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Cyclic GMP-AMP (cGAMP) synthase (cGAS) is a cytosolic DNA sensor and innate immune response initiator. Binding
with exogenous or endogenous nucleic acids, cGAS activates its downstream adaptor, stimulator of interferon
genes (STING). STING then triggers protective immune to enable the elimination of the pathogens and the
clearance of cancerous cells. Apparently, aberrantly activated by self-DNA, cGAS/STING pathway is threatening to
cause autoimmune and inflammatory diseases. The effects of cGAS/STING in defenses against infection and
autoimmune diseases have been well studied, still it is worthwhile to discuss the roles of cGAS/STING pathway
realm of innate immunity. Recent studies have revealed its involvement in non-canonical
inflammasome formation, calcium hemostasis regulation, endoplasmic reticulum (ER) stress response, perception of
leaking mitochondrial DNA (mtDNA), autophagy induction, cellular senescence and senescence-associated secretory
phenotype (SASP) production, providing an exciting area for future exploration. Previous studies generally focused
on the function of cGAS/STING pathway in cytoplasm and immune response. In this review, we summarize the
latest research of this pathway on the regulation of other physiological process and STING independent reactions
to DNA in micronuclei and nuclei. Together, these studies provide a new perspective of cGAS/STING pathway in
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Introduction

Human body has a complicated defensive system against
foreign pathogens, senescent and cancerous cells to
maintain internal homeostasis. In this process, correctly
detecting aberrant molecules is the first and foremost
step, where two main immunity strategies — the adaptive
immune system and the innate immune system — play
indispensable roles. Adaptive immunity is performed by
lymphocytes which are highly specific to a particular
pathogen and provide long-lasting protection [1]. Unlike
the adaptive immune system, the innate immune system
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is the first line of defense that respond to pathogens in a
non-specific and generic way [2]. Extracellular pathogens
are sensed and removed after binding to transmembrane
receptors such as Toll-like receptors (TLRs), RIG-I-like
receptors (RLRs) and NOD-like receptors (NLRs). When
pathogens gain access into the cell or cell carcinogenesis
happens due to harmful intrinsic damage, accumulated
cytosolic DNA would function as a danger sign [3].
Cytosolic DNA delivers a signal of threat to innate im-
mune system. Cytosolic DNA appears when certain
pathogens infect cells or cellular genome is unstable. A
number of mechanisms are involved in maintaining
DNA level below the danger-signal threshold to prevent
unnecessary waste of cellular energy. For example, the
deoxyribonuclease (DNase) system. There are many
types of DNases located in different subcellular sites.
DNases located in the extracellular space (such as DNase
I), endosomes (such as DNase II) and the cytoplasm
(such as three prime repair exonuclease 1 (TREX1, also
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known as DNase III)) are all responsible for disposing
mis-localized DNA [4]. But in some pathological condi-
tions, abnormally distributed or accumulated DNA acti-
vates the self-defense mechanisms of cells by binding to
DNA sensors. For example, in bacterial infection,
unmethylated CpG DNA is recognized by TLR9 in
endolysosomal compartment [5]. Absent in melanoma 2
(AIM2) detects DNA in the cytoplasm and activates the
inflammasome pathway in response to exogenous and
endogenous DNA challenge [6]. In some cases, RNA
polymerase III also acts as a DNA sensor [7].

cGAS is a kind of cytosolic DNA sensor which initiates
innate immune (Fig.1). Notably, cGAS and its down-
stream regulators form a major DNA-sensing mechan-
ism, sensing foreign and self-DNA in the cytoplasm and
sometimes in the micronucleus and nuclei as well [8].
The canonical cGAS/STING pathway starts with the ac-
tivation of cGAS. cGAS is activated by accumulated
cytosolic DNA and produces cGAMP as a second mes-
senger. cGAMP then activates STING, an ER resident
transmembrane protein [9]. Activated by cGAMDP,
STING will be transferred from ER to the Golgi body via
the ER-Golgi intermediate compartment (ERGIC) and

Page 2 of 16

recruits TANK-binding kinase 1 (TBK1) [10]. Combined
with STING, TBK1 will be delivered to lysosomal com-
partments to catalyze the phosphorylation of interferon
regulatory factor 3 (IRF3) [11, 12]. Phosphorylated IRF3
will be dimerized and translocated into the nucleus to
stimulate the expression of IFN-I and IFN-stimulated
genes (ISGs). In parallel, STING also activates inhibitor
of nuclear factor kappa-B (NF-kB) kinase (IKK). IKK
phosphorylates and deactivates the inhibitor of NF-xB
(IkB). NF-kB then is released from IkB and enters the
nucleus, where it functions together with IRF3 and other
transcription factors to induce the expression of inter-
ferons and inflammatory cytokines such as TNF, inter-
leukin (IL)-1b and IL-6 [13]. STING may also directly
bind to the cytosolic DNA but the pathological back-
ground is not fully elaborated [14]. Recent evidence has
shown that the primordial function of STING is related
to autophagy [15], as is proved in Zika virus infection of
the Drosophila brain [16].

In addition to the classic cGAS/STING-IFN axis (Fig.
1), study has revealed that cGAS interacted with Beclin-
1 to trigger autophagy, which would reduce cGAMP
production independent of STING activation [17].
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Fig. 1 cGAS provoking pro-inflammatory reaction and its regulations. cGAS leads to a pro-inflammatory reaction through the classic cGAS-STING-
IFN1 axis. And this axis can be regulated in different levels: dsDNA, cGAS, cGAMP, STING and downstream regulators
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Similarly, activation of STING could be achieved in a
cGAS-independent manner. Noncanonical STING sig-
naling in response to etoposide-induced DNA damage
could be activated by DNA-repair proteins ataxia tel-
angiectasia mutated (ATM), poly-ADP ribose polymer-
ase 1 (PARP1) and DNA binding protein interferon-y-
inducible factor 16 (IFI16) mediated NF-«B signaling in
keratinocytes [18]. Similar regulatory processes can also
be seen in some specific tumor models, such as in
HCT116 colorectal carcinomas [19].

As a classic pathway, components of cGAS pathway,
up and down stream regulatory factors and roles in
autoimmune diseases and tumor immunity have been
fully described and summarized [8, 20, 21]. In this re-
view, we only briefly introduce these aspects as back-
ground information. Emphasis will be placed on the
latest research on position-dependent cGAS function
and non-immune physiological regulatory processes
such as cellular senescence, programmed cell death
(PCD), mitophagy Ca®" homeostasis and ER stress and
the different roles of cGAS/STING pathway in some hu-
man diseases.

cGAS interacting with different sources of DNA
The structure of cGAS
Like other proteins, cGAS has a C terminus (160-522)
and a N-terminus (1~159). C terminus contains a
nucleotidyltransferase domain and two DNA binding
sites [22, 23] which assist cGAS dimerizes and binds to
the sugar-phosphate backbone of double strand DNA
(dsDNA) in the form of 2:2 [24, 25]. Single-stranded
DNA (ssDNA) generated from reverse transcription
weakly activates cGAS [8]. Specifically, unpaired guano-
sines are the necessary DNA structures for the activation
of cGAS, suggesting that cGAS has the ability to
recognize specific DNA sequence under certain circum-
stances. For example, cGAS can be activated effectively
by the short (12- to 20-bp) human immunodeficiency
virus type 1 (HIV-1) Y-form DNA in a sequence-
dependent manner [26]. After binding to DNA, its
nucleotidyltransferase domain transfers adenosine 5'-tri-
phosphate (ATP) and guanosine 5’-triphosphate (GTP)
to cGAMP and activates downstream pathways [27, 28].
For a long time, the functional significance of cGAS
N-terminus (1 ~ 159) remains unclear [23]. However, re-
searchers have recently taken a small step closer toward
this. Du and Chen reported that N-terminus contributes
to ¢cGAS and DNA liquid droplets formation in physio-
logical buffer and human cell lines, and therefore pro-
motes the activation of ¢cGAMP production [29]. N-
terminus is also important for the subcellular
localization of cGAS [30]. In the absence of DNA, N-
terminus helps cGAS bind to the PI (4,5) P, at the cell
plasma membrane which reduces the sensitivity of cGAS
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to self-DNA. When the interaction between N-terminus
and the plasma membrane disappears, cGAS will trans-
locate into the cytoplasm and nucleus [30]. C-terminal
domain 161 ~212 is crucial for cytoplasmic retention.
While two nuclear localization sequences (NLS): N-
terminal NLS1 (21 ~51) and C-terminal NLS2 (295 ~
305) are needed for nuclear translocation [31].

cGAS and cytosolic DNA
The main sources of cytoplasmic DNA are as follows
(Fig. 2) [32, 33]: (1) Intracellular pathogens infection,
such as DNA viruses, retroviruses and intracellular pro-
karyotes; (2) Reactivation of endogenous retroviral se-
quences which codes a catalytically active retro
transcriptase; (3) Imbalanced control of endogenous
DNA such as mitochondrial breakdown, mitotic defects
and DNA rupture; (4) Impaired ability to clear exogen-
ous DNA; (5) Importing extracellular DNA-containing
exosomes and/or micropinocytosis. Crystal structures of
human cGAS and DNA-bound cGAS shows that cGAS
is activated when two cGAS molecules and two dsDNA
molecules compose together to form a ladder-like struc-
ture [34]. Bacterial and mitochondrial nucleoid proteins
HU, mitochondrial transcription factor A (TFAM) and
high-mobility group box 1 protein (HMGB1) support
the recognition of dsDNA by elongating DNA sensing
time via inducing the formation of U-turns and bends in
DNA [35]. cGAS modified by other molecules also links
tightly with the activity of dsDNA induced immune re-
sponses [36—39]. For example, polyglutamylases such as
tubulin tyrosine ligase-like family member 6 (TTLL6)
catalyzes the polyglutamylation of cGAS and hinders its
binding with DNA, which can be canceled and reversed
by the cytosolic carboxypeptidase 6 (CCP 6); Monogluta-
mylases such as TTLL4 catalyzes the monoglutamylation
of cGAS and impedes the synthase of GAMP, which can
be removed and recovered by CCP 5 [36]; Tripartite
motif 56 (TRIM 56) E3 ubiquitin ligase monoubiquiti-
nates cGAS at the Lysine 335 (K335), facilitating the
binding of DNA and the synthesis of cGAMP by increas-
ing the dimerization of cGAS [37]; The small ubiquitin-
like modifier (SUMO) SUMOylates cGAS at K335,
K372, and K382, restraining the following reactions,
which can be reserved by sentrin/SUMO-specific prote-
ase 7 (SENP7) [38]; And also, Recently, both in vivo and
in vitro studies have shown that GTPase-activating pro-
tein SH3 domain-binding protein 1 (G3BP1) binds to
cGAS directly and helps ¢cGAS bind with dsDNA by
forming the large G3BP1-cGAS complexes [39].
Cytoplasmic DNA-induced cell death and immune re-
sponse are self-defense against harmful substances from
the internal and external environment. Drugs using
DNA to induce immunity against tumors and infectious
diseases are under developing and testing [40].
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Fig. 2 Source and function of cytosolic DNA. The cytosolic dsDNA pool is composed of DNA originating from retroviruses, DNA viruses, mitotic
defects, mitochondria, intracellular prokaryotes and DNA rupture debris from the nuclei. In the cytosol, these DNA are either degraded by DNase

triggered. Downstream signal molecules regulate the expression of immune-related genes, eventually leading to DNA clearance or cell death. In
addition, DNA also comes from dead cells and bacteria. Membrane vesicles are formed by endocytosis and DNA is transported into the cell.
DNase Il is localized in lysosomes and digests DNA from pathogens and dead cells that end up in this cellular compartment. TLR9 directly binds
with the remaining unmethylated CpG DNA and triggers downstream immune activation, inducing the expression of inflammation-related genes

including AIM2, RNaselll, cGAS and DA, a cascade of reactions are

cGAS and micronuclear DNA

Micronuclei is a cytoplasmic compartment which is
composed of a membrane envelope and chromatin in it.
Generally, micronuclei is regarded as an accurate indica-
tor of genomic instability [41] (Fig. 3). It is formed when
mitosis process encounters with mis-segregations of a
whole or a part of a chromosome, accompanied with
chromatin bridging and chromosomes/chromatin forma-
tion lagging behind [42, 43].

Some evidence shows that ¢cGAS binds with chro-
mosomes during mitosis [44]. But cGAS/STING
pathway remains inactive, probably due to the tight-
compacted structure of chromosomes [45]. It is
noteworthy that cGAS will dissociate from chromo-
somes when mitosis is done. However, when micro-
nuclei forms, a high level of cGAS shows up in the
micronuclei during the interphase [46]. Then

micronuclear cGAS mediates the downstream
process [10, 22, 46] in a timely and cell-cycle
dependent manner [47]. Under such circumstances,
micronuclei acts as a reservoir of immunostimula-
tory DNA, which may function as a compensative
cell cycle checkpoint [48, 49].

Activation of cGAS by micronuclear DNA requires the
entry of cGAS into micronuclei. Micronuclei forms
when lagging chromosome separates from the primary
nucleus and has its own membrane [41]. Then, the
micronuclear envelope shatters irreversibly which occurs
at a random phase. That means it is not confined to a
specific phase but sensitive to DNA damage [44]. This
failure of membrane integrity is associated with the re-
duction of lamin B1 [41, 47], which may reverse by nu-
clear B-dystroglycan (B-DG) [50]. As a consequence, the
cytosolic cGAS gains the access to micronuclei and
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Fig. 3 The generation of micronuclei and cGAS's role in micronuclei. a. Micronuclei are generated when the genome is unstable during cell
division, often associated with an abnormal nucleus in a daughter cell. b. After micronuclei form, the micronuclear envelope ruptures irreversibly.
Then, cGAS enters into the micronuclei, binding to the chromatin and facilitating the downstream proinflammatory signals

thereby binds to chromatin and initiates downstream
proinflammatory responses [47].

As we discussed above, the formation of micronuclei
is an important mark of genomic instability. And gen-
omic instability caused by the activation of multipolar
mitotic spindles [50], the production of DNA-damage
agents [51], centrosome abnormalities [52], telomeres
dysfunctions [53—55] andp53/p21 mutation [56] are hall-
marks of cancer and cellular senescence. The disruption
of the micronuclei caused by aberrant accumulation of
the endosomal sorting complex required for transport-
III (ESCRT-III) complex or the mutant prelamin A (pro-
gerin) accentuates DNA damage and enhances pro-
inflammatory responses via cGAS/STING pathway [57-
59]. The formation of micronuclei has a dual function.
On the one hand, abnormal accumulation of micronu-
clei is related to cancer and aging. On the other hand,
the micronuclear dsDNA activates cGAS-mediated im-
mune response, which is an important innate immune
surveillance mechanism for the clearance of cancer cells
and senescent cells.

¢GAS and nuclear DNA

cGAS interacting with endogenous DNA in nuclei
Micronuclear ¢cGAS works as a supervisor. When un-
stable genetic material appears, cGAS will initiate its
downstream pro-inflammatory responses, linking the
genome instability with innate immune. However, in
some cases, CGAS enters into nuclei and inhibits DNA
repair when DNA damage happens, and therefore play-
ing a tumorigenic role adversely [31] (Fig. 4).

DNA damage arises more frequently when exposed to
genotoxic therapies such as chemotherapies [60]. Among
all forms of damage, the double-stranded breaks (DSBs)
of DNA strains are the severest type [61]. These dam-
ages can be rescued by two basic DNA DSB repair ways:
homologous recombination (HR) and nonhomologous
end joining (NHE]) [62-64]. However, studies have con-
firmed that this repair process can be interrupted by
cGAS via binding with chromosomes and initiates im-
mune response [31]. The underlying mechanism and sig-
nificance of cGAS binding with chromosomes have not
been fully elucidated. One thing we can confirm is that
it is the NLS-mediated entry of cGAS rather than the
low-level physiological accumulation of cGAS that acti-
vates innate immune [65]. More in-depth research is
needed to better understand this process.

cGAS interacting with exogenous DNA in nuclei

Viruses live a highly parasitic live. They use host’s re-
sources and organelles as production materials and
workshops and own genetic material as templates to
proliferate. In response, mammals have a set of compli-
cated mechanisms to detect and kill those viruses. At
the same time, viruses never stop attempting to elude
and defect the surveillance system of the host.

The innate immune system of human body reacts im-
mediately in response to virus infections. Pattern recog-
nition receptors (PRRs) recognize the conservative
pathogen-associated molecular patterns (PAMPs) or
host damage associated molecular patterns (DAMPs)
[66], followed by cascade signaling reactions. In this
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process, cGAS plays a pivotal role in detecting viruses
and activating dendritic cells (DCs) and macrophages
[67, 68]. The recognition process often starts in the cyto-
plasm, sometimes in nucleus (Fig. 5).

HIV infection is a typical example of nuclear recogni-
tion process. Earlier studies show that cGAS is vital for
the recognition of retro-transcriptional synthetic HIV
dsDNA by immune cells both inside and outside the cell
nuclei [26]. To active cGAS, Non-POU domain-
containing octamer-binding protein (NONO) first binds
to capsid protein DCs nucleus. Then, NONO interacts
with cGAS to form a complex which in turn promotes
the recognition of HIV-2 DNA and the initiation of nu-
clear cGAS induced STING activation [69].

cGAS also participates in the recognition of nuclear
DNA through an indirect, STING independent way. This
is achieved by helping maintain the stability of other DNA
sensors such as IFI16 [70]. When infected by human pap-
illomavirus (HPV), normal human fibroblasts will develop
a certain mechanism to facilitate IFI16 in binding directly
with HPV DNA in the nucleus [70]. At the same time, the
existence of cGAS prolongs the half-life of IFI16, may by

promoting the degradation of proteasome [70]. Though
more research is needed to confirm the role of cGAS in
this process, we may able to develop cGAS as an immune
enhancer to support our body in defending virus.

Regulation of cGAS/STING pathway

Regulation of cGAS/STING pathway has been thor-
oughly discussed elsewhere [8]. Here we only give a brief
summary and add some new findings (Fig. 1). The regu-
lation is complex and multidimensional, mainly from the
following aspects:

(1) Degradation of cytosolic dsDNA. To avoid the
cellular disorder triggered by cytosolic DNA,
TREX1 degrade mis-localized DNA and maintain
the balance of homeostasis and inflammation re-
sponse [4].

(2) Regulation of cGAS. Transcriptional, epigenetic
regulations and post-translational modifications are
all involved. Besides these aspects discussed in the
referent paper, chemical modifications also partici-
pate in regulating the activity of cGAS. For instance,
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Aspirin robustly inhibits cGAS activation and
c¢GAS-mediated IEN production by directly acetyl-
ating the cGAS at K384 and/or K394 and K414 [4].

(3) Regulation of cGAMP. Activity and location of
cGAMP are controlled by ecto-nucleotide pyropho-
sphatase/ phosphodiesterase 1 (ENPP1) and inter-
cellular transmission respectively [71]. In vivo study
is still limited but the in vitro study shows that
overexpression of ENPP1 significantly lowers
cGAMP level and reduces production of IFN-f and
NEF-«B in porcine cells infected with pseudorabies
virus (PRV) [72].

(4) Modification of STING. Post-translational modifica-
tions, trafficking degradation and binding affinities
with cGAMP are involved. Phosphorylation by serine/
threonine UNC-51-like kinase (ULK1) and TBK1 and
ubiquitination by ubiquitin-binding protein p62 lead to
the degradation of STING [73, 74]. Interestingly, the
function of p62 is dependent on TBK1 and IRF3,
which indicates negative feedback on the attenuation
of signaling [73]. Moreover, the tyrosine-protein phos-
phatase nonreceptor type (PTPN) 1 and 2 dephos-
phorylate STING at Y245 which promotes its 20S
proteasomal degradation [75]. Additionally, DNA virus
infection triggered the ubiquitination of STING by up-
regulating TRIM29 [76].

In addition to modification, regulators inhibit STING
by directly binding to STING. Such as autophagy pro-
teins, including microtubule-associated protein 1 light
chain 3 (LC3) and autophagy-related protein 9a
(ATGOYA) [77]. Pathogenic proteins, such as Hepatitis C
virus non-structural 4B (NS4B) protein and human cyto-
megalovirus (HCMV) tegument protein UL82, directly
interact with STING to reduce STING activity [78, 79].
Meanwhile, DNA tumor viruses, such as HPV18 and hu-
man adenoviruses 5 (hAd5), inhibit the activation of
cGAS/STING pathway by producing oncoprotein bind-
ing STING [68]. Moreover, the Ca** sensor stromal
interaction molecule 1 (STIM1) binds to STING and
elongates STING retention with ER, consequently hin-
dering the following cascade [80].

Roles of the cGAS/STING pathway in physiological
regulatory processes

A bulk of studies have exhaustively summarized the role
of cGAS/STING pathway in regulating antipathogenic
and antitumor responses and the adaptive changes of
cancerous cells and pathogens to escape cGAS supervi-
sion [8, 81-84]. As we explore and know more about
this pathway, we are able to find more in other aspects.
Therefore, here we focus on other newly found and also
important aspects, including its role in nuclei,
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senescence, mitochondrial dysfunction, ER stress and properties. Collectively, these secretions are termed as

Ca?* homeostasis (Fig. 6). SASP that have complex effects on cell behaviors, es-
pecially in aging and tumorigenesis [87, 88]. As we
Cellular senescence mentioned before, mtDNA and micronuclei are two

Cellular senescence is first proposed by Hayflick and sources of cytoplasmic dsDNAs. Considering that
Moorhead in 1961, which is defined as irreversible mitochondrial dysfunction and genomic instability are
cell-cycle arrest that occurs when cells experience po-  typical features of aging [89], it is not difficult to link
tentially oncogenic stress [85]. According to different cGAS/STING with cellular senescence.

incentives, such as telomere shortening, certain onco- In senescent cells, several factors contribute to the ac-
genes and chemotherapeutic drugs or ionizing radi- cumulation of cytoplasmic DNA and the activation of
ation, senescence can be subdivided into replicative cGAS: (1) Loss of the nuclear lamina protein Lamin B
senescence, oncogene-induced senescence (OIS) and [90]. Decreased Lamin B is a hallmark of senescence
therapy-induced senescence (TIS) respectively [86]. which leads to collapse of the nuclear envelope, trigger-
The p53/p21 and pl6™**/pRB pathways are respon- ing release of chromatin fragments from the nucleus to
sible for senescence related growth arrest [87]. Senes-  the cytosol, termed as cytoplasmic chromatin fragments
cent cells, though fail to initiate DNA replication, (CCF) [91]. (2) Leakage of mtDNA. Accumulated oxida-
remain metabolically active and secret sorts of pro- tive damage to mitochondrial membrane proteins and
teins, including proteases, various growth factors, cy- lipids leads to increased membrane permeability. Mem-
tokines and chemokines with proinflammatory brane break up results in the leakage of mtDNA to
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cytoplasm [92]. (3) Downregulation of TREX1 [93].
TREX1 is responsible for degrading the double-stranded
and single-stranded DNA in the cytoplasm to prevent
accumulation of DNA. (4) Upregulated long-
interspersed element-1 (LINE-1, also known as L1) [94].
LINE-1 is a retro-transposable element which tran-
scribes mRNA to ¢cDNA and causes cytoplasmatic DNA
accumulation. (5) Increased MUS81protein [95]. MUS81
is a structure-specific endonuclease that resolves inter-
strand DNA structures such as stalled replication forks
and Holliday junctions. MUS81is engaged in changing
nuclear DNA into cytoplasmic forms which causes ele-
vated cytoplasmic DNA [96].

Binding with accumulated self-derived DNA fragments
in senescent cells, cGAS then activates downstream ex-
pression of NF-kB and triggers SASP production in sen-
escent cells [86]. Studies find that suppressing either
cGAS, STING or NF-«B in mouse and human cells ab-
rogates the expression of senescence-associated inflam-
matory genes in response to DNA damaging agents such
as etoposide and ionizing irradiation [44, 97]. The secre-
tion of several SASP factors is regulated by cGAS, in-
cluding IL-6, a critical controller of autocrine
senescence, CXCL10, a cGAS-dependent IFN-stimulated
gene, TNF-a and several chemokines [98, 99]. The con-
nection between cGAS/STING pathway and SASP regu-
lation remains largely unknown. However, the consistent
performance in in between reflects the existence of close
relationship. Future work could focus on the molecular
mechanism of cGAS/STING pathway in senescence and
aging-related diseases to see if GAS also has a regulatory
effect such as neurodegenerative diseases, osteoarthritis,
cardiovascular diseases, etc. (Fig.6f).

PCD

Depending on different endogenous and exogenous
threats, cells have 3 different fates: (1) Restore and back
to normal function if the threats are successfully elimi-
nated; (2) Enter senescence if the damage is persistent
but tolerable; (3) Undergo PCD or necrosis if the dam-
age is beyond management. The death of infected cells
is an important defense that limits viruses to subvert the
cellular machinery for their own replication. This part
has been well established [100, 101]. Here we are going
to talk about latest understanding of cGAS/STING in
regulated cell death (RCD).

Based on the macroscopic morphological alterations
and where dead cells and their fragments are disposed,
RCD is detailed classified into different subtypes [102,
103], apoptosis, autophagy and necroptosis. Intrinsic
apoptosis is induced by cellular stress and starts with the
activation of apoptotic caspases (caspase-3, -6, -7, — 8,
and - 9) [104]. Exposed to stress, mitochondrial outer
membrane permeabilization (MOMP) is formed by Bax

Page 9 of 16

(Bcl-2-associated x protein) / Bak (Bcl-2 antagonist killer
1) channel. Mitochondrial contents such as cytochrome
c is then released form MOMP into the cytosol where it
binds to the NLR protein apoptotic protease activating
factor 1 (APAF1). This binding forms the apoptosome
— an activating platform for the initiator caspase 9 [105,
106]. Activated caspase 9 in turn activates the effector
caspases, caspase 3 and caspase 7 [107]. Executioner cas-
pase 3 and 7 trigger a cascade of proteolytic events that
culminate in the demise of the cell through apoptosis.
cGAS participates in apoptosis via regulating caspase-3.
Activated by apoptosis signals, caspase-3 cleaves and in-
activates cGAS, mitochondrial antiviral-signaling protein
(MAVS), and IRF3 to suppress cytokine and type I IFN
production in order to keep immunologically silent
[108—110]. While caspase inhibition prompts the widen
of BAX/BAK-mediated pores which leads to the extru-
sion of unstructured mitochondrial inner membrane
[111]. Mitochondrial inner membrane permeabilization
facilitates mtDNA release into the cytoplasm and acti-
vate cGAS/STING signaling and IFN synthesis, enabling
cell death-associated inflammation [112]. The inflamma-
tory caspases-1, -4, —5 and - 12 also influence cGAS
function. Under DNA virus infection, caspase-1 interacts
with cGAS, cleaving it and dampening cGAS/STING-
mediated IFN production. Caspase-4, 5, and 11 cut
cGAS under non-canonical inflammasome activation
[113, 114]. Understanding the complex regulatory net-
work between cGAS and caspases at the intersection of
programmed cell death and innate immune regulation is
helpful for better understanding related human diseases
[100, 115] (Fig. 6b).

Autophagy is a self-degradative process that allows the
recycling of cellular components. It is also a final barrier
against oncogenic transformation that restricts chromo-
somal instability during replicative crisis [116]. Basic au-
tophagy process have been summarized and generally
accepted [117]. Here we introduce the newly found rela-
tionship between autophagy and cGAS. In this process,
interferon induction is not indispensable. For example,
in macrophages, activated STING and the kinase TBK1
lead to ubiquitin-mediated selective autophagy pathway,
limiting M. tuberculosis growth during infection inde-
pendent of IFN production [118, 119]. In addition, cGAS
can directly bind with Beclin-1 autophagy protein and
release the negative autophagy regulator Rubicon from
the Beclin-1 complex. This interaction activates down-
stream phosphatidylinositol 3-kinase class III and in-
duces autophagy to remove cytosolic pathogen DNA
independent of TBK1 activation [17]. Another TBK1 in-
dependent way relies on the formation of ERGIC. After
binding with cGAS, STING buds from the endoplasmic
reticulum into coat protein II (COP-II) vesicles then
forms the ERGIC. The ERGIC serves as the membrane
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source for WD-repeat PtdIns (3) P effector protein 2
(WIPI2) recruitment and LC3 lipidation. Autophago-
somes that target cytosolic DNA or DNA viruses then
formed and merge with the lysosome. Besides, the dis-
covery in sea anemone prompts us that autophagy in-
duction is an ancient and highly conserved function of
the cGAS/STING pathway that even pre-dates the emer-
gence of the type-I interferon pathway in vertebrates
[15]. Autophagy induced via these pathways prevents
replication of pathogens by eliminating the infected cells,
protecting the body against pathogen attack. Other roles
of ¢cGAS/STING induced autophagy include protecting
liver from ischemia-reperfusion injury [120] and restrict-
ing chromosomal instability during replicative crisis.
This replicative check point also serves as a final barrier
against oncogenic transformation by eliminating precan-
cerous cells with disrupted cell cycle checkpoints [121]
(Fig. 6d).

Necroptosis is a lytic form of PCD that involves the
swelling and rupture of dying cells. cGAS/STING is able
to induce necroptosis in bone marrow derived macro-
phages via type I IFN signaling pathways, which syner-
gizes to trigger RIPK3 (receptor interacting protein
kinases 3) and MLKL (Mixed lineage kinase domain-
like) driven necroptosis independent of caspase-8 func-
tion [122, 123]. Moreover, cGAS/STING activated by
mitochondrial DNA has been suggested to amplify
necroptosis via a TNF-dependent mechanism [124, 125]
(Fig. 60).

Substantial crosstalk exists between different cell death
pathways ensuring that these signaling pathways are well
regulated. More studies are required to further explore
the interconnection among these pathways and how
cGAS/STING signaling toggles in transcriptional re-
sponses, different forms of RCD, anti-neoplastic trans-
formation and anti-infection reactions.

Others

Mitophagy is a selective form of autophagy controlled by
the Pinkl-Parkin pathway or the mitophagic receptors
Nix and Bnip3. The physiological role of mitophagy is
specifically removing damaged or excessive mitochon-
dria [126]. cGAS/STING does not participate in regulat-
ing mitophagy directly. But when damaged mitochondria
failed to be removed, stress from mitochondrial DNA
mutations activates the proinflammatory cGAS/STING
pathway which may contribute to several age-related
neurodegenerative diseases, for example, Parkinson’s
and Alzheimer’s disease [127, 128]. The engagement
of cGAS and subsequent mtDNA-induced STING-
mediated type I IFN production can be suppressed by
apoptotic caspase 9 and downstream caspase 3 and 7,
rendering mitochondrial apoptosis immunologically si-
lent [108, 110] (Fig. 6a).
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Though many unknowns remain in the regulation
among cGAS, Ca>* homeostasis and ER stress, the exist-
ing research findings show promising results for future
investigation. Here we list the brief summary of these
findings: (1) STING influences the intracellular Ca**
level via affecting the mobilization of ER Ca®* pool. As
we put above, STING is found on the contact sites be-
tween the ER and mitochondria where Ca®* is ex-
changed between these two organelles via channels like
voltage-dependent anion channel 1 (VDACI1) and mito-
chondrial Ca®* uniporter (MCU). STING deficiency aug-
ments the translocation of stromal interaction molecule
1 (STIM1), a Ca®>* sensor. Then the depletion of ER
Ca®* stores trigger Ca”>* entry [80]. (2) Intracellular cal-
cium is a rheostat for the STING signaling pathway. Re-
ductions in cytosolic Ca®>* and the mitochondrial export
of Ca®* reduced the activation of NF-«kB and IRF3.
While increased intracellular Ca®** from ER and mito-
chondria promotes STING activation via two independ-
ent Ca**-calmodulin dependent pathways: AMPK
(Adenosine 5’-monophosphate (AMP)-activated protein
kinase) and CAMKII (Ca2+/calmodulin-dependent pro-
tein kinase II) pathways [129]. (3) ER stress activates
STING pathway. ER stress, either induced by alcohol or
co-stimulation with thapsigargin (the sarcoplasmic endo-
plasmic reticulum calcium ATPase (SERCA) pump in-
hibitor), enhances STING signaling and augments IFN
production [130, 131]. Besides, STING activates ER
stress and the unfolded protein response (UPR) through
a novel motif termed as “the UPR motif’, which is lo-
cated in the helix aa322-343. Long-lasting STING-
mediated ER stress and disruption of calcium homeosta-
sis primes T cell death by apoptosis [132-134] (Fig.6e).

Roles of the cGAS/STING pathway in human
diseases

Generally, cGAS is allocated to a limited subcellular area
that is free of self-DNA. Several endogenous nucleases
participate in maintaining self-DNA level under the
threshold of receptor activation. However, under patho-
logic circumstance, self-DNA is exposed to cGAS. This
will lead to abnormal activity of the cGAS/STING path-
way, causing autoinflammation and autoimmune disease
and even inflammation-associated cancers. Abnormal
activation of cGAS/STING pathway in inflammatory and
autoimmune diseases is well discussed in other papers
[8, 21, 135]. Here we take Aicardi-Gourtiéres syndrome
(AGS), a typical disease caused by the excessive activa-
tion of cGAS, as an example to illustrate the mechanism.
AGS is caused by causal mutations in any one of several
key genes, including TREX1, RNASEH2A (Ribonuclease
H2 subunit A), RNASEH2B, RNASEH2C (which to-
gether encode the Ribonuclease H2 enzyme complex),
SAMHDI1 (Sterile alpha motif and histidine-aspartic acid
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domain-containing protein 1), ADAR1 (adenosine deam-
inase acting on RNA 1) and IFIH1 (interferon induced
with helicase C domain 1, also known as MDA5) [136—
140]. These genes are responsible for cleaning ectopic
DNA, lack of which causes inappropriate accumulation
of self-derived nucleic acids, sustained activation of
cGAS and excessive production of type I interferons.

Apart from self-DNA-driven inflammation, other
cGAS/STING pathway induced responses also partici-
pates in human diseases [44, 47, 141-144]. For example,
mutations in gene ATG16L1 promote the production of
IL-22 in the intestinal epithelium through cGAS/STING
pathway, which result in excessive epithelial cell death
and inflammatory bowel disease (IBD) [145]. The con-
nection between the cGAS pathway and aging provides a
new topic for us. Existing study has identified the cGAS/
STING pathway as a sensor of senescence-associated
DNA damage and trigger of inflammation in early age-
related macular degeneration [146]. More research is
needed on the relationship between ¢cGAS/STING path-
way and senescence-associated human diseases such as
neurodegenerative diseases, degenerative arthritis and
cardiovascular diseases.

Defective cGAS/STING signaling is closely associated
with oncogenesis, immune evasion and tumor metastasis
[147, 148]. Antineoplastic role of cGAS has been found
in multiple mouse tumor models, including colon, brain,
skin, pancreatic, liver, breast, and B cell malignancies
[149, 150]. These protective effects are achieved mostly
through IFN-induced immune responses and in few
cases via autophagy [121, 151]. cGAS/STING pathway is
also related to tumor microenvironment remodeling [82,
152] and the production of anti-tumor cytokines such as
indoleamine 2,3-dioxygenase (IDO), IL-10 and ISGs, to-
gether inhibiting tumor growth and improving the sur-
vival [150, 153]. In vitro human study shows that
targeting DNA damage response promotes antitumor
immunity through STING-mediated T-cell activation in
small cell lung cancer [154]. In vivo human-related re-
search has not been performed, but we can assume the
connection based on exiting in vitro studies.

Based on the anti-tumor role of cGAS/STING path-
way, people began to design STING agonists and cyclic
dinucleotide derivatives for tumor treatment. A novel
synthetic cyclic dinucleotide, ADU-S100, has been pro-
moted to phase Ib clinical trials in patients with diverse,
solid, accessible tumors for achievable intra-tumoral de-
livery. Antitumor effects of ADU-S100 have been ob-
served in PD-l1-naive TNBC and PD-1-relapsed/
refractory melanoma [155, 156]. Synthetic derivatives
demonstrate a strong ability of inducing IFN-f in both
murine BMDMs and primary human cells and forming
antitumor immunological memory following tumor re-
gression [153]. Contrary to the results mentioned above,
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activation of the cGAS/STING pathway is found in tol-
erogenic responses. By inducing indolamine 2,3-dioxy-
genase, cGAS/STING pathway promotes the growth of
tumors with low antigenicity [157]. And a pan-cancer
human study which analysis the association between
the expression of cGAS/STING and immune cell in-
filtration shows that the upregulated cGAS/STING
signaling is negatively correlated with the infiltration
of immune cells in some tumor types [158]. There-
fore, it is necessary to fully evaluate the function of
cGAS/STING signaling in cancer immunity before the
application of the STING agonist-based anticancer
immune therapy [158].

cGAS/STING surveillance is a main part of antiviral
responses, achieved mainly through the production of
IEN. In addition to an initial virus-induced inflammatory
cascade, cGAS/STING effectively engages a potent local-
ized immune response via cCGAMP transfer [159]. Au-
tophagy is another effective anti-viral process that
maintains cellular homeostasis by orchestrating immun-
ity upon viral infection [160]. For example, ZIKV infects
mature neurons in fly brain which induces Rel/NFKB in-
flammatory signaling. Rel/NFKB activates the expression
of STING which then activates antiviral autophagy to re-
strict ZIKV infection [16, 161]. Recent study even reveals
that autophagy induction in response to stimulation by
cGAMP is a primordial function of the cGAS/STING
pathway that pre-dates the emergence of the type-I
interferon pathway in vertebrates [15]. More studies are
needed to understand the role of cGAS/STING in anti-
viral infection via induction of autophagy.

Conclusions and perspectives

cGAS/STING is a well-studied signaling pathway that
participates in sensing abnormal subcellular localization
of DNA and mediating protective immune defense
against infection. Over the past few years, studies have
established the basic framework and mechanisms of this
DNA-sensing pathway. However, the investigation of
cGAS pathway in immunomodulation and antitumor
therapy has attracted a lot of attention and its critical
roles in other areas are overlooked. Accumulating evi-
dence indicates that the physiological and pathological
regulatory effects of cGAS/STING pathway extends far
beyond “traditional” antimicrobial immunity. In this re-
view, we summarize the current finds of cGAS/STING
pathway in a broad repertoire of cellular processes, in-
cluding mitochondrial function, ER stress, Ca** homeo-
stasis, cellular senescence, PCD, and metastasis. Based
on its broad regulatory roles, we could see the thera-
peutic application of cGAS/STING pathway in some
age-related diseases such as neurodegenerative diseases,
osteoarthritis, cardiovascular disease, chronic kidney and
pulmonary disease. These diseases, like tumors, have
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abnormal elimination of pathological tissue or the alien-
ation of normal tissues. Developing specific inhibitors of
the cGAS/STING pathway to identify its role in these
human diseases will be an important and exciting task in
the future.

Undeniably, several questions remain to be answered.
First is about aging and cellular senescence which are
believed to participate in the pathology of many diseases.
Accumulated DNA damage, genomic instability, mtDNA
release are ubiquitous in senescent cells. As we talked
above, cGAS pathway is highly likely to sense these
DNA segments and regulate SASP production. However,
it is unlikely to be achieved through the classic pathway
as increased IFNs are not normally seen in natural aging
process. Other downstream regulators are waiting to be
found to better explain this regulatory role. Ca** homeo-
stasis is another interesting part because ER stress, mito-
chondrial dysfunction and PCD are all related to cellular
Ca®* level. STING is located on ER membrane near the
ion exchange channels between ER and mitochondria.
Whether and how STING affects the on and off of these
channels and the consequence of this regulation are
largely unknown. Faced with internal and external pres-
sure, how cells determine the balance between caspase-
induced apoptosis and cGAS-induced IFN production is
still un clear. Besides, how STING induces autophagy
under virus infection is unknown. In addition, the regu-
lation of this pathway, signaling mechanism at each step
and the possible crosstalk with other pathways require
more studies to identify.

In sum, we thoroughly summarize the broad roles of
cGAS/STING pathway in several critical cellular pro-
cesses. Maintaining the delicate balance between aging,
immunity and proliferation is a necessary guarantee for
cell living and functioning. Future research on cGAS
could focus more on the role of cGAS in balancing these
three aspects, interactions with other related regulating
pathways and applications in human disease treatments.
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