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Abstract

This manuscript describes a mathematical epidemiological model of COVID-19 to investigate the dynamics of this pandemic
isease and we have fitted this model to the current COVID-19 cases in Italy. We have obtained the basic reproduction number
hich plays a crucial role on the stability of disease free equilibrium point. Backward bifurcation with respect to the cure

ate of treatment occurs conditionally. It is clear from the sensitivity analysis that the developments of self immunities with
roper maintaining of social distancing of the exposed and asymptomatic individuals play key role for controlling the disease.
e have validated the model by considering the COVID-19 cases of Italy and the future situations of epidemicity in Italy

ave been predicted from the model. We have estimated the basic reproduction number for the COVID-19 outbreak in Italy
nd effective reproduction number has also been studied. Finally, an optimal control model has been formulated and solved to
ealize the positive impacts of adapting lock down by many countries for maintaining social distancing.

2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights
eserved.

eywords: Basic reproduction number; COVID-19; Social distancing; Lock down; Incubation period; Asymptomatic transmission; Quarantine;
ackward bifurcation; Effective reproduction number; Optimal control

1. Introduction

In the history of worldwide disease spreading public faced threat at different times due to appearance of new
iseases in the human society, among them some are infectious diseases and some others are vector born diseases.
he most notable threatening disease spreading were the Black death in Europe, small pox in Mexico, SARS in
hina in 2002–2003, MERS in Saudi Arabia in 2012, AIDS, Cancer, Malaria, etc. [7,12,24]. In 2019–2020 the
ost threatening disease is the coronavirus disease (COVID-19), which is caused by novel coronavirus (SARS-CoV-

) [30]. As on 29th March, 2020 the COVID-19 spreads throughout the world [26,35,36] and about 199 countries
ave been affected. As a result WHO declared this disease as the Pandemic. The COVID-19 first was identified
n Wuhan, China. Throughout the country up to 29th March, 2020 about 81 439, 3300 people were infected, died,
espectively and throughout the whole world the numbers are 679 079 and 31 772, respectively [37]. The coronavirus
nfections previously occurred in different countries with low degree of harmfulness: those were the SARS-Cov
Severe Acute Respiratory Syndrome) [10] and MERS-CoV (Middle East Respiratory Syndrome) [34]. Still the
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outbreak of coronavirus is ongoing with higher degree of harmfulness as a result huge number of people are infected
throughout the world. It creates huge threat to the global public health as well as the financial system also [6,23,38].
Though the infection was first reported in Wuhan, China in December 2019 but due to human movements it spreads
throughout the world [22]. The emergence of COVID-19 occurs in a crucial time because this time is the spring
festival time in Asia, so a large number of people move from one place to another places [23] and the disease starts
to spread to huge number of people who move from their working place to their home land as a consequence the
disease spreads to the whole world.

The infection of this disease spreads among the people through interactions and the intensity of the spreading
s very high. So a large number of people is infected in a short span of time. Due to shortfall of medical facility
nd not proper medicine a large number of people in different countries is not getting proper treatment as a result
arge number of infected people is dying. To save from this disease the only way is maintaining social distancing
rom the infected persons and sterilizing whole body specially hand when a person goes outside the home. Hence
he minimization of people movements is only way to control to spread the disease. To control the spreading of
isease Chinese government adopted lock down policy to minimize the people interactions on 23rd January, 2020
s a result all types of public traffic were suspended in the infected Wuhan and Hubei province [23]. Following
he strategies of China the highly affected countries are adopting the same policy.

The phenomenon of backward bifurcation has serious consequences for controlling the disease. For backward
ifurcation, the stable disease free equilibrium point co-exists with a stable endemic equilibrium when the
asic reproduction number is less than unity. The epidemiological consequence of the phenomenon of backward
ifurcation is that having the basic reproduction number less than unity is, although necessary, no longer sufficient
or eliminating disease from the community. In recent years, the phenomenon of the backward bifurcation
as arisen the interests in disease control (see [1,2,13,15,19,25,39]). In [39], the authors studied the backward
ifurcation analysis of an epidemic model with saturated treatment. In [15], Garba et al. presented a deterministic
odel for the transmission dynamics of a single strain Dengue disease, which exhibits the phenomenon of

ackward bifurcation. In [1,19], the authors described the phenomenon of backward bifurcation in the deterministic
odels for the transmission dynamics of Zika virus. Motivated by the above discussion, here we have studied

he phenomenon of backward bifurcation in the epidemiological model of COVID-19, which signifies that the
aking the basic reproduction number less than unity is not enough to eradicate the COVID-19 disease from the

ommunity.
To study the COVID-19 disease dynamics and predict the presumed abundance of infected people in Italy, here

e have formulated a five dimensional COVID-19 epidemic model. Here, we have divided total population into five
lasses, namely susceptible, exposed and asymptomatic, quarantine, infectious and recovered class. We have studied
he condition of stability of the disease free equilibrium point (DFE) and the condition for backward bifurcation
onsidering the cure rate of treatment as the bifurcation parameter. Also, we have fitted the model to the data on
OVID-19 cases in Italy and we shall make some predictions on the epidemic in Italy. We have also reformulated

he model as an optimal control problem by introducing the lock down controls adapted by the government of
ifferent countries to maintain the social distancing for controlling the epidemic. The effect of lock down will be
tudied in our present work and we shall investigate the effect of different model parameters, which can minimize
he spreading of the disease.

Organization of the manuscript is as follows: In Section 2, we have formulated the model. The positivity and
oundedness of solutions are discussed in Section 3. The evaluation of basic reproduction number and the DFE are
iven in Section 4. Section 5 is devoted for backward bifurcation and in Section 6, we validate the model with real
ata and estimate the model parameters. The estimation of the basic reproduction number for actual COVID-19
pidemics in Italy and the study of effective reproduction number have been given in Section 7. In Section 8,
e have reformulated the model as an optimal control problem and finally in Section 9 some conclusions are

ummarized.

. Model formulation

In formulating the model, we remember that the susceptible people (S) may be infected when they interact

ith the novel corona virus infected person. The COVID-19 infected person may not being infectious at the time of

2
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Fig. 1. Flow diagram of disease transmission of COVID-19.

infection. The symptoms of COVID-19 may appear in as few as 2 days or as long as 14 days, during this incubation
period the virus is contagious but the patient does not display any symptoms. So, the patient in that incubation period
is able to transmit the virus to susceptible. Therefore, the asymptomatic transmission occurs in COVID-19 infections
i.e. SARS-CoV-2 transmissions occur in the community from persons without symptoms [3,11,20,32]. Transmission
by persons who are infected but do not have any symptoms can arise from two different infection states:
presymptomatic individuals (who are infectious before developing symptoms) and individuals who never experience
symptoms (asymptomatic infections, which can be called as never symptomatic) [20]. The presymptomatic persons
and the never symptomatic persons both go to infectious class I after identification by the COVID test organized by
the suitable authorities. A large number of cases in which the infected persons become infectious but asymptomatic
and when susceptible individuals interact with them then infection spreads. The exposed individuals (infected but
not infectious) and asymptomatic individuals are jointly included into the class E . The persons having symptoms
like fever, cough, and shortness of breath are in quarantine and medical persons investigate them and after proper
diagnosis COVID-19 positive patients are isolated. The individuals who stay in quarantine to maintain the social
distancing from others have been included in the class Q and those who are diagnosed as COVID-19 positive
patients have been included into the class I . Two important points we have to take into consideration. One is the
delay in diagnosis of the symptomatic patients for conformation of COVID-19 positive patient and due to this
fact some non-diagnosed persons in the Q class transmit the disease among the susceptible persons [17,18,23,26].
Second is the limitation of medical facilities when a large number of people becomes infectious. Since till date
there is no proper treatment to recovery from COVID-19, only way is the development of self immunity. For this
reason it is essential to provide the support system to the infectious persons at the critical situations. But if a large
number of people is being infectious in very short span of time then medical support system suppliers will not be
able to provide proper support to all the infectious persons. To include this effect we have adopted the saturated
treatment rate to the infectious populations in the form aI (t)

1+bI (t) , where a is the cure rate of treatment and b is the
elay in treatment of the infectious persons. Thus, at time t the total human population (N (t))is divided into five
lass, namely, the susceptible S(t), exposed and asymptomatic E(t), quarantined (Q(t)), infectious I (t) and the
ecovered R(t) class i.e. N (t) = S(t) + E(t) + Q(t) + I (t) + R(t). We assume that S(t) becomes infected with the
nteraction of the E(t), Q(t), I (t) classes with the rate of β1 S(t)I (t)+β2 S(t)E(t)+β3 S(t)Q(t)

N (t) , where the coefficients β1, β2

nd β3 denote the transmission rates of infections from the corresponding classes. Here we also assume that the new
ecruitment of the populations occurs from the susceptible class only. The flow diagram of the COVID-19 disease
ynamics in the population has been displayed in Fig. 1 and the corresponding mathematical formulation of the
3
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Table 1
Model parameters and their descriptions.

Parameters Interpretations

β1 Transmission rate of infection from I class
β2 Transmission rate of infection from E class
β3 Transmission rate of infection from Q class
γ1 Rate at which E class are quarantined
σ1 Auto recovery rate of Q class
σ2 Auto recovery rate of E class
δ Progression of Q class to I class after diagnosis
A Recruitment rate
µ Normal death rate
b Delay parameter in treatment
a Cure rate of treatment
d1 Disease induced death rate
σ3 Auto recovery rate of I class
γ2 Rate at which E becomes infectious (i.e. 1

γ2
is the incubation period)

transmission dynamics of COVID-19 is given below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d S
dt = A −

β1 SI+β2 SE+β3 SQ
N − µS

d E
dt =

β1 SI+β2 SE+β3 SQ
N − (γ1 + γ2 + σ2 + µ)E

d Q
dt = γ1 E − (δ + σ1 + µ)Q
d I
dt = γ2 E + δQ −

aI
1+bI − (σ3 + d1 + µ)I

d R
dt = σ1 Q + σ2 E + σ3 I +

aI
1+bI − µR

(1)

ith initial conditions S(0) > 0, E(0) ≥ 0, Q(0) ≥ 0, I (0) > 0, R(0) ≥ 0. All the model parameters have been
nterpreted in Table 1. In the Appendix, we have discussed the case for other expressions for treatment rate and
nalysed the model by introducing an extra compartment for deaths.

. Positivity and boundedness of solutions

Here, we shall show the positivity and boundedness of solutions of the model (1), which implies that the proposed
odel is biologically valid.

heorem 1. All the solutions are feasible and the set
Ω =

{
(S, E, Q, I, R) ∈ R5

+
: S + E + Q + I + R ≤

A
µ

}
is a positively invariant set for the system (1).

roof. The 1st component of the solution of the system (1) can be approximated by using the following inequality

d S
dt

≥ −

{
β1 I + β2 E + β3 Q

N
+ µ

}
S.

ntegrating the above and using the initial condition, we have S(t) ≥ S(0)e−
∫ t

0 {
β1 I+β2 E+β3 Q

N +µ}dt .
Similarly, from the remaining four equations of (1) the following results can be obtained.

E(t) ≥ E(0)e−(γ1+γ2+σ2+µ)t ,

Q(t) ≥ Q(0)e−(δ+σ1+µ)t ,

I (t) ≥ I (0)e−(σ3+d1+µ+a)t ,

R(t) ≥ R(0)e−µt .

By using initial conditions we can conclude that all the solutions are feasible.
4



J.K. Ghosh, S.K. Biswas, S. Sarkar et al. Mathematics and Computers in Simulation 194 (2022) 1–18

b

4

C
n
p

n
i

Next, adding all the equations of the system (1) we get
d N
dt

= A − µN − d1 I

≤ A − µN .

Integrating, using the initial conditions and taking lim sup as t → ∞ we have lim supt→∞ N (t) ≤
A
µ

.
Therefore, the set Ω is the positively invariant and attracting for the system (1).
Hence the theorem is proved. □

Thus, we have established that all components of the solutions of the system (1) are non-negative and ultimately
ounded, which indicates that the model is biologically well behaved.

. The basic reproduction number and the DFE

The basic reproduction number plays an important role in epidemiology. It indicates the transmissibility of the
OVID-19 in the population. How rapidly the disease spreads is dependent on the value of the basic reproduction
umber R0, which is the number of secondary infections one COVID-19 positive person will produce in the
opulation. Clearly, the system (1) have the disease free equilibrium point (DFE) E0

( A
µ
, 0, 0, 0, 0

)
at which all

the disease components are zeros. Now, we shall evaluate the basic reproduction number for the system (1) through
next-generation approach [14].

Theorem 2. The basic reproduction number of the model (1) is
R0 =

β1(γ1δ+γ2δ+γ2σ1+γ2µ)
(γ1+γ2+σ2+µ)(δ+σ1+µ)(σ3+d1+µ+a) +

β2
(γ1+γ2+σ2+µ) +

β3γ1
(γ1+γ2+σ2+µ)(δ+σ1+µ) .

Proof. Here in the model (1)E, Q, I are the infected compartments and we decompose the R.H.S. of the system
(1) corresponding to the infected compartments as F − V , where

F =

⎛⎝ β1 SI+β2 SE+β3 SQ
N
0
0

⎞⎠ and V =

⎛⎝ (γ1 + γ2 + σ2 + µ)E
−γ1 E + (δ + σ1 + µ)Q

−γ2 E − δQ +
aI

1+bI + (σ3 + d1 + µ)I

⎞⎠.

Now, we evaluate the derivative of F and V at DFE E0
( A
µ
, 0, 0, 0, 0

)
and we get two matrices F and V , where

F =
∂F
∂x j

=

⎛⎝ β2 β3 β1
0 0 0
0 0 0

⎞⎠ and V =
∂V
∂x j

=

⎛⎝ (γ1 + γ2 + σ2 + µ) 0 0
−γ1 (δ + σ1 + µ) 0
−γ2 −δ (σ3 + d1 + µ+ a)

⎞⎠,

where x j = E, Q, I .
The basic reproduction number R0 is defined as the largest positive eigenvalue of the next-generation matrix

FV −1. Here, β1(γ1δ+γ2δ+γ2σ1+γ2µ)
(γ1+γ2+σ2+µ)(δ+σ1+µ)(σ3+d1+µ+a) +

β2
(γ1+γ2+σ2+µ) +

β3γ1
(γ1+γ2+σ2+µ)(δ+σ1+µ) , 0, 0 are the eigenvalues of the

ext-generation matrix FV −1. Therefore, from definition we have the basic reproduction number for the system (1)
s

R0 =
β1(γ1δ + γ2δ + γ2σ1 + γ2µ)

(γ1 + γ2 + σ2 + µ)(δ + σ1 + µ)(σ3 + d1 + µ+ a)
+

β2

(γ1 + γ2 + σ2 + µ)

+
β3γ1

(γ1 + γ2 + σ2 + µ)(δ + σ1 + µ)
.

Hence the theorem is proved. □

Theorem 3. When R0 > 1 then the DFE E0 is unstable and when R0 < 1 then it is locally asymptotically stable.

Proof. The Jacobian matrix at DFE E0(A/µ, 0, 0, 0, 0) is

J (E0) =

⎛⎜⎜⎜⎜⎝
−µ −β2 −β3 −β1 0
0 β2 − γ1 − γ2 − σ2 − µ β3 β1 0
0 γ1 −δ − µ− σ1 0 0
0 γ2 δ −d1 − σ3 − a − µ 0

⎞⎟⎟⎟⎟⎠ ..
0 σ2 σ1 σ3 + a −µ

5
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So, the eigenvalues of the Jacobian matrix are −µ,−µ, λ1, λ2, λ3, where λi (i = 1, 2, 3) are the roots of the
ollowing cubic:

Φ(λ) ≡ λ3
+ C1λ

2
+ C2λ+ C3 = 0,

here C1 = δ+ 3µ+ σ1 + σ2 + σ3 + γ1 + γ2 + d1 + a − β2, C2 = (δ+µ+ σ1)(σ3 + d1 + a +µ) + (γ1 + γ2 + σ2 +

− β2)(δ+ σ1 + σ3 + 2µ+ d1 + a) − β3γ1 − β1γ2, C3 = (δ+µ+ σ1)(σ3 + d1 + a +µ)(γ1 + γ2 + σ2 +µ)(1 − R0).
Two cases may arise.
Case (i): Let R0 > 1. Then C3 must be negative and so Φ(0) = C3 < 0. Again, Φ(λ) tends to ∞ as λ tends to ∞.

Since Φ(λ) is a continuous function of λ, hence by Bolzano theorem on continuous function we have Φ(λi ) = 0 for
some λi > 0. Thus, at least one eigenvalue of the Jacobian matrix is positive. Therefore, in this case E0 is unstable
equilibrium point.

Case (ii): Let R0 < 1. Then C3 must be positive. Again, R0 < 1 implies that γ1 + γ2 + σ2 + µ− β2 > 0. This
implies C1 > 0. Again by calculating we have C1C2 − C3 > 0. Then Routh–Hurwitz criterion for polynomials
implies that DFE E0 is locally asymptotically stable.

Hence the theorem is proved. □

5. Backward bifurcation

In this section, we shall establish that the phenomenon of backward bifurcation takes place in the model (1) by
considering the cure rate of treatment a as the bifurcation parameter. The method developed by Castillo-Chavez
and Song [5,8] will be applied to determine the direction of the bifurcation at the critical value of the cure rate of
treatment.

Theorem 4. Assume that (δ+µ+σ1)(σ3+d1+a+µ)+(γ1+γ2+σ2+µ−β2)(δ+σ1+σ3+2µ+d1+a) > β3γ1+β1γ2.
Then the system (1) experiences the backward bifurcation at R0 = 1 with respect to the cure rate of treatment if
φ > 0, where φ is defined in the text.

Proof. Let us rewrite the variables in the new form as S = x1, E = x2, Q = x3, I = x4 and R = x5. Then, we
rewrite the system (1) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt = A −

β1x1x4+β2x1x2+β3x1x3
x1+x2+x3+x4+x5

− µx1 := f1

dx2
dt =

β1x1x4+β2x1x2+β3x1x3
x1+x2+x3+x4+x5

− (γ1 + γ2 + σ2 + µ)x2 := f2

dx3
dt = γ1x2 − (δ + σ1 + µ)x3 := f3

dx4
dt = γ2x2 + δx3 −

ax4
1+bx4

− (σ3 + d1 + µ)x4 := f4

dx5
dt = σ1x3 + σ2x2 + σ3x4 +

ax4
1+bx4

− µx5 := f5

(2)

We know that for R0 = 1 the eigenvalues of the Jacobian matrix J corresponding to the system (1) at DFE
E0(A/µ, 0, 0, 0, 0) are 0,−µ,−µ, λ′, λ′′, where λ′, λ′′ are the roots of the following quadratic equation:

λ2
+ C1λ+ C2 = 0,

where Ci (i = 1, 2) are defined in previous theorem.
Again, the condition R0 = 1 is equivalent to a = a[B B], where

a[B B]
=

β1((γ1 + γ2)δ + γ2(σ1 + µ))
(γ1 + γ2 + σ2 + µ)(µ+ δ + σ1)

(
1 −

β2

γ1 + γ2 + σ2 + µ
−

β3γ1

(γ1 + γ2 + σ2 + µ)(µ+ δ + σ1)

)−1

− (σ3 + d1 + µ).

hen R0 = 1 i.e. when a = a[B B] then β2
γ1+γ2+σ2+µ

< 1, which implies C1 > 0. Again, by our assumption
2 must be positive. Hence, J (E0) has a simple zero eigenvalue and all other eigenvalues have negative real

parts. Therefore, we can apply Castillo-Chavez and Song bifurcation theorem. Let, for the critical value a[B B]

of a, W = (w1, w2, w3, w4, w5)t and V = (v1, v2, v3, v4, v5), respectively, be the right eigenvector and the left
igenvector corresponding to the zero eigenvalue of the Jacobian matrix J (E0). Then w1 = −1, w2 =

µ
,w3 =
k1

6
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Fig. 2. Backward bifurcation diagram of the system (1) for the parametric values β1 = 0.95, β2 = 0.14, β3 = 0.95, γ1 = 0.1, γ2 = 0.1, σ1 =

.01, σ2 = 0.1, σ3 = 0.1, b = 20, µ = 0.06, d1 = 0.004, A = 10, δ = 0.6. The red and blue lines, respectively, represent the lines of unstable
nd stable equilibrium points. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
f this article.)

µγ1

k1k2
, w4 =

µ(γ2k2 + γ1δ)
k1k2(k3 + a[B B])

, w5 =
1

k1k2(k3 + a[B B])
[σ2k2(k3 +a[B B])+σ1γ1(k3 +a[B B])+(σ3 +a[B B])(γ2k2 +γ1δ)],

1 = 0, v2 =
k3 + a[B B]

β1
, v3 =

β3(k3 + a[B B]) + δβ1

β1
, v4 = 1, v5 = 0.

Now, the coefficient

φ =

5∑
k,i, j=1

vkwiw j
∂2 fk

∂xi∂x j

=
µ2

k2
1k2

2(k3 + a[B B])2 Aβ1

(
2abAβ1(γ2 + k2)2

− k2(k3 + a[B B])2 (
2β2µk2(k3 + a[B B])

))
+

µ2

k2
1k2

2(k3 + a[B B])2 Aβ1

(
µγ1(k3 + a[B B])(β2 + β3) + µ(γ2k2 + γ1δ)(β1 + β2)

+β2 (σ2k2 + σ1 + (γ2k2 + γ1δ))
)

nd the coefficient

ψ =

5∑
k,i=1

vkwi
∂2 fk

∂xi∂a
=

µ(γ2k2 + γ1δ)
k1k2(k3 + a[B B])

,

with k1 = γ1 + γ2 + σ2 + µ, k2 = δ + σ1 + µ, k3 = σ3 + d1 + µ. Since the coefficient ψ is obviously a positive
umber, hence the system (1) undergoes the backward bifurcation if φ > 0.

Hence the theorem is proved. □

It is clear from Fig. 2 that there exists a critical value of the basic reproduction number, say R[C]
0 , such that for

R[C]
0 < R0 < 1, the system (1) contains two endemic equilibrium points where lower density is unstable and the
pper density is stable. Thus, in this range two stable equilibrium points exist, among them one is disease free and
he other is endemic. Hence, the condition R0 < 1 is not sufficient to eradicate the disease, it depends on initial
ize of the populations. Again, it is clear from the expression of R0 that it is a decreasing function of the cure rate
f treatment (a), hence as the cure rate of treatment increases the value of R0 will decrease and consequently the
isease will be controlled. One can find three ranges of values of a such as 0 < a < a[C], a[C] < a < a[B B] and

[B B]
> a for which, the DFE is unstable and one endemic is stable (i.e. disease will not be eradicated from the

7



J.K. Ghosh, S.K. Biswas, S. Sarkar et al. Mathematics and Computers in Simulation 194 (2022) 1–18

6
a
i
a
o
t
t
I
f
g

r
e
i
t
i
β

s
f

population) for 0 < a < a[C], two stable equilibrium points exist (i.e. elimination of disease depends on the initial
size of the population) for a[C] < a < a[B B] and for a > a[B B] disease will be eradicated from the population.

For the considered values of the parameters if the cure rate of treatment (a) is greater than 32.01 then the disease
will be eliminated from the population and for the range 2.501 < a < 32.01 eradication of disease depends on the
initial population size and if a < 2.501 then disease will persist in the population. Thus eradication of the disease
is highly dependent on the cure rate of treatment and hi-capacity of the cure rate of treatment is the indicative of
disease elimination. Studying the bifurcation with respect to other parameters, it can be shown that the transmission
rates of infections (β1, β2 and β3) and the auto recovery σ1,2,3 (i.e. development of self immunity) play crucial
role for controlling the disease. Due to the harmfulness of the extremely infectious disease COVID-19 the rate of
infection depends on the interactions among the populations. So, lock down in the COVID-19 infected countries
must play very important role to control the disease. As lock down is implemented in the population then interactions
among the populations will be significantly reduced, which will be reflected in the expression of basic reproduction
number (RL

0 ) of the optimal control problem (3).

6. Model validation, parameter estimation and prediction

In this section, we shall validate the COVID-19 model (1) using real data, estimate the model parameters and
finally varying the sensitive model parameters we shall give some predictions. For this purpose here we have
considered the coronavirus cases in Italy and we shall estimate the best fitted model parameters.

To estimate the model parameters, we use non-linear least square method. The principle of this method is to
minimize the objective function

f (Σ , n) =

n∑
J=1

(
C [E]

J (t) − C [P]
J (t)

)2
,

where Σ is the set of all parameters, C [E]
J (t) is the cumulative number of real infective cases, C [P]

J (t) is the
cumulative number of model predicted infective cases at J th observation, and n is the number of sample depending
on the model parameters [4]. The cumulative number of infected can be found from the following formula:

dC [P](t)
dt

= γ2 E(t) + δQ(t).

Using Matlab minimization and the Matlab package fmincon we have estimated the model parameters.
To estimate the model parameters we consider the cumulative number of infected cases of Italy from 14th

February to 23rd May, 2020. To utilize fmincon software we consider the initial populations size as S(0) =

0461826, E(0) = 5, Q(0) = 5, I (0) = 3, R(0) = 0 among them the E(0) is estimated and Q(0) is assumed
nd other three have been taken from [37]. The estimated model parameters and their sensitivity indices are given
n Table 2. The model is fitted to the cumulative number of infected cases, which has been presented in Fig. 3(a)
nd the predictive number of cumulative and daily infected cases have been presented in Fig. 3 (c–e). The residuals
f the fit is presented in Fig. 3(b), which shows that the residuals are small and random. Thus, we can conclude that
he fit is reasonably good [24]. In Fig. 3, we have plotted the time series of infected population for 155 days after
hat a very few number of daily infected cases will come. It is clear from Fig. 3 that the state of being epidemic in
taly for COVID-19 will continue up to 3rd week of July, 2020 and after that the disease will be controlled. Since
or these values of the model parameters R0 > 1, hence disease will persist in population for long time. Now the
oal is to bring it below 1, because an epidemic with a basic reproductive number below 1 will gradually disappear.

The considered model contains large number of parameters and almost all of them are involved in the basic
eproduction number R0. Now, the problem is to decide which parameters are most influential to control the
pidemic. But for experimental design of the epidemic models the determination of the most effective parameters
s essential [29]. For this purpose we shall use the normalized forward sensitivity index [9] for R0 with respect
o any characteristic model parameter α, which is denoted by Γα and is defined by Γα =

α
R0

∂R0
∂α

. The sensitivity
ndices with respect to the model parameters are given in Table 2. It is clear from the table that the parameters
1, β2, β3, γ1 enhance the value of R0 and so they enhance the epidemic whereas other parameters with negative
ensitivity indices will reduce the epidemic. The most sensitive parameters are β2 (the transmission rate of infection
rom E class) and σ (auto recovery rate of E class).
2
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v

Fig. 3. (a) Fitting model to cumulative cases in Italy, (b) residuals of the fit, (c) prediction of cumulative cases for 155 days, (d) BAR
diagram, (e) prediction of daily cases for 155 days.

Now, we shall investigate the effect of the model parameters in changing disease dynamics. First keeping the
alues of other parameters fixed as given in Table 2, we vary only the transmission rate of infections. Numerically,
9
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Table 2
Values of the model parameters with 95% confidence interval and their sensitivity indices for disease outbreak
in Italy.

Parameters Values Confidence Intervals Sources Sensitivity Indices

β1 0.951449 (0.936794, 0.964688) Estimated 0.009988
β2 0.581276 (0.575499, 0.587713) Estimated 0.303441
β3 0.865583 (0.855259, 0.876974) Estimated 0.686570
γ1 0.098267 (0.096968, 0.099438) Estimated 0.005791
γ2 0.017199 (0.016947, 0.017386) Estimated −0.109335
σ1 0.053847 (0.052798, 0.054150) Estimated −0.571763
σ2 0.01819 (0.017823, 0.018318) Estimated −0.126044
σ3 0.123555 (0.122569, 0.125177) Estimated −0.001421
d1 0.18 —– [37] −0.002071
δ 0.000168 (0.000165, 0.000169) Estimated −0.001637
a 0.553732 (0.548153, 0.561560) Estimated −0.006372
b 10.164964 (10.075988, 10.333965) Estimated —–
µ 0.010658 —– [37] −0.187145
A 1224 —– [37] —–

Fig. 4. Effect of the transmission rate of infections: (a) β1, (b) β2, (c) β3.

e have verified that the transmission rate of infection from E(t) (asymptomatic and exposed) class is most effective
ut other two transmission rates are not so (see Fig. 4 (a–c)). It is realistic feature because I (t) and Q(t) classes
annot spread much more infections as E(t) can spread, because these two classes can infect only the medical
ersons and the persons who take care of them. So to minimize the disease spreading our target will be to minimize
he contracts among the susceptible persons and the exposed & asymptomatic persons, which is possible if we
ncrease the number of tests randomly in the areas where a single infected person is found, then the carrier of
OVID-19 will be identified easily and they will be separated from the susceptible populations.

To control the spreading of disease Italy government adopted the lock down policy on 9th March, 2020 and daily
umber of cases starts to decrease on 23rd March i.e. after completion of the 14 days incubation period. Since the
arameter σ2 (auto recovery rate of E class) has high negative sensitivity index, hence it can change the disease
ynamics rapidly. To justify this we change its value on 23rd March, then the prevalence significantly increases
decreases) as auto recovery rate of E class σ2 decreases (increases) (see Fig. 5(a)). But the parameter γ2 is not
o effective as its low sensitivity index (see Fig. 5(b)). Thus, the developments of self immunity with the proper
aintenance of social distancing of the exposed and asymptomatic individuals play key role for controlling the

pidemic disease COVID-19.

. Basic reproduction number of the COVID-19 outbreak in Italy

In this section, we shall estimate the basic reproduction number R0 from the initial growth phase of actual
pidemics in Italy. The effective reproduction number R(t) which is time dependent, will also be estimated from
aily new COVID-19 cases in Italy.
10
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Fig. 5. Effect of the model parameter: (a) σ2, (b) γ2.

7.1. Estimation of R0 for actual epidemics

Here by using the initial COVID-19 infected cases in Italy, we shall estimate R0 by applying the method
developed by [27,31]. We suppose that the cumulative number of cases C(t) ∝ exp(Λt), where Λ is the force

f infection. Then the infected compartments can be taken in the following form:

E(t) = E0exp(Λt)
Q(t) = Q0exp(Λt)
I (t) = I0exp(Λt),

here E0, Q0, I0 are the constants and we assume that at the earlier phase of the epidemic the abundance of
he infected class is very low compared to the total susceptible populations. So, we assume that the number of
usceptible populations equals the number of total populations at the time of initial infection and so S(t) = N (t) =

A
µ

. We also assume that at beginning of the epidemics the delay parameter b in treatment is zero.
Putting the above values of S(t), E(t), Q(t) and I (t) in (1) and rearranging we get(

1 +
Λ

D1

)
E0 =

β1 I0 + β2 E0 + β3 Q0

D1(
1 +

Λ

D2

)
Q0 =

γ1

D2
E0(

1 +
Λ

D3

)
I0 =

γ2 E0 + δQ0

D3
,

here D1 = γ1 + γ2 + σ2 +µ, D2 = δ + σ1 +µ and D3 = σ3 + d1 +µ+ a. Determining β2 from the above three
expressions and putting in the expression of R0, we obtain

R0 =
β1(γ1δ + γ2δ + γ2σ1 + γ2µ)

D1 D2 D3

+
A1 B1C1 D1 D2 D3 − B1 D2β1γ2 − C1 D3β3γ1 − β1δγ1

B1C1 D1 D2 D3
+
β3γ1

D1 D2
,

where A1 = 1 +
Λ
D1
, B1 = 1 +

Λ
D2
,C1 = 1 +

Λ
D3

.
Following [27], we have the relation which is the number of new cases per day ∼ ΛC(t). Now we plot new

aily COVID-19 cases against the cumulative number of COVID-19 cases C(t) in Italy from 14th February to 23rd
ay, 2020 (see Fig. 6). We fit a linear regression model by using the least square method to this exponential growth

ata. The force of infection Λ is nothing but the slope of the fitted line (see Fig. 6(b)). Thus, we estimate the force

f infection as Λ = 0.1232311997657 ± 0.0067125 and from the above relation between the basic reproduction

11
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Fig. 6. (a) The time series of new cases of COVID-19 in Italy from 14th February to 23rd May, 2020, (b) the daily number of cases against
the cumulative number of cases for the same time period.

number and the force of infection, we can estimate the basic reproduction number as R0 = 2.766467198
± 1.0985.

7.2. The effective reproduction number

The basic reproduction number is the average number of secondary infection that is generated by a single
infected person. But in reality the reproduction number varies with time for any epidemic system [31]. Depending
on the reproduction number the planners update the epidemic control policy time to time. For this purpose here we
have estimated the effective reproduction number (R(t)) using current COVID-19 infection data in Italy from 14th
February to 23rd May, 2020. The estimation of R(t) can be done from the following renewal equation [27,33]

R(t) =
B(t)∫

∞

τ=0 B(t − τ )g(τ )dτ
,

where B(t) is the number of new cases in the t th day and g(τ ) is the generation interval distribution for the COVID-
9 disease in Italy. The generation interval distribution g(t) is the probability distribution function of time from
nfection of a person to the secondary infection case by that person. For simplicity here we assume that b = 0.
he generation interval distribution is the combination of the three exponential functions D1e−D1t , D2e−D2t and

D3e−D3t in the following form :

g(t) =

3∑
i=1

D1 D2 D3e−Di t∏3
j=1 j ̸=i (D j − Di )

with mean of the distribution as T =
1

D1
+

1
D2

+
1

D3
and τ > 0. The above relation is valid when the force of

infection Λ > min {−D1,−D2,−D3} [33].
Using the estimated model parameters, we have calculated the effective reproduction numbers and presented them

in Fig. 7. It is clear from the figure that the effective reproduction number diminishes below one after approximately
85 days from 14th February, 2020 and the epidemic with R0 < 1 will gradually disappear.

8. The optimal control problem

To minimize the COVID-19 infections every country is adopting the lock down policy. The lock down is a policy
that is to minimize the spreading of COVID-19 infections by controlling the movements of populations to maintain
social distancing. For applying lock down the interactions among S(t) class with E(t), I (t), Q(t) classes are reduced
nd consequently the transmission rates of infections must decrease. To include this lock down effect in the model,
e have replaced β1, β2 and β3 by β1(1−u1), β2(1−u2) and β3(1−u3), respectively where 0 ≤ ui ≤ 1(i = 1, 2, 3).
gain, for adapting lock down each country is facing huge financial losses. For adapting complete lock down the
12
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Fig. 7. The effective reproduction number for COVID-19 in Italy from 14th February to 23rd May, 2020.

loss is very huge, so some countries are adapting partial lock down. The u,i s are proportional to how many areas
are implemented under lock down or how well lock down is maintaining. If there is no lock down then u,i s are
all zero and if total lock down is implemented then u,i s are all 1. The main goal of this study is to minimize the

OVID-19 infections as well as the cost or financial loss of implementing the controls. Thus, we reformulate the
ystem (1) as an optimal control problem which is given below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

d S
dt = A −

β1(1−u1)SI+β2(1−u2)SE+β3(1−u3)SQ
N − µS

d E
dt =

β1(1−u1)SI+β2(1−u2)SE+β3(1−u3)SQ
N − (γ1 + γ2 + σ2 + µ)E

d Q
dt = γ1 E − (δ + σ1 + µ)Q
d I
dt = γ2 E + δQ −

aI
1+bI − (σ3 + d1 + µ)I

d R
dt = σ1 Q + σ2 E + σ3 I +

aI
1+bI − µR

(3)

ere, we construct the objective functional J , which has to be minimized, where
J (u1, u2, u3) =

∫ T
0 (A1 E + A2 Q + A3 I +

A4
2 u2

1 +
A5
2 u2

2 +
A6
2 u2

3)dt .
The constants A1, A2, A3 are, respectively, the loss due to the presence of E, Q, and I class and the constants

A4, A5, A6, respectively, represent the loss due to implementing these controls. We assume that all the controls
ill be implemented for the time interval [0, T ] and they will be stopped after the time T . Now, the problem is to
nd optimal functions u∗

i (t) (i = 1, 2, 3) satisfying J (u∗

1, u∗

2, u∗

3) = min{J (u1, u2, u3), (u1, u2, u3) ∈ U }, where the
ontrol set U = {(u1, u2, u3)/ui (t) is Lebesgue measurable on [0, 1], 0 ≤ ui (t) ≤ 1 for all t ∈ [0, T ], i = 1, 2, 3}.

heorem 5. The control functions u∗

i (i = 1, 2, 3) exist for which J (u∗

1, u∗

2, u∗

3) = min{J (u1, u2, u3) : (u1, u2, u3) ∈

}.

roof. The integrand of the objective function J (u1, u2, u3) is clearly a convex function. Also, the system (3)
atisfies the Lipschitz property with respect to the state variables, because the solutions of the system (3) are
ounded. It implies the existence of the optimal control functions. Hence the theorem is proved. □

heorem 6. The optimal control functions u∗

i (i = 1, 2, 3) which minimize the objective functional J
ver the region U are u∗

1 = max
{
0,min

{ (λ∗
2−λ∗

1)β1 S∗ I∗

N∗ A4
, 1

}}
, u∗

2 = max
{
0,min

{ (λ∗
2−λ∗

1)β2 S∗ E∗

N∗ A5
, 1

}}
and u∗

3 =

max
{
0,min

{ (λ∗
2−λ∗

1)β3 S∗ Q∗

N∗ A6
, 1

}}
, where, S∗, E∗, Q∗, I ∗, R∗ are, respectively, the optimum values of S, E, Q, I, R

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
and (λ1, λ2, λ3, λ4, λ5) is the solution of the system (4) with the conditions (5) and N = S + E + Q + I + R .

13
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Fig. 8. Time series of the populations with controls and without controls: (a) Exposed and asymptomatic individuals, (b) quarantined
individuals, (c) infectious individuals.

Proof. The Lagrangian of the optimal control problem is L = A1 E + A2 Q + A3 I +
A4
2 u2

1 +
A5
2 u2

2 +
A6
2 u2

3. Now,
we define the Hamiltonian H for the problem which is as follows:

H = A1 E + A2 Q + A3 I +
A4
2 u2

1 +
A5
2 u2

2 +
A6
2 u2

3 + λ1(t) d S
dt + λ2(t) d E

dt + λ3(t) d Q
dt + λ4(t) d I

dt + λ5(t) d R
dt .

In order to determine the adjoint equations with transversality conditions, we apply Pontryagin’s maximum
rinciple [16,21,28] that gives dλ1(t)

dt = −
∂H
∂S ,

dλ2(t)
dt = −

∂H
∂E ,

dλ3(t)
dt = −

∂H
∂Q ,

dλ4(t)
dt = −

∂H
∂ I ,

dλ5(t)
dt = −

∂H
∂R with

the transversality conditions λi (T ) = 0, i = 1, 2, 3, 4, 5. Thus, the adjoint variables λi , i = 1, 2, 3, 4, 5 can be
btained from the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dλ1
dt = µλ1 +

{β1(1−u1)I+β2(1−u2)E+β3(1−u3)Q}(N−S)
N 2 (λ1 − λ2)

dλ2
dt = −A1 +

N (1−u2)β2−{β1(1−u1)I+β2(1−u2)E+β3(1−u3)Q}

N2 S(λ1 − λ2)
+(γ1 + γ2 + σ2 + µ)λ2 − γ1λ3 − γ2λ4 − σ2λ5

dλ3
dt = −A2 +

N (1−u3)β3−{β1(1−u1)I+β2(1−u2)E+β3(1−u3)Q}

N2 S(λ1 − λ2)
+(δ + σ1 + µ)λ3 − δλ4 − σ1λ5

dλ4
dt = −A3 +

N (1−u1)β1−{β1(1−u1)I+β2(1−u2)E+β3(1−u3)Q}

N2 S(λ1 − λ2)
+{σ3 + d1 + µ+

a
(1+bI )2 }λ4 − {σ3 +

a
(1+bI )2 }λ5

dλ5
dt =

{β1(1−u1)I+β2(1−u2)E+β3(1−u3)Q}S
N 2 (λ2 − λ1) + µλ5

(4)

with the conditions

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0, λ4(T ) = 0, λ5(T ) = 0. (5)

To determine optimal control functions, we use the optimality conditions ∂H
∂ui

= 0 (i = 1, 2, 3) and we get
∗

1 = max
{
0,min

{ (λ∗
2−λ∗

1)β1 S∗ I∗

N∗ A4
, 1

}}
, u∗

2 = max
{
0,min

{ (λ∗
2−λ∗

1)β2 S∗ E∗

N∗ A5
, 1

}}
, u∗

3 = max
{
0,min

{ (λ∗
2−λ∗

1)β3 S∗ Q∗

N∗ A6
, 1

}}
.

Here, S∗, E∗, Q∗, I ∗, R∗ are, respectively, the optimum values of S, E, Q, I, R and (λ∗

1, λ
∗

2, λ
∗

3, λ
∗

4, λ
∗

5) is the
solution of the system (4) satisfying the conditions (5).

Clearly, ∂2 H
∂u2

1
= A4 > 0,

⏐⏐⏐⏐⏐⏐
∂2 H
∂u2

1

∂2 H
∂u1∂u2

∂2 H
∂u2∂u1

∂2 H
∂u2

2

⏐⏐⏐⏐⏐⏐ = A4 A5 > 0 and

⏐⏐⏐⏐⏐⏐⏐⏐⏐
∂2 H
∂u2

1

∂2 H
∂u1∂u2

∂2 H
∂u1∂u3

∂2 H
∂u2∂u1

∂2 H
∂u2

2

∂2 H
∂u2∂u3

∂2 H
∂u3∂u1

∂2 H
∂u3∂u2

∂2 H
∂u2

3

⏐⏐⏐⏐⏐⏐⏐⏐⏐ = A4 A5 A6 > 0.

Thus, the control functions u∗

i (i = 1, 2, 3) minimize the objective functional J . Hence the theorem is proved. □

To justify the theoretical findings of the optimal control problem (3), we solve it numerically by using forward–
backward sweep method. This method combines the forward application of a fourth order Runge–Kutta method for
the state system (3) with the backward application of a fourth order Runge–Kutta method for the adjoint system
(4). Here, we assume T = 1 unit of time. For this simulation we have considered the parametric values which are
given in Table 2 with A1 = 0.1, A2 = 0.01, A3 = 0.05, A4 = 10, A5 = 150, A6 = 20 and the initial conditions
S(0) = 60461826, E(0) = 16583, Q(0) = 10, I (0) = 3 and R(0) = 0. From Fig. 8(a)–(c) we can compare the
14
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Fig. 9. The optimal control functions: (a) u1(t), (b) u2(t), (c) u3(t).

Fig. 10. Effect of the controls u2 and u3 on R0, when u1 = 0.01.

exposed and asymptomatic, quarantined and infectious populations at any time t ∈ [0, 1] between the system with
no control and the system with the controls. The optimal control functions u∗

i (t) (i = 1, 2, 3) have been represented
y Fig. 9(a)–(c).

Again, it can be easily proved that the basic reproduction number RL
0 of the model (3) is

RL
0 =

(1 − u1)β1(γ1δ + γ2δ + γ2σ1 + γ2µ)
(γ1 + γ2 + σ2 + µ)(δ + σ1 + µ)(σ3 + d1 + µ+ a)

+
(1 − u2)β2

(γ1 + γ2 + σ2 + µ)

+
(1 − u3)β3γ1

(γ1 + γ2 + σ2 + µ)(δ + σ1 + µ)
.

It is clear from the expression of the basic reproduction number RL
0 that the quantities u,i s can reduce the value of

the basic reproduction number i.e. these quantities must be good controller for the disease spreading. If values of u,i s
increase then RL

0 decreases i.e. the lock down must play an important role for controlling the disease. In Fig. 10, we
see that the control u2 is so effective to control the disease, because if u2 increases, the basic reproduction number

significantly decreases and if we make it less than unity for large value of u2, then disease will be controlled.
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9. Conclusions

This paper deals with an epidemic compartmental model to investigate the dynamics of pandemic COVID-19
nd to predict the future epidemic situations in Italy. Here, we have considered three disease compartments, namely
xposed-asymptomatic, quarantine and infectious. To include the effect of limited medical facilities, here we have
onsidered the rate of treatment as saturated type. The basic reproduction number has been obtained for the proposed
odel, which plays key role for analysing the stability of DFE. The system experiences backward bifurcation with

espect to the cure rate of treatment conditionally. The epidemiological implication of this result is that making the
asic reproduction number less than unity is not sufficient to eliminate the COVID-19 disease from the community.
hus the basic reproduction number less than unity is only a necessary but not a sufficient condition for eliminating
OVID-19, because the stable disease free equilibrium point co-exists with a stable endemic equilibrium. To validate

he model and for further predictions we consider the current COVID-19 cases in Italy from 14th February to 23rd
ay, 2020 and we have estimated the best-fitted model parameters. From the simulations we see that the disease
ill be controlled in July, 2020 in Italy. The sensitivity analysis shows that the transmission rate of infection from

xposed and asymptomatic class plays important role for disease spreading and the development of self immunity
f that class is very influential in the model output. We have estimated the basic reproduction number R0 from the

initial growth phase of actual COVID-19 epidemics in Italy and the time dependent effective reproduction number
R(t) has also been estimated from daily new COVID-19 cases in Italy.

We have also formulated an optimal control problem by considering the effects in the transmission rates of
infections due to implementing lock down policy by many countries. We have solved it both analytically and
numerically. The main objective of analysing this optimal control problem is to minimize the COVID-19 positive
cases as well as the total costs or financial losses for implementation of controls due to adapting lock down by
countries. A comparative study between the system with lock down and the system without lock down has been
presented that shows the positive impacts of taking lock down for controlling the epidemic. The effects of lock
down on the basic reproduction number have also been shown and it has been shown that the basic reproduction
number decreases as the lock down policy is implemented and if we can make it less than unity then the epidemic
will disappear. The formulation of optimal control problem is a theoretical modelling and it can be applied by using
real data in some countries. The proposed model of COVID-19 has some limitations. Here we consider saturated
treatment function to describe the saturation phenomenon of the limited medical resources. If some countries or
communities have the potential to adapt very strong medical resources in very short span of time then the saturated
treatment function will not be used in the model. Again, we did not consider vaccination term in our model though
the COVID-19 vaccines have reached billions of people worldwide.

Appendix

(i) To recovery from infectious diseases, the treatment of infected population is one of the important methods.
In classical epidemic models, the linear treatment function T (I ) = r I, I ≥ 0 (where r is a positive constant) is
used, but if the number of infected population is very large then it is not always possible to provide such type of

treatment. To avoid this the constant treatment function T (I ) =

{
r, I > 0
0, I = 0

(where r is a positive constant) is

used sometimes, but in reality the treatment is not a constant function. The saturated treatment function T (I ) =
aI

1+bI
(where a, b are positive constants) is a better alternative for new outbreak diseases like COVID-19 in new region
or area, because at the beginning of the outbreak there is small of effective treatment due to negligence or lack of
knowledge about the disease. Then the treatment rate is increased with the improving of treatment conditions of
hospitals including skillful treatment techniques and effective medicines. Finally, the treatment rate is reached to
its maximum due to the boundedness of medical resources of any countries or communities.

Usually the consideration of the saturated treatment function in the model implies the existence of backward
bifurcation in the system. The infected being delayed for treatment is one of the origins which lead to the backward
bifurcation. The consideration of linear or constant treatment rate in the model does not ensure the phenomenon of
backward bifurcation, it may change the number of endemic equilibria in the system.
16
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(ii) If we introduce an extra compartment D for the deaths, then the model equations will be as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d S
dt = A −

β1 SI+β2 SE+β3 SQ
N − µS

d E
dt =

β1 SI+β2 SE+β3 SQ
N − (γ1 + γ2 + σ2 + µ)E

d Q
dt = γ1 E − (δ + σ1 + µ)Q
d I
dt = γ2 E + δQ −

aI
1+bI − (σ3 + d1 + µ)I

d R
dt = σ1 Q + σ2 E + σ3 I +

aI
1+bI − µR

d D
dt = d1 I

Thus, if we introduce the death compartment D, then the dynamics of the model will not be changed, because the
ast equation is a redundant equation as other equations do not contain D.

But at the time of parameter estimation, we will be able to predict the probable number of death cases in current
ime as well as the future time. This prediction is important biologically, because we can validate the model by
omparing the result of model simulated death cases with the exact number of death cases.
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