulos and Verkman,
2005; Li et al.,, 2009). Glymphatic-lymphatic cross talk may also
occur in the dural sinuses, where brain-derived antigens accu-
mulate in the dural sinuses, are captured by antigen precursor
cells, and trigger a local immune response (Rustenhoven et al.,
2021). Recent work in meningeal lymphatic biology has dem-
onstrated that Y617 T cells can regulate anxiety-like behavior,
while CD4" T-cell signaling alters learning (Radjavi et al.,
2014; Alves de Lima et al., 2020), suggesting that cross talk
among the lymphatic system, the glymphatic system, and the
brain as a whole may do more than simply protect against dis-
ease, but may also regulate fundamental animal behaviors.

Closing remarks
We have shown how the glymphatic system is the lymphatic ana-
log of the brain, with a central role in regulating directional inter-
stitial fluid movement, waste clearance, and potentially brain
immunity. Astrocytes and blood vessels determine the shape of
the PVS, ultimately controlling the movement of perivascular
fluid. Glymphatic fluid movement has the potential to alter local
(within a brain region) as well as global (brain-wide) transport of
signaling molecules as well as metabolites known to be impli-
cated in homeostasis and specific behaviors. There is a potential
for cross talk among the glymphatic system, cardiovascular sys-
tem, gastrointestinal tract, and the lymphatic system. Much
remains to be studied, but we are of the opinion that the glym-
phatic/lymphatic system acts as a cornerstone in the architecture
of the brain and body signaling.

To harness therapeutically the glymphatic system to reduce
disease burden, we must first better understand the full range of
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biological functions of CSF flow. Specifically, future work should
focus on how to manipulate the availability of CSF to supply the
glymphatic system, and to elucidate the underlying physiological
mechanisms that redistribute CSF between the brain and body.
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