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Abstract

One fundamental problem of protein biochemistry is to predict protein structure from
amino acid sequence. The inverse problem, predicting either entire sequences or individual
mutations that are consistent with a given protein structure, has received much less atten-
tion even though it has important applications in both protein engineering and evolutionary
biology. Here, we ask whether 3D convolutional neural networks (3D CNNs) can learn the
local fitness landscape of protein structure to reliably predict either the wild-type amino
acid or the consensus in a multiple sequence alignment from the local structural context
surrounding site of interest. We find that the network can predict wild type with good accu-
racy, and that network confidence is a reliable measure of whether a given prediction is
likely going to be correct or not. Predictions of consensus are less accurate and are pri-
marily driven by whether or not the consensus matches the wild type. Our work suggests
that high-confidence mis-predictions of the wild type may identify sites that are primed for
mutation and likely targets for protein engineering.
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1 Introduction

Proteins are dynamic, complex macromolecules that exist as an ensemble of conforma-
tional substates (CS) on a fitness landscape [10]. The fitness landscape describes the
potential energy of the protein as a function of conformational coordinates [10] and is
used to study evolution, to identify proteins with new and useful properties, or to quan-
tify mutability [13]. A protein crystal structure, on the other hand, is a static represen-
tation of a protein and is a single point within the energy landscape. This single point
is usually a local minimum on the energy landscape, i.e., a highly stable CS that pre-
dominates the population and enables crystallization. While a protein crystal structure
does not capture the functional and stochastic fluctuations required to model the local
energy landscape, sampling thousands of diverse protein crystal structures provides a
more global perspective of local energy minima dispersed across the complex energy
landscape of all proteins.

The modeling of the protein energy landscape has made significant progress over
the last 30 years [13]. Most recently, the application of deep learning to the protein
folding problem has shown tremendous success. In particular, Deepmind demonstrated
in CASP14 that their deep learning model, AlphaFold, is able to learn how to generate
highly accurate protein structures solely from a protein’s primary sequence and multi-
ple sequence alignment, essentially properly placing a protein sequence in the correct
energetic minima [20]. While such great advancements are being made in protein fold-
ing, the application of deep learning to the converse problem is lacking: understanding
how the structure constrains the amino acids that are allowed at a given site. Prior
work using conventional modeling has shown that this is a challenging problem in gen-
eral [7], and even just predicting whether a site is conserved or variable over evolution-
ary time is not trivial [15, 17, 24, 25]. Furthermore, the ability to predict which amino
acids are allowed at a site would limit the sampling of deleterious mutations, accelerat-
ing targeted mutagenesis and protein engineering efforts.

Here, we investigate to what extent a 3D self-supervised convolutional neural net-
work (3D CNN) model trained on predicting a masked residue from its local chemi-
cal environment—its microenvironment—can predict wild-type residues [37, 40] and
residues in evolutionarily diverged homologs. We show that the CNN model primarily
predicts the wild-type residue, rather than the residues found in diverged, homologous
sequences. Furthermore, we correlate the predicted probability distribution for each
residue within the dataset with its observed natural variation in a multiple sequence
alignment to examine how much of the natural variation is captured by the 3D CNN
model. We assess accuracy as a function of CNN confidence and explore the distribu-
tion of amino acids predicted at high confidence. We find that CNN confidence is a
good measure of prediction accuracy and that hydrophobic residues are more likely
to be predicted with high confidence. Finally, we investigate the impact of microenvi-
ronment volume on both the accuracy of predictions and their correlation with natu-
ral variation by training several 3D CNN models with different input volumes. Our
results demonstrate that the first contact shell plays a crucial role in predicting masked
residues from their structural context. Our work may have applications to protein engi-
neering, where sites at which the CNN confidently mis-predicts the resident amino
acid may be primed for gain-of-function and hence targets for mutagenesis.
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2 Methods
2.1 Network architecture

We constructed all convolutional neural network models using tensorflow (v2.4.0) [1].
The network architecture was adopted from the literature [37, 40] and consisted of a
total of nine layers divided into two blocks: 1) feature extraction and 2) classification.
The feature extraction block consisted of six layers: two pairs of 3D convolutional lay-
ers followed by a dimension reduction max pooling layer after each pair. The first pair
of convolutional layers used filters of size 3 X 3 X 3, and the second pair had filters of
size 2 X 2 X 2. Additionally, the Rectified Linearity Unit function (Relu) was applied to
the output of each of the four convolutional layers. The final feature maps generated by
the feature extraction block had dimensions of size 400 X 3 x 3 X 3. These feature maps
were flattened into a 1D vector of size 10, 800 X 1 before being passed to the classifica-
tion block. The classification block consisted of three fully connected dense layers given
dropout rates of 0.5, 0.2, and 0, respectively. Similar to the feature extraction block,
the output of the first two dense layers was transformed by the Relu function. To obtain
a vector of 20 probability scores representing the network prediction for each of the
amino acids, we applied a softmax activation function to the output of the third dense
layer. The full list of parameters for each layer in the CNN is provided in Table S1 in
Online Resource 1.

2.2 Data generation and training

To compile the training data, we started with a set of protein crystal structures utilized
in previous work [37]. This set provided us with 19,427 distinct protein data bank (PDB)
identifiers corresponding to structures with at least a 2.5 A resolution. Next, we filtered
down our dataset by using a 50% sequence similarity threshold at the protein chain level
and removing structures where we could not add hydrogen atoms or partial charges in an
automated fashion with PDB2PQR (v3.1.0) [5]. The 50% threshold was applied to reduce
potential bias that could be caused by large numbers of highly similar sequences in the
training data. Finally, we removed any protein chains that had more than 50% sequence
similarity to any structure in the PSICOV dataset [19]. The PSICOV dataset contains 150
extensively studied protein structures, and we used it here as a hold-out test dataset to eval-
uate the CNN models (see below). The final dataset used for training the CNN models
consisted of 16,569 chains.

We randomly sampled residues from the protein dataset to create a dataset of microen-
vironments that reflected the natural abundance of each amino acid. For each protein chain,
we sampled at most 100 residues and at most 50% of its residues, whichever number was
smaller. The intent of imposing these limitations was to not bias model predictions toward
larger proteins and also to limit the number of very similar microenvironments that we
obtain when sampling neighboring residues. We stored the microenvironment dataset as a
set of meta-data, recording the specific residues being sampled by their PDB ID, chain ID,
residue sequence number, and the wild-type amino acid label. The final microenvironment
dataset consisted of 1,455,978 microenvironments. A 90:10 split was utilized for training
and validation, respectively. The same training and validation splits were used for all CNN
models.
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All training instances and labels were generated just-in-time from their microenviron-
ment meta-data, in a batch-wise fashion. With this meta-data, we generate a voxelated rep-
resentation (4D tensor) of the microenvironment centered at the a-carbon of the specified
residue and oriented with respect to the backbone such that the side chain is oriented along
the +z axis. The voxelated representation had a 1 A resolution and consisted of 3D space
(x, y, z) plus 7 auxiliary channels. The auxiliary channels encoded information about the
nature of the atom present in a voxel (C, H, O, N, S) as well as partial charge and solvent
accessible surface area.

We used PDB2PQR (v3.1.0) [5] to add hydrogen atoms to the protein structure and to
calculate the partial charges of each atom in the protein using the PARSE forcefield [38].
We used FreeSASA (v2.0.3) [26] to obtain the solvent accessible surface area of each atom
in the protein structure. The spatial dimensions chosen (12 108, 20 108, 30 108, 40 10\) dictated
which atoms from the protein structure were included in the voxelated representation of the
microenvironments. All atoms of the centered residue were excluded from the voxelated
representation.

The CNN models were trained on Radeon Instinct MI-50 accelerator GPUs. All models
were trained identically and with the same microenvironment dataset so that model predic-
tions would reflect the impact of modifying the volume of the microenvironment. For each
model, we used a batch size of 200 microenvironments and trained for 5 epochs. The loss
was calculated with stochastic gradient descent with momentum (0.75) and an adaptive
learning rate. The learning rate was initialized at 0.05 and was reduced by half if the vali-
dation accuracy did not increase by at least 0.1% every 2,000 batches.

2.3 Generating predictions and assessing accuracy

To verify the network performance on an independent dataset, we used the PSICOV data-
set [19] as our final test dataset. Each of the PSICOV protein structure PDB files came with
multiple sequence alignments (MSAs) ranging from 10 — 60,000 sequences per protein.
The PSICOV dataset contained 150 structures, but we discarded 20 of them because either
we were unable to add hydrogen atoms or calculate partial charges with PDB2PQR, or
the MSAs did not properly align with the sequence in the protein structure. All PSICOV
protein structure PDB files and multiple sequence alignments were downloaded from the
following archive at Zenodo: https://dx.doi.org/10.5281/zenodo.2552779.

For each of the remaining 130 protein structures, we made boxes around each residue.
The size of each box corresponded to the box size with which the network was trained.
These boxes were then used as input for the respective trained network, and the network
output was a vector of 20 probabilities corresponding to the 20 amino acids for every posi-
tion in the protein. After generating predictions for each position, the amino acid with the
highest probability was identified as the predicted amino acid. These predicted amino acids
were compared to the residues from the PSICOV protein structures, referred to as the wild-
type residues.

To assess the ability of the network to predict the wild-type amino acid, we calculated
prediction accuracy separately for each protein as the percentage of wild-type predictions
(i.e., sites where the wild-type amino acid is correctly predicted) among the total number
of predictions for the protein. To calculate the network accuracy for predicting the amino
acid class, individual amino acids were divided into six classes (Table 1) and accuracy
calculations previously performed at the level of individual amino acids were repeated
at the level of amino acid classes. Finally, to determine whether CNN confidence is a
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Table 1 Amino acids grouped by class

Class Included amino acids

aliphatic Methionine (M), Leucine (L), Inosine (I), Valine (V), Alanine (A)
small polar Cysteine (C), Serine (S), Threonine (T), Asparagine (N), Glutamine (Q)
negative Aspartic Acid (D), Glutamic acid (E)

positive Arginine (R), Lysine (K)

aromatic Histidine (H), Tyrosine (Y), Phenylalanine (F), Tryptophan (W)

unique Proline (P), Glycine (G)

reliable measure of prediction accuracy, we calculated prediction accuracy within prob-
ability bins spanning the values of (0-0.2], (0.2-0.4], (0.4-0.6], (0.6-0.8], and (0.8-1.0].
Each bin contained only the positions that were predicted within the specified probabil-
ity range, and accuracy was again calculated as the percentage of wild-type predictions
among those positions.

2.4 Comparing predictions to sequence alignments

To compare network predictions to natural sequence alignments, we first found the consen-
sus amino acid for each position in the alignments. We defined the consensus as the amino
acid with the highest occurrence at each position in a multiple sequence alignment. In case
of ties, we arbitrarily chose one of the tied amino acids as the consensus amino acid at that
position. There were only a total 43 ties among ~21,000 positions analyzed.

To determine average sequence divergence of a multiple sequence alignment
(MSA) from its reference wild-type sequence, we first calculated the percent similar-
ity of each sequence in the MSA to the wild-type sequence and then averaged over
all sequences in the alignment. The percent similarity was calculated by counting
the total number of amino acids matching the wild-type sequence and dividing by
the length of the wild-type sequence. In this calculation, gaps in the alignment were
treated as mismatches.

To control for sequence divergence, the original PSICOV alignments were divided
into five sub-alignment groups based on percent similarity to the wild-type sequence. The
groups were evenly spaced from 0% similarity to 100% similarity in steps of 20 percentage
points. Proteins that did not have 10 or more sequences in their alignments were removed
from a group unless they were part of the lowest or highest similarity group (i.e., (0-20%]
or (80-100%]).

2.5 Site-specific variability

For each position in the multiple sequence alignments, we calculated the effective number
of amino acids (n.4) as a measure of site-specific variability. The n at site i is defined as

Negi (i) = exp(— iji Inpj), 1)
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where p;; is the relative frequency of amino acid j at site 7 in the alignment. 7 is a number
between one and 20, where one indicates that exactly one amino acid is seen at this site
and 20 indicates that all twenty amino acids are seen at equal frequencies. Similarly, we
calculated an n4 corresponding to the neural network predictions, by using the network’s
predicted probabilities as the values for p;; in the above equation.

To compare the variation in the predicted amino acid distributions to the site-specific vari-
ation in alignments, we correlated the vector of n 4 values obtained from the CNN predictions
with the vector of n.g values calculated from the MSAs separately for each protein. Similarly,
when we binned sequences into five sub-alignments based on percent similarity to the wild-
type sequence, the n.; was calculated for each position in the sub-alignments. For analysis of
sub-alignments, we removed all protein structures that did not appear across all 5 similarity
bins.

For all correlation coefficients, we assessed statistical significance by calculating p values,
which we corrected for multiple testing by applying the false-discovery-rate correction [3].

2.6 Comparing amino acid distributions

To identify which amino acid types the network is most likely to predict with high confi-
dence, we calculated the frequency with which each amino acid was predicted at a confi-
dence between 80—-100%. As a baseline reference, we also calculated the amino acid fre-
quencies in the training data. Finally, to compare the distribution of amino acids that are
predicted with high confidence to amino acids that tend to dominate at positions across
homologs, we performed similar calculations using the MSAs by calculating the amino
acid frequencies at positions where a single residue appears in 80-100% of the sequences
in an MSA.

2.7 Frustration indices

To compare CNN predictions to frustration indices, we arbitrarily selected five protein struc-
tures (1ATL, 1BEH, 1D40, 1GBS, 2VXN) and manually calculated frustration indices using
the Frustratometer Server http://frustratometer.gb.fcen.uba.ar/localizing_frustration [28]. More
positive indices indicate minimal frustration, and indices below —1 indicate positions that are
highly frustrated. We then performed an analysis of variance of frustration index against CNN
prediction status (correctly predicted or mispredicted), using protein identity as a fixed-effect
covariate.

2.8 Data availability

Final data analysis and figure production were performed in R [31], making extensive
use of the tidyverse family of packages [42]. Analysis scripts and processed data are
available on GitHub: https://github.com/akulikova64/CNN_protein_landscape. Trained
neural networks and the training set protein chains and microenvironments have been
deposited at the Texas Data Repository and are available at: https://doi.org/10.18738/T8/
S8HJEF9.
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3 Results

3.1 A convolutional neural network predicts wild-type and consensus amino acids
with good accuracy

We trained a self-supervised 3D convolutional neural network (3D CNN) to predict
the masked amino acid at the center of a chemical environment (microenvironment)
extracted from a protein structure (Fig. 1). Specifically, the input data to the network
consist of a cube with a 1 A resolution representing all amino-acid atoms surround-
ing a specific residue (wild-type amino acid), where the specific residue itself has
been deleted. Based on this input, the model outputs a discrete probability distribution
describing the likelihood of each amino acid being the wild-type amino acid for the
given microenvironment. The amino acid with the highest probability is taken as the
network’s prediction for the wild-type amino acid at the site. We evaluated the perfor-
mance of the trained network on an independent dataset of 130 structures (the PSICOV
dataset [19]). All sequences in the training dataset differed by at least 50% from each
other and from all sequences in the PSICOV dataset.

We first assessed how well the network could predict a resident amino acid in a pro-
tein structure. We refer to the sequence of the PDB structure as the wild-type sequence.
We found that prediction accuracy for the wild-type sequence was generally high,
around 60% on average (Fig. 2a). In other words, for approximately 60% of all sites in
the PSICOV dataset, we could predict the wild-type amino acid from its local chemical
environment. We also assessed prediction accuracy at the level of amino-acid classes,
where we grouped biochemically similar amino acids into groups (Table 1). We found

Feature Extraction Classification
— T — i Elatencd Dense layers
= = ~ ~ features
(52} (s} N N
Input ; ;; :\j :l
x x
st =1 el el 18 |||
AN RIERE
> 2|2 a2 | 2|
5 = % 5 =
g S S S S
AR RIERE:
3 3 8 8
8 2 8 2
n 1000 100 20
L ]
Filters: 100 200 200 400 Neu'rons

Fig.1 3D CNN Architecture. The CNN consists of two separate parts, (i) feature extraction and (ii) classifi-
cation. The input data are a box containing atomic coordinates and some auxiliary data (partial charge, sol-
vent accessibility) represented as voxels with 1 A3 size. Feature extraction consists of several layers of 3D
convolutions and max-pooling. Classification consists of several fully connected dense layers resulting in a
final set of 20 neurons representing probabilities for each of the 20 amino acids. In the classification part, n
represents the number of extracted features, which depends on the dimensions of the input box. For a 20A
box, n = 10800 total features. See Table S1 in Online Resource 1 for the full list of parameters at each step
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Fig.2 Overall performance of CNN predictions for 20 A box. The black points and bars represent the
means and 95% confidence intervals, respectively. If no bars are visible, the 95% confidence intervals are
smaller than the points indicating the location of the means. (a) Prediction accuracy compared to the wild-
type sequence. Individual amino acids were predicted with a 59.2% mean accuracy, and amino acid classes
were predicted with 71.3% mean accuracy. (b) Prediction accuracy compared to the alignment consensus.
Individual amino acids were predicted with 38.3% mean accuracy, and amino acid classes were predicted
with 55.2% mean accuracy. (¢) The frequency at which the predicted consensus is the wild type. Bars repre-
sent the proportion of amino acids (purple) and amino acid classes (yellow) out of all successful consensus
predictions that match with the wild type. 86.7% of predicted residues that match the consensus are identi-
cal to the wild type, and 90.4% of successful consensus amino acid class predictions also match the wild

type

that our ability to predict amino acid classes was slightly higher than our ability to pre-
dict specific amino acids, averaging at approximately 71% (Fig. 2a).

We next asked how well the network could predict the consensus amino acid at a site
in a multiple-sequence alignment (MSA). To what extent such a prediction is possible
depends on how conserved the microenvironment around a given site is in homologous
structures. If biochemical constraints are mostly conserved over evolutionary time, then
the network should reliably predict consensus amino acids. By contrast, if the constraints
change rapidly as proteins diverge, then the model will poorly predict the consensus amino
acid. We found that we could predict the consensus amino acid with approximately 40%
accuracy and the consensus class with approximately 55% accuracy (Fig. 2b). Notably,
nearly all (87%) of the sites where we correctly predicted the consensus amino acid cor-
responded to sites where the consensus amino acid is identical to the wild-type amino acid
(Fig. 2¢). In other words, the network performs well at predicting the wild-type amino acid,
and that extends to the consensus amino acid when it is the same as the wild-type amino
acid.

To further elaborate how prediction of the consensus amino acid depends on sequence
divergence among homologs, we subdivided alignments into groups with similar sequence
similarity to the wild type, calculated the consensus for these similarity groups and then
assessed prediction accuracy for the consensus (Fig. 3). As expected, we observed a sys-
tematic, linear decline in prediction accuracy with decreasing sequence similarity. For the
most diverged sequences (0-20% similarity to wild type), prediction accuracy was below
30%, whereas for the least diverged sequences (80-100% similarity to wild type), accu-
racy was virtually the same as for predicting wild type (Fig. 3a). Results were similar for
amino acid classes (Fig. 3b). One caveat to this analysis is that homologs were not evenly
distributed across the different groups; on average, for each protein, the 80-100% sequence
similarity group contained only ~150 sequences, whereas the 0-20% similarity group
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Fig.3 20 A box CNN predictions of alignment consensus by alignment similarity. The black points and
bars represent the means and 95% confidence intervals, respectively. If no bars are visible, the 95% confi-
dence intervals are smaller than the points indicating the location of the means. The percent similarity is the
similarity of each alignment sequence to the wild-type sequence, the structure of which is used to generate
predictions. (a) Percent accuracy of predicting the alignment consensus amino acid. The red dashed line
shows the mean accuracy of predicting the wild-type residue for comparison (59.2%). (b) Percent accuracy
of predicting the alignment consensus class. The red dashed line shows the mean accuracy of predicting the
wild-type class for comparison (71%)

contained ~60,000 sequences (Fig. S1 in Online Resource 1). Across all groups, the aver-
age number of sequences per protein was ~1,000.

3.2 Network confidence reflects prediction accuracy

Next, we tested whether prediction accuracy was related to CNN confidence. Confidence
is defined as the probability with which an amino acid is predicted by the model (i.e., the
highest probability in the predicted distribution of all amino acids). We first binned the
predicted probabilities into five confidence bins, spanning a range of 0.2 units each, and we
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then calculated the accuracy of predicting either the wild-type or the consensus amino acid
within each confidence bin. We found that the network confidence was an excellent meas-
ure of prediction accuracy for wild-type residues (Fig. 4a). Mean accuracy almost perfectly
matched the CNN confidence for each confidence bin. Similarly, mean accuracy of predict-
ing the consensus residue was consistently at a frequency of 0.1-0.2 below the CNN confi-
dence (Fig. 4b). Overall, CNN confidence was a very good measure of prediction accuracy.

We then wanted to see if high network confidence also implied that all 20 amino acids
were predicted with equal likelihood. We selected the positions in the highest predicted
probability bin (0.8-1.0] and calculated the frequency with which each amino acid was
predicted within this bin. We found that the network predicted the unique and aliphatic
(hydrophobic) amino acids with the highest frequencies (Fig. 5a). This pattern could be
partially explained by the amino acid composition in the training dataset (Fig. 5b): The two
sets of frequencies were correlated (r = 0.658, p = 0.002), so approximately 43% of the
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Fig. 4 Prediction accuracy as a function of CNN confidence. The black points and bars represent the means
and 95% confidence intervals, respectively. If no bars are visible, the 95% confidence intervals are smaller
than the points indicating the location of the means. (a) Accuracy of predicting the wild-type residue. (b)
Accuracy of predicting the consensus residue
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Fig.5 Distributions of amino acid types across predicted, training, and natural datasets. (a) The relative
frequency of each amino acid predicted with a confidence of 80-100%. (b) The relative frequency of each
amino acid type in the CNN training data. The correlation between predicted and training frequencies was
0.658 (p = 0.002) (c¢) The distribution of highly conserved amino acids. These amino acids are found at
frequencies > 80% at individual positions in the MSA. The correlation between predicted and conserved
amino acid frequencies was 0.826 (p = 0.002)

variation in which amino acids were predicted with high confidence could be explained by
the composition of the training dataset. However, by calculating the ratios between these
two sets of frequencies, we could confirm that the network trains best on hydrophobic resi-
dues (Fig. S2 in Online Resource 1). We can speculate that this is because hydrophobic
amino acids tend to be found in the core of the protein, where the CNN has more chemical
context for generating predictions. By contrast, positive (charged) amino acids were least
likely to be predicted with high confidence; these amino acids are more commonly found
on the periphery of the protein structure, where the partially empty microenvironment box
provides less context for prediction. This finding is consistent with prior studies where a
similar network performed poorly on surface residues [37].

We also tested whether the same amino acids that tended to receive the highest CNN
confidence scores were also the most likely to be conserved in multiple sequence align-
ments. We extracted positions in the MSAs where the consensus was found in 80-100%
of homologs and calculated the consensus amino acid frequency at these sites (Fig. 5c).
Interestingly, there was a stronger correlation between the most accurately predicted amino
acids and the most conserved ones (r = 0.826, p = 0.002). The most conserved amino
acids tend to be the most easily predicted by the network.
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3.3 Mis-predictions depend weakly on amino acid biochemistry

We explored the distribution of mis-predictions, predictions that did not match the resi-
due in the wild-type structures, by calculating confusion matrices. We calculated confusion
matrices at the levels of both individual amino acids and amino acid classes, for both wild-
type predictions and consensus predictions (Fig. 6). We found some preference of the net-
work to make mis-predictions within the same amino acid class. However, this preference
was weak at the level of wild-type predictions (Fig. 6a) and only a little more pronounced
at the level of consensus predictions (Fig. 6¢).

We then looked only at the network’s mis-predictions and asked if a residue’s predicted
probability was related to its abundance at the corresponding position in the MSA. We
expected to see that the amino acid substitutions suggested by the CNN model would be
found more frequently in nature with increasing CNN confidence. However, we found
that the mean natural frequency increased between increasing confidence bins only at a
rate of about 2 percentage points. Furthermore, we directly correlated the frequency with
which the non-wild-type amino acid is found in homologs with the predicted probability.
As expected, the correlation was very weak (r = 0.214, p < 2 x 107'®, Fig. S3 in Online
Resource 1). We also observed that frequencies vary extensively within each confidence
bin and while mis-predicted amino acids sometimes occur at high frequency in natural
alignments, in the majority of cases, they occur at near-zero frequency (Fig. S3 in Online
Resource 1).
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We also wanted to know whether CNN mispredictions are related to local frustration.
For an arbitrarily chosen set of five protein structures, we calculated local frustration at
each site using the Protein Frustratometer [28]. We then asked whether frustration scores
were systematically higher or lower for mispredicted or correctly predicted sites. We found
that there was a mild effect (Fig. S4 in Online Resource 1). While on average, mispredicted
sites showed more frustration than correctly predicted sites (ANOVA, p < 0.0008), there
was broad overlap among the score distributions for both types of sites. Surprisingly, over-
lap increased when we focused on only sites predicted with high confidence or predicted
with low confidence (Fig. S4 in Online Resource 1).

3.4 Variation in natural alignments correlates weakly with network predictions

As the neural network outputs a probability distribution across all 20 amino acids, we can
ask whether the spread in the probability distribution contains any useful information.
Specifically, we analyzed whether sites where the network distributes the probability over
several amino acids correlate with non-conserved sites in the MSAs and vice-versa. We
calculated the correlation of the effective number of amino acids n. at each site for the
CNN model predictions and the MSAs, respectively. The effective number is a statistic
that ranges from one to 20, where one indicates that only a single amino acid is predicted
(CNN) or present (MSA) at the site and 20 indicates that all amino acids are predicted to be
equally likely/are present in equal proportions. If the neural network can predict site vari-
ability in natural sequence alignments, we would expect the n.4 calculated from the neural
network prediction to correlate with the n g calculated from the MSAs.

We found that correlations varied widely among protein structures but depended only
weakly on sequence divergence in the alignment (Fig. 7). For some protein structures,
we saw significant correlations explaining 10-30% of the variation in the data (correla-
tion coefficients of up to 0.6), while for other protein structures, we saw no significant
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Fig.7 Comparing site-specific variability between CNN predictions and alignments as a function of percent
similarity to the wild type. Predictions were generated by the 20 A box CNN. Variability was calculated as
the effective number of amino acids per site (n.4). Each point represents the correlation coefficient between
site-specific predicted variability (n.;) and alignment variability for a single protein. Colored points repre-
sent significant correlations (p < 0.05). All p-values have been adjusted with the false discovery rate cor-
rection. Average significant correlations per similarity group from lowest similarity to highest are 0.270,
0.330, 0.338, 0.335, and 0.286. No significant difference in mean correlation was found between the middle
three similarity groups. However, there is a significant increase in mean correlation from the (0-20%] group
to the (20-40%] group (p = 6 x 1077) and a significant decrease in mean correlation from the (60-80%]
group to the (80-100%] group (p = 0.0025)
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correlations. Correlations were on average strongest for the three intermediate sequence
similarity groups but were not much weaker for other sequence similarity groups.

3.5 Small microenvironments are sufficient for good network performance

Finally, we assessed whether the volume of the microenvironment had an impact on
CNN prediction accuracy. If the CNN model only needs the first contact shell of atoms
to accurately generate the probability distribution, then using the smallest possible box
that captures the first contact shell should be sufficient. On the other hand, if long-range
interactions among amino acids are critical for accurately predicting the probability dis-
tribution, then prediction accuracy should increase proportionally with the volume of the
microenvironment.

We trained four separate CNN models, using microenvironment volumes of linear size
12 A, 20 A 30 1&, and 40 A respectively. Overall, we found that for wild-type amino acid
predictions, average accuracy did not change much across box sizes. However, there was a
small increase from a mean accuracy of 56.2% to a mean accuracy of 60.6% from the 12
A box to the 30 A box (p < 1x 10719 (Fig. 8a). The 40 A box accuracy was lower than
the 30 A box by one percentage point. All differences between consecutive box sizes were
between one and three percentage points and statistically significant (p < 2 x 107'%). Simi-
lar patterns were found for the class and consensus predictions (Fig. 8a and b).

We also assessed whether microenvironment volume had an effect on the network’s abil-
ity to learn natural variation. Because the (40-60%] similarity group had the highest cor-
relation between predicted and natural n.g for the 20 A network, we restricted our analysis
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Fig. 8 Overall performance of CNN predictions for boxes of size 12 A, 20 A, 30 A and 40 A. The black
points and bars represent the means and 95% confidence intervals, respectively. If no bars are visible, the
95% confidence intervals are smaller than the points indicating the location of the means. All p-values have
been adjusted with the false discovery rate correction. (a) Prediction accuracy compared to the wild-type
sequence. The average amino acid accuracies for box sizes of 12, 20, 30, and 40 A were 0.562, 0.592,
0.606, and 0.598, respectively, and the average class accuracies were 0.698, 0.713, 0.724, and 0.716,
respectively. For amino acid predictions (purple), the differences in mean accuracy between all consecutive
box sizes were significant (p < 9 x 1075). (b) Prediction accuracy compared to the alignment consensus.
The average amino acid accuracies for box sizes of 12, 20, 30, and 40 A were 0.373, 0.383, 0.388, and
0.387, respectively, and the average class accuracies were 0.548, 0.552, 0.561, and 0.557, respective]y. For
consensus amino acid predictions (purple), only the difference in accuracy between the 12 A box predic-
tions and the other three box sizes was found to be significant (p < 0.003). Accuracy is slightly lower for

the 12 A box than for the other three box sizes
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to alignments in this similarity group. We repeated the analysis from Fig. 7 and found that
the correlations between predicted and observed site variability also did not appear to vary
much with microenvironment volume (Fig. S5 in Online Resource 1). However, the highest
correlations were observed for the smallest two microenvironment volumes. In aggregate,
these results suggest that the atoms in the first contact shell hold most of the information
the CNN model is using to generate the probability distribution, and additional atoms pre-
sent in larger microenvironment volumes are not contributing much additional information.

4 Discussion

We have examined the ability of a convolutional neural network (CNN) to predict res-
ident amino acids in a protein structure from their local microenvironment. The self-
supervised learning task and data engineering methodologies were adopted from prior
work [37, 40]. We have found that the CNN model primarily predicts the wild-type
residue and that its confidence is a reliable estimate of prediction accuracy. Looking at
amino acids predicted with highest confidence, we have found little association with their
conservation in homologous sequences. Finally, by training four separate CNNs using
different microenvironment volumes as input data, we have learned that the network pri-
marily uses the first contact shell; larger microenvironments do not add much additional
information to the prediction task.

Our findings reinforce the notion that amino acids are entrenched in their local biochem-
ical environment [12, 35], and that the constraints acting on an amino acid in a protein tend
to change over time as the protein evolves. We can predict the resident amino acid at a site
from its structural surroundings with approximately 60% accuracy—far better than random
chance. Notably, though, 40% of the time we predict the wrong amino acid, and 30% of the
time we predict the wrong amino-acid class. There are two reasons why our predictions
may be wrong, and we expect that our dataset contains both cases: (i) the neural network is
making an incorrect prediction; (ii) the neural network prediction is correct, and the resi-
dent amino acid is actually inconsistent with its current chemical surroundings. The second
scenario provides an opportunity for protein engineering, as it would point out sites that are
primed for mutation. Specifically, we expect that whenever the network confidently pre-
dicts an amino acid that differs from the current wild type, that site is primed for mutation
and the specific mispredicted amino acid is a good candidate for a stabilizing or gain-of-
function mutation. Prior work [37] has tested this hypothesis by experimentally evaluating
the top mispredicted mutations in three proteins and has found several stabilizing muta-
tions among a small set of candidate mutations. We are currently pursuing this engineering
strategy in additional proteins, with promising initial results.

Importantly, the CNN predictions seem to be distinct from predictions obtained by other
approaches. For example, in prior work [37], CNN predictions were substantially different
from and had little overlap with predictions derived from the commonly used force fields
provided by Rosetta [23] and FoldX [34]. Similarly, here we have found that mispredic-
tions are not necessarily linked to high frustration scores. We think it is both useful and
not too surprising that these various methods yield distinct predictions. For example, a site
could be highly frustrated but not primed for mutation, if all possible mutations at that site
result in even more frustration. Such a site would receive a high frustration score but might
be correctly predicted by the CNN. In fact, a core concept of frustration is that it cannot be
entirely eliminated, and therefore there must be sites in any protein that are both frustrated
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and not primed for mutation. Similarly, the network may miss stabilizing mutations if they
require a local conformational change. On the flip side, the network may correctly iden-
tify sites primed for mutation that are neither particularly stabilizing (theory predicts they
should be mostly neutral [12, 35]) or particularly frustrated.

Predictions at the alignment level (i.e., predicting the consensus amino acid in a multi-
ple sequence alignment) are substantially less accurate—around 40% on average—though
still much better than random chance. This finding again reinforces that sites are not inde-
pendent in protein structures and that the constraints on individual sites slowly change over
time [30]. Our analysis of prediction accuracy as a function of sequence similarity provides
insight into the extent to which local environments change as mutations accumulate. When
going from the highest sequence similarity group (80-100%) to the lowest sequence simi-
larity group (0-20%), prediction accuracy drops approximately by half. Thus, even if we
replace nearly every amino acid in a protein, the network prediction accuracy declines only
by about 50%. This shows that biochemical environments change only slowly and can be
conserved even at extreme levels of sequence divergence. Similar observations have been
made previously in the context of protein—protein binding interfaces [21, 39]. Additionally,
it would be interesting to see if feeding the CNN models molecular dynamic simulations
of the microenvironments could enable a better assessment the biochemical environment
around an amino acid and potentially improve how well the CNN model predictions reca-
pitulate natural variation.

Our findings also confirm previously leveled criticism [11] against widely used
exchangeability matrices such as BLOSUM, WAG, or LG [14, 22, 41]. These matrices
assume that we can meaningfully define exchangeability scores that predict how easily we
can replace an amino acid with any other amino acid at any site in a protein, and they
predict that virtually any amino acid can be replaced with any other. The problem with
this prediction is that while it may be true when averaging over millions of sites and many
thousand proteins, exchangeability predictions are virtually useless at any given site of
interest. In practice, at any given site of interest, only a small number (~ 5 on average) of
amino acids are allowed [8, 11, 18], and mutations to other amino acids will rarely if ever
be observed. Similarly, here we have seen that the local biochemical environment, which
is entirely ignored by exchangeability matrices, provides a strong constraint on the resident
amino acid, and it predicts the resident amino acid in at least 60% of all cases. We believe
that exchangeability models based on local amino acid preferences and/or local biochemi-
cal environments are much more useful than global exchangeability models that treat every
single site the same. For example, for the problem of constructing multiple sequence align-
ments, having a reliable estimate of the actual amino-acid frequencies at a site will natu-
rally yield much better alignments than using a model that allows every one of the 20 pos-
sible amino acids in nearly equal proportion.

Looking only at residues predicted with an accuracy of 80% and above, we have not
seen equal prediction frequencies across all 20 amino acids. In part, this is driven by natu-
ral amino acid abundance. For example, hydrophobic/non-polar amino acids, which include
aliphatic and certain aromatic amino acids, comprise a larger portion of the protein, as
they are most abundant in the protein core [6]. Consequently, they are also more frequent
in our training dataset. However, we have found prediction accuracy of hydrophobic/non-
polar amino acids to be higher than expected given their frequencies in the training dataset.
One possibility that would explain this finding is that hydrophobic residues, because they
tend to be located in the core, are more commonly found in microenvironments that are
entirely filled instead of partially empty, providing the CNN more context to make accurate
predictions.
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We were surprised to find good prediction accuracy with small microenvironment
volumes, as long-range interactions in proteins are well documented [2, 16, 27, 36].
This reinforces the notion that long-range interactions act via percolation through the
structure. Because the CNN model’s predictions remain localized to a small microen-
vironment, the model does not generalize its predictions to more distant contacts. Con-
sequently, we cannot expect the model to successfully predict a substitution at one site
without being required to predict compensatory substitutions at another site [29]. Fur-
thermore, it would be inaccurate to rule out any single network-suggested substitutions
if they do not immediately produce a functional protein; additional compensatory sub-
stitutions may be required. Unfortunately, the current model cannot account for combi-
nations or groups of substitutions.

To extend the CNN model so it considers longer-range interactions beyond the local
microenvironment, we would likely have to incorporate sequence information into the
training and prediction process. In fact, it has been shown that masked residues can be pre-
dicted entirely from sequence data [9]. This suggests that it should be possible to combine
sequence- and structure-based predictions for an overall improved performance. In the sim-
plest case, we would simply make separate predictions with either model and then combine
them based on the models’ confidence scores. A more sophisticated approach would train
a combined model that uses both sequences (possibly multiple sequence alignments) and
structures at the training stage. Also, along the same lines, we could consider training the
model on protein complexes, to obtain better predictions for surface residues. However,
we caution that this approach would then also require protein complexes at the prediction
stage.

Our research aims to shed light on the applicability of machine learning for predicting
a protein’s fitness landscape. Due to current advancements in next-generation sequencing
and the ever growing collection of chemical and biological data, computational models are
becoming increasingly popular for learning the relationship between protein sequence and
structure. For example, hidden Markov models are being developed for reconstructing pro-
tein fitness landscapes using families of homologs [4]. Neural network-based approaches,
including transformers and generative adversarial networks (GANs), have also become
increasingly widely used for the prediction and simulation of functional sequence space
[32, 33, 43]. Recently, the deep neural network-based model developed by Deepmind,
AlphaFold, has shown state-of-the-art success in predicting the global protein structure
from sequence [20]. Here, we have addressed the converse problem, where convolutional
neural networks (CNNs) are trained to learn and predict a protein’s sequence from its local
structure [37, 40]. Going forward, we expect that the primary application for this con-
verse problem is going to be protein engineering. CNNs such as the one studied here can
be used to identify sites that are primed for mutation because the resident amino acid is not
consistent with its microenvironment [37, 40]. Future work will have to determine whether
best results are obtained if the network is trained on wild-type residues, as was done here,
or whether training the network on natural variation will yield better candidates for protein
engineering.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10867-021-09593-6.

Acknowledgements We thank Raghav Shroff for writing our initial PDB to CIF converter.

Author contributions All authors contributed to the study conception and design. Material preparation, data
collection and analysis were performed by A. V. Kulikova, D. J. Diaz, and J. M. Loy. The first draft of the

@ Springer


https://doi.org/10.1007/s10867-021-09593-6
https://doi.org/10.1007/s10867-021-09593-6

452 A. V. Kulikova et al.

manuscript was written by A. V. Kulikova and all authors commented on previous versions of the manu-
script. All authors read and approved the final manuscript.

Funding This work was supported by grants from the Welch Foundation (F-1654), the Department of
Defense — Defense Threat Reduction Agency (HDTRA12010011), and the National Institutes of Health
(RO1 AI148419). We would like to thank AMD for the donation of critical hardware and support resources
from its HPC Fund that made this work possible. C.O.W. also acknowledges funding from the Jane and
Roland Blumberg Centennial Professorship in Molecular Evolution and the Dwight W. and Blanche Faye
Reeder Centennial Fellowship in Systematic and Evolutionary Biology at UT Austin.

Data availability Analysis scripts and processed data are available on GitHub: https://github.com/
akulikova64/CNN_protein_landscape. Trained neural networks and the training set protein chains and
microenvironments have been deposited at the Texas Data Repository and are available at: https://doi.
org/10.18738/T8/8HJEF9.

Declarations

Conflicts of interest/Competing interests The authors declare that they have no conflict of interest.

References

1. Abadi, M., Agarwal, A., Barham, P., Chen, Z., Citro, C., Corrado, G.S., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Goodfellow, 1., Harp, A., Irving, G., Isard, M., Jozefowicz, R., Jia, Y., Kaiser, L., Kudlur,
M., Levenberg, J., Mané, D., Schuster, M., Monga, R., Moore, S., Murray, D., Olah, C., Shlens, J., Steiner,
B., Sutskever, 1., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., Zheng, X.: Tensorflow: Large-scale machine learning on heterogene-
ous systems (2015). Software available from: https://www.tensorflow.org/

2. Abriata, L.A., Bovigny, C., Dal Peraro, M.: Detection and sequence/structure mapping of biophysical
constraints to protein variation in saturated mutational libraries and protein sequence alignments with a
dedicated server. BMC Bioinf. 17, 242 (2016)

3. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: A practical and powerful approach
to multiple testing. J R Stat Soc Series B Stat Methodol ] R STAT SOC B. 57, 289-300 (1995)

4. Bisardi, M., Rodriguez-Rivas, J., Zamponi, F., Weigt, M.: Modeling sequence-space exploration and
emergence of epistatic signals in protein evolution. https://arxiv.org/abs/2106.02441 (2021)

5. Dolinsky, T.J., Czodrowski, P., Li, H., Nielsen, J.E., Jensen, J.H., Klebe, G., Baker, N.A.: PDB2PQR:
expanding and upgrading automated preparation of biomolecular structures for molecular simulations.
Nucleic Acids Research 35, W522-W525 (2007)

6. Dyson, H.J., Wright, P.E., Scheraga, H.A.: The role of hydrophobic interactions in initiation and propa-
gation of protein folding. Proc. Natl. Acad. Sci. U.S.A. 103(35), 13057-13061 (2006)

7. Echave, J., Spielman, S.J., Wilke, C.O.: Causes of evolutionary rate variation among protein sites.
Nature Rev. Genet. 17, 109-121 (2016)

8. Echave, J., Wilke, C.O.: Biophysical models of protein evolution: understanding the patterns of evolu-
tionary sequence divergence. Annu. Rev. Biophys. 46, 85-103 (2017)

9. Elnaggar, A., Heinzinger, M., Dallago, C., Rehawi, G., Yu, W., Jones, L., Gibbs, T., Feher, T., Angerer,
C., Steinegger, M., Bhowmik, D., Rost, B.: ProtTrans: Towards cracking the language of life’s code
through self-supervised deep learning and high performance computing. IEEE Transactions on Pattern
Analysis & Machine Intelligence (2021). https://doi.org/10.1109/TPAMI.2021.3095381

10. Frauenfelder, H., Sligar, S.G., Wolynes, P.G.: The energy landscapes and motions of proteins. Science
254, 1598-1603 (1991)

11. Goldstein, R.A., Pollock, D.D.: The tangled bank of amino acids. Protein Sci. 25, 1354-1362 (2016)

12. Goldstein, R.A., Pollock, D.D.: Sequence entropy of folding and the absolute rate of amino acid substi-
tutions. Nature Ecol. Evol. 1, 1923-1930 (2017)

13. Hartman, E.C., Tullman-Ercek, D.: Learning from protein fitness landscapes: a review of mutability,
epistasis, and evolution. Curr. Opin. Syst. Biol. 14, 25-31 (2019)

14. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks. Proc. Natl. Acad.
Sci. U.S.A. 89, 10915-10919 (1992)

15. Huang, T.T., del Valle Marcos, M.L., Hwang, J.K., Echave, J.: A mechanistic stress model of protein
evolution accounts for site-specific evolutionary rates and their relationship with packing density and
flexibility. BMC Evol. Biol. 14, 78 (2014)

@ Springer


https://github.com/akulikova64/CNN_protein_landscape
https://github.com/akulikova64/CNN_protein_landscape
https://doi.org/10.18738/T8/8HJEF9
https://doi.org/10.18738/T8/8HJEF9
https://www.tensorflow.org/
https://arxiv.org/abs/2106.02441
https://doi.org/10.1109/TPAMI.2021.3095381

Learning the local landscape of protein structures with... 453

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Jack, B.R., Meyer, A.G., Echave, J., Wilke, C.O.: Functional sites induce long-range evolutionary
constraints in enzymes. PLOS Biol. 14, 1-23 (2016)

Jiang, Q., Teufel, A.IL., Jackson, E.L., Wilke C.O.: Beyond thermodynamic constraints: Evolution-
ary sampling generates realistic protein sequence variation. Genetics 208, 1387-1395 (2018)
Johnson, M.M., Wilke, C.O.: Site-specific amino acid distributions follow a universal shape. J.
Mol. Evol. 88, 731-741 (2020)

Jones, D.T., Buchan, D.W.A., Cozzetto, D., Pontil, M.: PSICOV: precise structural contact predic-
tion using sparse inverse covariance estimation on large multiple sequence alignments. Bioinfor-
matics 28, 184-190 (2011)

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K.,
Bates, R., Zfdek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S.A.A., Ballard, A.J., Cowie, A.,
Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T., Petersen, S., Reiman, D., Clancy, E.,
Zielinski, M., Steinegger, M., Pacholska, M., Berghammer, T., Bodenstein, S., Silver, D., Vinyals, O.,
Senior, A.W., Kavukcuoglu, K., Kohli, P., Hassabis, D.: Highly accurate protein structure prediction
with AlphaFold. Nature 596, 583-589 (2021). https://doi.org/10.1038/s41586-021-03819-2

Kachroo, A.H., Laurent, J.M., Yellman, C.M., Meyer, A.G., Wilke, C.O., Marcotte, E.M.: System-
atic humanization of yeast genes reveals conserved functions and genetic modularity. Science 348,
921-925 (2015)

Le, S.Q., Gascuel, O.: An improved general amino acid replacement matrix. Mol. Biol. Evol. 25,
1307-1320 (2008)

Leaver-Fay, A., M.Tyka, Lewis, S.M., Lange, O.F., Thompson, J., Jacak, R., Kaufman, K.W.,
Douglas Renfrew, P., Smith, C.A., Sheffler, W., Davis, . W., Cooper, S., Treuille, A., Mandell, D.J.,
Richter, F., Andrew Ban, Y.E., Fleishman, S.J., Corn, J.E., Kim, D.E., Lyskov, S., Berrondo, M.,
Mentzer, S., Popovic, Z., Havranek, J.J., Karanicolas, J., Das, R., Meiler, J., Kortemme, T., Gray,
J.J., Kuhlman, B., Baker, D., Bradley, P.: Rosetta3: An object-oriented software suite for the simu-
lation and design of macromolecules. Meth. Enzymol. 487, 545-574 (2011)

Marcos, M.L., Echave, J.: Too packed to change: side-chain packing and site-specific substitution
rates in protein evolution. PeerJ 3, €911 (2015)

Mirny, L.A., Shakhnovich, E.I.: Universally conserved positions in protein folds: reading evolution-
ary signals about stability, folding kinetics and function. J. Mol. Biol. 291, 177-196 (1999)
Mitternacht, S.: FreeSASA: an open source C library for solvent accessible surface area calcula-
tions [version 1; peer review: 2 approved]. F1000 Research 5, 189 (2016)

Nelson, E.D., Grishin, N.V.: Long-range epistasis mediated by structural change in a model of
ligand binding proteins. PLoS ONE 11, e0166739 (2016)

Parra, R.G., Schafer, N.P., Radusky, L.G., Tsai, M.Y., Guzovsky, A.B., Wolynes, P.G., Ferreiro,
D.U.: Protein Frustratometer 2: a tool to localize energetic frustration in protein molecules, now
with electrostatics. Nucleic Acids Res. 44, W356-W360 (2016)

Pokusaeva, V.O., Usmanova, D.R., Putintseva, E.V., Espinar, L., Sarkisyan, K.S., Mishin, A.S.,
Bogatyreva, N.S., Ivankov, D.N., Akopyan, A.V., Avvakumov, S.Y., Povolotskaya, I.S., Filion,
G.]., Carey, L.B., Kondrashov, F.A.: An experimental assay of the interactions of amino acids from
orthologous sequences shaping a complex fitness landscape. PLOS Genet. 15, 1-30 (2019)
Pollock, D.D., Thiltgen, G., Goldstein, R.A.: Amino acid coevolution induces an evolutionary
Stokes shift. Proc. Natl. Acad. Sci. U.S.A. 109, E1352-E1359 (2012)

R Core Team: R: a language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria (2019)

Repecka, D., Jauniskis, V., Karpus, L., Rembeza, E., Rokaitis, I., Zrimec, J., Poviloniene, S.,
Laurynenas, A., Viknander, S., Abuajwa, W., Savolainen, O., Meskys, R., Engqvist, M.K.M.,
Zelezniak, A.: Expanding functional protein sequence spaces using generative adversarial net-
works. Nat. Mach. Intell. 3, 324-333 (2021)

Rives, A., Meier, J., Sercu, T., Goyal, S., Lin, Z., Liu, J., Guo, D., Ott, M., Zitnick, C.L., Ma, J.,
Fergus, R.: Biological structure and function emerge from scaling unsupervised learning to 250
million protein sequences. Proc. Natl. Acad. Sci. U.S.A. 118(15) (2021)

Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., Serrano, L.: The FoldX web server:
an online force field. Nucleic Acids Res. 33, W382-W388 (2005)

Shah, P., McCandlish, D.M., Plotkin, J.B.: Contingency and entrenchment in protein evolution
under purifying selection. Proc. Natl. Acad. Sci. U.S.A. 112, E3226-E3235 (2015)

Sharir-Ivry, A., Xia, Y.: Nature of long-range evolutionary constraint in enzymes: insights from
comparison to pseudoenzymes with similar structures. Mol. Biol. Evol. 35, 2597-2606 (2018)

@ Springer


https://doi.org/10.1038/s41586-021-03819-2

454

A. V. Kulikova et al.

37.

38.

39.

40.

41.

42.

43.

Shroff, R., Cole, A.W., Diaz, D.J., Morrow, B.R., Donnell, I., Gollihar, J., Ellington, A.D., Thyer, R.:
Discovery of novel gain-of-function mutations guided by structure-based deep learning. ACS Synth.
Biol. 9, 2927-2935 (2020)

Sitkoff, D., Sharp, K.A., Honig, B.: Accurate calculation of hydration free energies using macroscopic
solvent models. J. Phys. Chem. 98, 1978-1988 (1994)

Teufel, A.IL, Johnson, M.M., Laurent, J.M., Kachroo, A.H., Marcotte, E.M., Wilke, C.O.: The many
nuanced evolutionary consequences of duplicated genes. Mol. Biol. Evol. 36, 304-314 (2019)

Torng, W., Altman, R.B.: 3D deep convolutional neural networks for amino acid environment similar-
ity analysis. BMC Bioinf. 18, 302 (2017)

Whelan, S., Goldman, N.: A general empirical model of protein evolution derived from multiple pro-
tein families using a maximum-likelihood approach. Mol. Biol. Evol. 18, 691-699 (2001)

Wickham, H., Averick, M., Bryan, J., Chang, W., D’Agostino McGowan, L., Frangois, R., Grolemund,
G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Lin Pedersen, T., Miller, E., Milton Bache, S., Miiller,
K., Ooms, J., Robinson, D., Paige Seidel, D., Spinu, V., Takahashi, K., Vaughan, D., Wilke, C., Woo,
K., Yutani, H.: Welcome to the tidyverse. J. Open Source Softw. 4, 1686 (2019)

Xu, Y., Verma, D., Sheridan, R.P., Liaw, A., Ma, J., Marshall, N.M., MclIntosh, J., Sherer, E.C., Svetnik,
V., Johnston, J.M.: Deep dive into machine learning models for protein engineering. J. Chem. Inf. Model.
60, 2773-2790 (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer



	Learning the local landscape of protein structures with convolutional neural networks
	Abstract
	1 Introduction
	2 Methods
	2.1 Network architecture
	2.2 Data generation and training
	2.3 Generating predictions and assessing accuracy
	2.4 Comparing predictions to sequence alignments
	2.5 Site-specific variability
	2.6 Comparing amino acid distributions
	2.7 Frustration indices
	2.8 Data availability

	3 Results
	3.1 A convolutional neural network predicts wild-type and consensus amino acids with good accuracy
	3.2 Network confidence reflects prediction accuracy
	3.3 Mis-predictions depend weakly on amino acid biochemistry
	3.4 Variation in natural alignments correlates weakly with network predictions
	3.5 Small microenvironments are sufficient for good network performance

	4 Discussion
	Acknowledgements 
	References


