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A B S T R A C T   

Optical-resolution photoacoustic microscopy (OR-PAM) enjoys superior spatial resolution and has received 
intense attention in recent years. The application, however, has been limited to shallow depths because of strong 
scattering of light in biological tissues. In this work, we propose to achieve deep-penetrating OR-PAM perfor-
mance by using deep learning enabled image transformation on blurry living mouse vascular images that were 
acquired with an acoustic-resolution photoacoustic microscopy (AR-PAM) setup. A generative adversarial 
network (GAN) was trained in this study and improved the imaging lateral resolution of AR-PAM from 54.0 µm to 
5.1 µm, comparable to that of a typical OR-PAM (4.7 µm). The feasibility of the network was evaluated with 
living mouse ear data, producing superior microvasculature images that outperforms blind deconvolution. The 
generalization of the network was validated with in vivo mouse brain data. Moreover, it was shown experi-
mentally that the deep-learning method can retain high resolution at tissue depths beyond one optical transport 
mean free path. Whilst it can be further improved, the proposed method provides new horizons to expand the 
scope of OR-PAM towards deep-tissue imaging and wide applications in biomedicine.   

1. Introduction 

Photoacoustic microscopy (PAM) offers high-resolution imaging of 
rich optical-absorption contrasts in vivo and provide structural, func-
tional, and molecular information of biological tissues [1,2]. 
Optical-resolution photoacoustic microscopy, often termed as OR-PAM, 
uses tightly focused laser beam for excitation and thus has 
diffraction-limited resolution to resolve single capillaries and monitor 
microvascular level biological processes. OR-PAM has gained intense 
attention in the past decade [3–6] and has seen many preclinical and 
clinical applications in neuroscience [7], tumor angiogenesis [8], his-
tology [9,10], dermatology [11], and many others [12–14]. 

Limited by strong scattering in biological tissue, the penetration 
depth of OR-PAM is within one optical transport mean free path (~ 1 
mm for biological tissues). It would be impactful if OR-PAM can see 
deeper into tissue. One attempt is to explore whether OR-PAM 

performance can be inferred or constructed through computation based 
on deep-penetrating, albeit low-resolution, photoacoustic signals. 
Acoustic-resolution PAM (AR-PAM) does not focus light tightly and thus 
can extend to several millimeters to centimeters deep [2,15]. AR-PAM 
also waives the necessity for single-mode fiber (SMF) or costly 
single-mode lasers to produce high-quality focused laser beam. Thus, 
lower cost multimode pulse laser like laser diode or light-emitting diode 
(LED) can be used as the light source [16–18]. On the other hand, SMF is 
replaced with fiber bundle or multimode fiber (MMF) for optical de-
livery in AR-PAM. This allows for higher optical damage threshold and 
coupling efficiency, resulting in higher power output or pulse repetition 
rate, that is, an increased imaging speed. Imagine that if a relationship 
can be built or learned between superficial AR-PAM and OR-PAM data 
sets, and the validity of the relationship remains for deeper tissue re-
gions or different organs, then deep-penetrating optical-resolution 
photoacoustic microscopy could be achieved through learning the 
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acoustic-resolution photoacoustic signals at that depth. 
Here, we propose a deep learning method to transform low- 

resolution AR-PAM images into high-resolution ones that are compara-
ble to OR-PAM results. This allows us to combine the advantages of deep 
penetration of AR-PAM and high resolution of OR-PAM. Apart from that, 
lower cost yet higher speed OR-PAM imaging could also be achieved 
based on the usage of AR-PAM apparatus, as less restrictions on the laser 
source and larger scanning step size can be adopted. In the past few 
years, there have been a number of deep learning applications aimed at 
enhancing the performance of photoacoustic imaging [19,20], such as 
increasing the contrast [21] or penetration depth [22] under low fluence 
illumination, improving the lateral resolution for out-of-focus region in 
AR-PAM [23], and enhancing OR-PAM images acquired under low laser 
dosage or sampling rate[24,25]. Besides, deep learning has seen appli-
cations in photoacoustic computed tomography (PACT) that mainly 
involve image enhancement from suboptimal reconstruction [26,27] 
and artifact removal [28,29]. Several related deep learning applications 
include single image super-resolution [30–33], microscopic image 
enhancement [34–36] and microscopic imaging transformation [37,38]. 
It has been shown that conventional convolutional neural network 
(CNN) trained with pixel-wise loss tends to output over-smoothed re-
sults [33]. In contrast, the generative adversarial network (GAN) model 
with residual blocks, trained with perceptual loss, performs particularly 
well for these problems. 

In this study, we adopt Wasserstein GAN with gradient penalty 
(WGAN-GP) [39] as the training network to transform low-resolution 
AR-PAM images to match high-resolution OR-PAM images obtained at 
the same depth. In the following sections, we first describe the inte-
grated OR- and AR-PAM system for data acquisition and the WGAN-GP 
model used for PAM imaging transformation. The trained network is 
first tested with in vivo mouse ear vascular images and the performance 
is compared with that of a typical blind deconvolution method. We 
further apply the network to in vivo mouse brain AR-PAM data to verify 
its validity for different tissue regions. After that, the performance of the 
network on deep-tissue imaging is evaluated with a hair phantom. We 
show that, with the proposed PAM imaging transformation, 
deep-penetrating OR-PAM imaging could be achieved at depths that are 
way beyond the depth limit of traditional OR-PAM. Whilst it can be 
further improved, the proposed method provides new insights to expand 
the scope of OR-PAM towards deep-tissue imaging and wide applica-
tions in biomedicine. 

2. Methods 

2.1. Integrated OR- and AR-PAM system 

An integrated OR- and AR-PAM system was built in this study to 
acquire photoacoustic data, as shown in Fig. 1. The laser source is a 532 
nm wavelength pulsed laser whose pulse width is 7 ns (VPFL-G-20, 
Spectra-Physics). The laser output is directly delivered into the PAM 
probe [6] by a 2-m single-mode fiber (SMF, P1–460B-FC-2, Thorlabs Inc) 
for OR-PAM imaging, or by a 1-m multi-mode fiber (MMF, 
M105L01–50–1, Thorlabs Inc) to support AR-PAM imaging. In experi-
ment, the pulse energy for the OR- and AR-PAM was ~ 80 nJ and ~ 
2000 nJ, respectively. The fiber coupling efficiencies of the SMF and the 
MMF were measured to be ~ 60% and ~ 90%, respectively. Noted that 
the optical/acoustic beam combiner in the probe reflects the optical 
beam to the sample and, in the meanwhile, transmits the produced ul-
trasound wave to the piezoelectric transducer (V214-BC-RM, 
Olympus-NDT). The central frequency and bandwidth of the ultrasound 
transducer used in the experiments are 50 MHz and 40 MHz, respec-
tively. The optical-resolution and acoustic-resolution settings are 
switched by using different fibers only; usually after the entire scanning 
of OR-PAM for an image is finished, we switch the single mode fiber to a 
multimode fiber manually for AR-PAM imaging. This has endowed our 
integrated PAM system with the ability to yield automatically 
co-registered OR and AR imaging data sets [40]. The switch is controlled 
by the combination of a half-wave plate (HWP, GCL-060633, Daheng 
Optics) and a polarizing beam splitter (PBS, PBS051, Thorlabs Inc). 
When most light is reflected by the PBS to the MMF, light becomes 
diffusive in the sample so that the imaging resolution is determined 
acoustically by the acoustic lens (#45–697, Edmund optics), which 
collimates the photoacoustic waves. When most light transmits through 
the PBS to the SMF, light is tightly converged onto tissue sample, pro-
ducing an optical focus coaxially and confocally aligned with the 
acoustic focus to optimize the detection sensitivity. The detected PA 
signals by the ultrasound transducer are amplified (ZFL-500LN+, 
Mini-circuits) and then transferred to the data acquisition card (DAQ, 
ATS9371, Alazar Tech), which is connected to the computer. Two-axis 
linear stage (L-509.10SD, Physik Instrument) is used to mount the 
scanning probe, which creates two-dimensional raster scanning to 
obtain volumetric A-line data. In our system, the lateral resolution of 
OR-, AR-PAM modules are about 4.5 µm and 50 µm, respectively. 

2.2. Sample preparation 

Several 6-week healthy ICR mice were anesthetized with isoflurane. 

Fig. 1. Schematic of the integrated OR- and 
AR-PAM system, with the optical (green) and 
ultrasonic (gray) beam path in the probe for 
OR- and AR-PAM illustrated separately. Note 
that the SMF and MMF are not connected to the 
probe at the same time but separately instead. 
AL, Acoustic lens; Amp, amplifier; DAQ, data 
acquisition; FC, fiber coupler; HWP, half-wave 
plate; MMF, multi-mode fiber; PBS, polariza-
tion beam splitter; SMF, single-mode fiber; UT, 
ultrasound transducer; WT, water tank. (For 
interpretation of the references to color in this 
figure legend, the reader is referred to the web 
version of this article.)   
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Before imaging, the sample (e.g., mouse ear) was applied with ultra-
sound gel (Aquasonic 100) and fixed on a glass platform, beneath the 
water tank. The PAM probe was put above the target and immersed in 
the water tank to ensure acoustic coupling. All procedures involving 
animal experiments were approved by the Animal Ethical Committee of 
the City University of Hong Kong. An area of 5 × 5 mm2 of the mouse ear 
was imaged by OR-PAM at a step size of 2.5 µm, and then the same field 
of view (FOV) was scanned by AR-PAM at the same step size with OR- 
PAM. 14 pairs of AR- and OR-PAM vascular images of different mouse 
ears were acquired. Apart from ears, PAM imaging of mouse brain 
vasculature was also conducted. The skin hairs of mouse brain were 
removed by using hair removal cream (Veet, Hong Kong) before the 
experiment. Then the scalp was disinfected and cut with a surgical 
scissor. The exposed cerebral vessels were scanned at a step size of 
2.5 µm within a FOV of 5 × 5 mm2, using AR-PAM only. 

To evaluate the imaging transformation performance at different 
depths, chicken breast tissues were sliced into different thicknesses to 
cover a few human hairs for AR-PAM imaging, which was used to mimic 
optical targets imaged at different tissue depths. We acquired AR-PAM 
images over a FOV of 5 × 5 mm2 of human hairs that were not 
covered or covered with tissues of thickness of 700, 1300, and 1700 µm, 
respectively. The pulse energy for AR-PAM in the phantom experiment 
was increased with increasingly thick chicken breast slice covered above 
the hair pattern. 

2.3. Image pre-processing and data augmentation 

The acquired PAM images in this study are maximum amplitude 
projections (MAP) of volumetric acquisitions, that is, 3D A-line data that 
are typically sized of (2000, 2000, 512) in which 2000 is the image size 
along each direction and 512 is the number of samples for one A-line. 
The A-line data need to be processed before conducting MAP, which is 
based on the actual condition of raster scanning. Usually, we need to flip 
the A-line data of even columns, and sometimes to translate upwards or 
downwards the A-lines at some positions to avoid image dither or 
ghosting caused by motor sweeping dislocations. It is almost inevitable 
for the acquired PAM images to contain noise, such as isolated bright 
spots that compress the image grayscale level or stain noises especially 
in OR-PAM images. Thus, all PAM images were first normalized to 0–1 
before applying a 5 × 5 median filter to remove the extremely bright 
spots and mitigate the stain noises. After that, considering the training of 
deep neural network requires a large data set but the collected data was 
limited from experiment, data augmentation [41–43] was conducted 
using a Python library Albumentations [44]. There were mainly geom-
etry and grayscale image transformation operations to teach the deep 
networks the desired invariance properties [43]. For geometry trans-
formation, we conducted flipping along different directions (horizontal, 
vertical, and diagonal), random affine transformation (including trans-
lation, scaling and ± 15◦ rotation), random cropping and padding, as 
well as elastic deformation, to mimic different spatial distributions of 
blood vessels. Also, 10% synthetic AR-PAM images were further blurred 
using a random kernel or Gaussian filter. For grayscale transformations, 
we had random gamma (gamma value ranging from 0.6 and 1.4) 
adjustment to tune the image grayscale range. 10% synthetic AR-PAM 
images were further adjusted on random brightness and contrast, for 
modeling the illumination intensity discrepancies in the imaging system. 
These techniques aimed to artificially increase the data distribution of 
available PAM images for training, with the hope for the networks to 
learn the robustness against deformation and gray value variations [43] 
and to gain better generalization ability. In this study, 14 pairs of PAM 
vascular images of the mouse ear were acquired experimentally. Among 
them, 11 pairs were used to synthesize 528 image pairs that constitute 
the training set. The remaining three PAM image pairs were used for 
network tests, free of image augmentation. 

Since the acquired PAM images are of large size that our network 

cannot process directly, an entire PAM image is thus cut into small 
image patches, which also greatly increases the amount of training data. 
Noted that regular image patch extraction (and stitching) is enough for 
network evaluation on a test PAM image, while different strategy that 
combines accurate image patch alignment was adopted for generating 
the training set. This is mainly because the pixel-wise loss would be used 
to guide the neural network to learn a statistical PAM imaging trans-
formation. As illustrated in Fig. 2, a template-matching algorithm based 
on image intensity correlation is employed, implemented in MATLAB. 
The image patches of size 390 × 390 are first extracted successively 
from an entire OR-PAM image with an overlap of 64 pixels in both 
horizontal and vertical directions, which work as the templates to find 
the highest-correlation matched patches in the corresponding AR-PAM 
image. This is done by calculating the 2D cross-correlation matrix be-
tween the OR patch and the entire AR image, in which the maximum 
value indicates the most likely matched AR patch. The cropped patches 
in AR-PAM image will be filtered based on two criteria before forming 
pairs with their OR templates: if the vessel density is not enough (less 
than half of the mean) or the location differs greatly (more than 10 pixels 
in any direction), the cropped AR-OR patch would be abandoned. Note 
that the matched image patches are still not accurately aligned at the 
sub-pixel level. Thus, additional local shift (shift amount is determined 
by the traversal search) between the extracted image patches is applied 
by bilinear interpolation. Eventually, the precisely registered images are 
cropped with three pixels on each side to avoid registration artifacts, 
forming the input-label pairs of size 384 × 384 for network training. 
Also noted that the image patch size 384 being the sum of two powers of 
2 (i.e., 256 + 128), which may also suit the GPU allocation and speed up 
training. 

2.4. GAN model and network training 

To achieve PAM imaging transformation, we adopted a GAN-based 
framework for a deep neural network in this study. GAN was initially 
introduced by Goodfellow et al. in 2014 and has been proven a powerful 
generative model for super-resolution [31,33] and many other 
imaging-related applications [37,38]. There are two sub-networks in a 
GAN, namely the Generator and the Discriminator, being trained 
simultaneously. The Generator takes an AR image as the input and 
produces a resolution-enhanced image, which is then passed onto the 
Discriminator to determine its similarity to the ground truth OR image. 
There is an adversarial training between the Generator G and the 
Discriminator D: G tries to fool D by generating an image that closely 
resembles its OR label, while D tries to distinguish the generated fake 
data from the real one. Conventionally a GAN is trained to minimize the 
cross-entropy error (also referred to as the Jensen–Shannon divergence) 
between the generated and real data distribution. However, it has been 
observed a GAN inclines to be unstable and difficult to converge during 
such training, mainly owing to the vanishing gradient problem of the 
Generator and model collapse [39,45–47]. To cure the problem, Was-
serstein GAN was proposed [46,47]; it uses Wasserstein distance to 
replace the Jensen–Shannon divergence as the objective to be opti-
mized. The min-max game between the two sub-networks G and D 
within a GAN that adopts Wasserstein distance can be formulated by 

min
G

max
D∈L

Ex∼ℙOR [D(x) ] − Ez∼ℙAR [D(G(z) ) ], (1)  

where D is subject to 1-Lipschitz function L, POR denotes the real OR 
image distribution, and the generated data distribution is implicitly 
defined by G(z) with z following AR image distribution PAR. Hereby, 
Wasserstein GAN was used for our PAM imaging transformation. 

The WGAN model used for the imaging transformation from AR- to 
OR-PAM is illustrated in Fig. 3. The Generator network follows the U-Net 
architecture [43] that is composed of an encoder and a decoder path. 
The network can process an input AR image in a multiscale fashion, 
enabling the network to learn the imaging transformation at various 
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scales. The encoder path comprises four residual convolutional blocks 
[32,48] that are connected by a down-sampling block. Each convolu-
tional block is composed of two1 × 1 convolutional and a 3 × 3 convo-
lution, with a Leaky Rectified Linear Unit LReLU layer (slope 0.2) 

following every convolutional layer. The down-sampling block consists 
of a convolutional layer with a kernel of size 4 and stride 2, an LReLU 
layer and a Group Normalization (GN) layer [49]. After four 
down-sampling blocks, a 3 × 3 convolutional layer is bridged to the 

Fig. 2. The process of image patch extraction and alignment via correlation template matching. The OR patches were extracted successively, with each used as a 
template to find the highest correlated AR patch. The paired image patches were filtered with the criteria for vessel density and location before being applied with 
sub-pixel alignment. 

Fig. 3. The architecture of the WGAN model used for PAM imaging transformation.  
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decoder path, in which the feature maps are up-sampled. The decoder, 
similar to the encoder, is also composed of four convolutional blocks 
(but no residual structure) that are connected by the up-sampling block. 
The up-sampling is performed with transposed convolution (also 
referred to deconvolution) layer, which forms the block together with an 
LReLU layer and a GN layer. Finally, a convolutional layer following the 
last convolutional block output a clearly resolved image of the same size 
and channel as the input. The Discriminator is a typical CNN used for 
image classification, except for the removal of sigmoid activation in the 
output layer. Started with a convolutional layer (with LReLU activa-
tion), seven convolutional blocks are followed, in which a feature map 
decreases its spatial size while increasing the number of channels. Each 
convolutional block consists of a convolutional layer with a kernel size 
of 3 and stride of either 2 or 1, a Instance Normalization (IN) layer[50] 
and a LReLU layer (slope 0.2). Note that the down-sampling of size and 
the increasing of channel is conducted alternately in the convolutional 
blocks through the control of kernel stride and number. The output of 
the last convolutional block is applied with adaptive average pooling 
and outputs a feature map f size 1× 1. With two full-connected layers 
followed, the final output of the Discriminator is the scalar denoting the 
Wasserstein distances of input from OR image data distribution. 

The behavior of optimization-based imaging transformation is prin-
cipally driven by the choice of the objective/loss function. For the 
Generator, the primary objective is to minimize the pixel-wise loss, 
which is represented by the mean absolute error (MAE) between the 
network output image G(IAR) and the ground truth OR image IOR, given 
by 

LMAE
G =

1
M × M

∑M

i=1

∑M

j=1

⃒
⃒
⃒IOR

i,j − Gi,j(IAR)

⃒
⃒
⃒, (2)  

whereMis the image patch size. Besides, MAE in the frequency domain 
(FMAE) calculated from the magnitude of the 2D Fourier transform of 
G(IAR) and IOR is also employed, which provides the optimizer infor-
mation about the vessel orientation [24], given by 

LFMAE
G =

1
M × M

∑M

i=1

∑M

j=1

⃒
⃒
⃒
⃒F i,j

(
IOR) ⃒⃒ −

⃒
⃒F i,j

(
G
(
IAR) ) ⃒⃒

⃒
⃒ (3) 

The perceptual loss of the Generator is defined as a weighted sum of 
the above two items, with the weighting factor of 1 for LMAE

G and a small 
weighting factor of 10− 4 for the FMAE loss since it may contribute to 
training instability [51]. In addition to perceptual loss, the adversarial 
loss returned by the critic network D is crucial to achieving PAM im-
aging transformation, which provides an adaptive loss term and may 
help the Generator jump out of local minima. We define the Generator 
loss as the weighted combination of perceptual loss and adversarial loss 
(with coefficient γ), given by 

LG = LMAE
G + 10− 4 × LFMAE

G + γ ×
(
− Ez∼ℙAR [D(G(z) ) ]

)
(4) 

In an attempt to enforce the Lipschitz constraint, in this study we 
adopt an improved Wasserstein GAN, that is, WGAN-GP [39], in which 
the gradient norm of the Discriminator’s output with respect to its input 
is constrained to 1. In this case, the Discriminator loss with gradient 
penalty is given by 

LD = Ez∼ℙAR [D(G(z) ) ] − Ex∼ℙOR [D(x) ] + λ × Ex̂∼ℙ
x̂

[( ⃦
⃦∇x̂ D(x̂)

⃦
⃦

2 − 1
)2

]
,

(5)  

where Px̂ denotes the random sampling distribution and λ is the penalty 
coefficient. 

The training of our WGAN-GP model was implemented in Pytorch 
(v1.8.0) on Microsoft Windows 10 operating system, using a graphics 
workstation based on an Intel Xeon CPU, an NVIDIA 3070 GPU, and 
64 GB RAM. There were 16,849 aligned pairs of PAM image patches in 

the training set. A small weight initialization method was adopted for 
the GAN, in which the initialization parameters of all convolution and 
deconvolution layers of the GAN, calculated by MSRA initialization (also 
known as Kaiming initialization [52]), were multiplied by 0.1. Both two 
sub-networks were optimized using AdamW [53], i.e., Adam optimizer 
with decoupled weight decay regularization of β1 = 0.5 and β2 = 0.9, 
and were trained with the same initial learning rate of 1 × 10− 4. For the 
loss function of the GAN model, the weight γ of adversarial loss term in 
the Generator loss was set to 1 × 10− 3 and 10 for the gradient penalty 
coefficient in the Discriminator loss. It should be noted that to seek an 
adversarial equilibrium between the two sub-networks for GAN training, 
we can tune their learning rate or adjust the optimization times for the 
Generator or the Discriminator within each iteration. The total training 
epochs were 12 and the batch size was set as 2 for the GAN to be trained 
with mini-batch gradient descent, which took about 0.804 s for each 
iteration. 

2.5. Blind deconvolution for AR-PAM image deblurring 

Compared with high-resolution OR-PAM vascular images, images 
acquired with AR-PAM in situ have lower spatial resolution and are 
visually blurry. From the perspective of image deconvolution, it is 
reasonable to treat the OR-PAM image as the object itself while the 
corresponding AR-PAM image as the result of a convolution of the object 
and the system point spread function (PSF). As it is infeasible to model 
the PSF of such a conceptual PAM imaging system, we turn to use sta-
tistical blind deconvolution to iteratively recover the object and improve 
the estimation of PSF with an initial guess from a blurry AR-PAM image. 
This functions as the baseline, for a beneficial comparison with the deep 
learning enabled PAM imaging transformation regarding the perfor-
mance of deblurring or resolution improvement. 

Note that blind image deconvolution, as a highly ill-posed inverse 
problem, requires estimating both the blur kernel and object from a 
degraded image. Currently, most blind deconvolution methods fall into 
the variational Bayesian inference framework [54], with main differ-
ences coming from the form of the likelihood, the choice of priors on the 
object, and the blur kernel and the optimization methods to find the 
solutions [55]. Here, we used a general blind deconvolution method that 
adopts expectation-maximization optimization, to find the maximum 
posterior solution with flat priors. Besides that, a fractional-order total 
variation image prior was also tried [56], as the total variation is a 
popular regularization technique in image deconvolution. The blind 
deconvolution was implemented with 30 iterations for each input blurry 
image using MATLAB. 

3. Results 

3.1. Network feasibility: evaluation with in vivo mouse ear photoacoustic 
images 

The feasibility of the WGAN-GP network was evaluated with the 
PAM image pairs of living mouse ear vasculature that were not included 
in network training. The results are shown in Fig. 4. Visually, the 
improvement of resolution is obvious with the network transformation, 
and quite many small vessels that have been hidden in the AR-PAM 
image are now resolved by the network. To better evaluate the 
improvement, three regions of interest (ROIs) indicated by a white 
dashed box in AR-PAM, network output, and OR-PAM images are chosen 
and compared. Taking a close look at them, clearly resolved blood 
vascular details are presented in the network output, which matches 
well with the ground truth (OR-PAM image) in the same region. More-
over, the signal intensity profiles along the cyan dashed lines within 
each ROI are compared. As seen, the AR-PAM imaging tends to generate 
overly smoothed signal intensity profiles due to its low resolution, while 
the network is capable of distinguishing vessels hierarchically. The 
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sharp signal intensity profiles inside each ROI of the network output 
shares good consistency with those of the ground truth OR-PAM image, 
verifying the feasibility and reliability of our PAM imaging trans-
formation. To explore the deblurring effect of the AR-to-OR network 
deeply, we here give specific analyses with three examples. The first 
example is that a blurred vascular plexus denoted by the blue arrow has 
been clearly resolved by the network, which matches well with the 
ground truth. Next, the green arrow shows a single capillary that is 
missed in the AR-PAM image and barely discernible in the network 
output, but is clearly shown in the OR-PAM image. Another example 
described by the purple arrow is the network find a limitation in 
resolving some closely spaced parallel blood vessels. It suggests that 
given extremely blurry pixels, the network may fail to reconstruct the 
full feature of the target. That said, this is also the point to indicate the 
feasibility and capability of the network of enhancing AR images while 
maintaining fidelity without generating fake features. Our findings 
reveal that the deblurring performance of the network is highly 
dependent on the quality, such as signal-to-noise ratio, of the given AR- 
PAM image. It is the case that most of the blurry blood vessels could be 
clearly resolved by the network, which possess good fidelities and 
meanwhile, some subtle distinctions from the ground truth OP-PAM 
images. 

3.2. Network performance: comparison and characterization 

The performance of the network transformation is characterized via 
two aspects. First, the deblurring performance on mouse ear AR-PAM 
images of the network is compared with that using a blind deconvolu-
tion method, as shown in Fig. 5. Apart from perceptual quality, two 
representative metrics including peak signal-to-noise ratio (PSNR) and 
structural similarity index measure (SSIM) [57] are also provided for 
comparison. PSNR is defined via the mean squared error (MSE) between 
an image to be evaluated and its ground truth OR image and the loga-
rithmic form is given by: 

PSNR = 20⋅log10
MAXOR

̅̅̅̅̅̅̅̅̅̅
MSE

√ , (6)  

in which MAXOR denotes the maximum of OR image. SSIM evaluates an 
image quality perceptually, which also incorporate luminance and 
contrast information, defined as: 

SSIM =
(2μμOR + c1)(2σcov + c2)

(μ2 + μ2
OR + c1)(σ2 + σ2

OR + c2)
, (7)  

where μ
(
σ2) and μOR

(
σ2

OR
)

are the mean (variance) of an image to be 
evaluated and its OR label, respectively; σcov denotes the covariance 
between the two images; c1, c2 are the constants to stabilize the division, 
respectively. In Fig. 5, two ROIs marked in a white dotted box are 
enlarged and compared. For ROI 1 in the first ear vasculature image 

Fig. 4. An experimentally obtained AR-PAM vascular image of mouse ear (a) is fed to the trained WGAN-GP model for imaging transformation. The resultant 
network output (b) is comparable to the ground truth OR-PAM image (c) of the same sample. Three ROIs marked with the white dashed boxes in (a1-a3) AR-PAM 
image, (b1–b3) transformed results, and (c1-c3) the ground truth OR-PAM image respectively, are enlarged and compared. Comparison of the cross-sectional profiles 
along the white dashed lines inside (a1, b1, c1), (a2, b2, c2), and (a3, b3, c3) are also provided in (d), (e) and (f) respectively. The blue arrow in (a-c) represents a 
vascular plexus that is originally blurred in AR-PAM but is now clearly resolved by the network; the green arrow shows a single capillary which is missed in the AR- 
PAM image and barely discernible in the network output, while clearly shown in the OR-PAM image; the purple arrow indicates a failure for the network to resolve 
some closely spaced parallel blood vessels that show up in the ground truth image. (For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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(Fig. 5a), the single capillaries are resolved well for both blind decon-
volution and network output, while the latter resembles better to the 
OR-PAM result. In ROI 2, the vessel bifurcation contains different types 
of vessels that the deconvolution method fails to produce rich vessel 
details, but the network output can distinguish vessels hierarchically. In 
the second case (Fig. 5b), we show that the WGAN-GP model can easily 
separate the large arteries and the small veins attached, as shown in both 
two ROIs, while the deconvolution method can merely distinguish them 
partially. Besides that, the comparison of signal intensity profiles inside 
each ROI also reveals that the network output results correlate better 
with the ground truth. It is worth noting that neither deconvolution nor 
the network could match the ground truth in every detail because some 
subtle capillaries were missed in the original AR-PAM image, as 
mentioned earlier. Also, note that compared with the AR-PAM image 
that appears overly smooth, the network output gets sharp with latent 
capillary artifacts generated sometimes (see d2 and e2 in Fig. 5), which 
might undermine the tricky metric like SSIM. In short, the network 
significantly outperforms blind deconvolution in deblurring blood ves-
sels that the clearly resolved images are perceptually comparable to the 
experimentally acquired OR-PAM images. 

Apart from qualitative analyses, enhancements on mouse ear data 
are compared and quantified by calculating metrics, including PSNR, 

SSIM, and PCC (Pearson correlation coefficient). PCC is expressed by: 

PCC =
σcov

σ⋅σOR
, (8)  

where σcov denotes the covariance between an image to be evaluated and 
its OR label, σ and σOR are the standard deviation of the image and its OR 
label, respectively. The comparison is performed between test image 
patches, with the results given in Table 1. The network produces overall 
better results than the blind deconvolution method in improving all 
three metrics. The small variances in all the metrics for the network 
outputs also indicate the robust performance of our AR-to-OR network. 
To be specific, the mean PSNR improves from ~ 16.77 to ~ 20.02 dB, 

Fig. 5. Qualitative deblurring performance of deep learning in comparison with that using blind deconvolution. Two examples of mouse ear vascular images are 
presented, shown in the entire OR-PAM images (a) and (f). For each example, two ROIs marked with white dashed box are enlarged and compared. In the first 
example (a), (b1-e1) are for ROI 1 and (b2-e2) for ROI 2; in the second example (f), (g1-j1) are for ROI 1 and (g2-j2) for ROI 2; all correspond to AR-PAM, blind 
deconvolution, GAN output, and ground truth, respectively. Cross-sectional profiles along the white dashed lines inside (b1-e1), (b2-e3), (g1-j1) and (g2-j2) are 
provided for comparison. Metrics like PSNR and SSIM with respect to the entire OR-PAM image are also provided for reference. Blind Deconv, Blind Deconvolution. 

Table 1 
Quantitative comparison between deep learning and blind deconvolution in 
evaluating image enhancement, in which the metrics are represented in the form 
of mean ± standard deviation.   

PSNR SSIM PCC 

AR-PAM 16.77 ± 2.61 dB 0.54 ± 0.06 0.76 ± 0.08 
Blind Deconvolution 18.05 ± 1.71 dB 0.27 ± 0.07 0.76 ± 0.09 
Network output 20.02 ± 1.51 dB 0.61 ± 0.05 0.78 ± 0.08  
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while SSIM (improved by 13% averagely) and PCC (averagely by 3%) 
only see modest improvement. Noted that the blood vessel image is 
overall sharpened by the network, some blurred capillary discrepancies 
also become sharper. As metrics like SSIM and PCC are very sensitive to 
these artifacts, only modest improvements are found in these metrics, 
although the image resolution improvement is significant, as can be seen 
from Fig. 5. Regarding the deconvolution method, it improves PSNR 
slightly for the test set, while failing to improve the other metrics, even 
degrading SSIM. It should be mentioned that the results were obtained 
using flat prior, a general image prior in the blind deconvolution 
method. Even worse results were found with the popular total variation 
regularization [56]. All these suggest that the enhancement of AR-PAM 
images towards high-resolution OR-PAM images is challenging with 
blind deconvolution. In contrast, deep learning enabled PAM imaging 
transformation may help solve this tricky inverse problem, with 
perceptual satisfactory deblurred results and improved metrics. 

To further characterize the spatial resolution improvement after the 
network transformation, the edge response of a sharp blade was 
measured with the OR- and AR-PAM settings. As.illustrated in Fig. 6, the 
normalized experimental PA data were fitted by edge spread function 
(ESF, black dashed line); whose derivative gave the line spread function 
(LSF, in red line). The full width at half maximum (FWHM) of LSF was 
used to represent the system’s lateral resolution. We can see that in the 
network output, the edge response curve in situ has become much 
steeper, which means that the blurred edge in AR-PAM imaging is now 
clearly resolved. The lateral resolution has been accordingly improved 
from ~ 54.0 µm in AR-PAM to ~ 5.1 µm, which is quite comparable to 
that of the ground truth (OR-PAM), ~ 4.7 µm. Although the measure-
ments might vary slightly at different locations of the blade edge, this 
exemplifies the significant resolution enhancement via our network 
transformation. 

3.3. Network generalization: application for in vivo mouse brain 
photoacoustic imaging 

Thus far, the feasibility and effect of the proposed network to achieve 
OR-PAM resolution based on AR-PAM images have been demonstrated, 
where both training and test data sets were obtained from in vivo mouse 
ears. To validate the generalization of the network, in vivo mouse ce-
rebrovascular images were acquired and fed into the network; only AR- 
PAM images were available in this group of experiments, following a 
realistic application scenario without labeling. Fig. 7 shows the original 
AR-PAM and network output images of mouse brain vasculature. It can 
be observed that the network output has sharper vascular patterns and 
enhanced vascular signals. Two ROIs indicated by white dashed boxes in 

both AR-PAM image and network output are enlarged and compared. 
Significantly improved image quality was achieved by our network, free 
from noticeable artifacts. The vascular signal intensity profiles for the 
same region along the horizontal direction are also used to assess the 
transformation performance. We can see that the network output fol-
lows basic trends of vascular signals in the AR-PAM image but yields 
many refiner details and can clearly distinguish different vascular sig-
nals. This is consistent with the fact that enhanced intensities and 
sharper cerebral vessels were produced. Even without a ground truth 
OR-PAM image, the above comparisons could, to some degree, verify the 
reliability of our approach and the significant improvement it achieves. 
More importantly, it is worth mentioning that even the given mouse 
brain data has quite different vascular structures from the ear and some 
cerebral vessels are within at deeper tissues, the trained network can still 
cope with them, which verifies the universal applicability of the pro-
posed method to the brain vasculature. 

3.4. Network application: preliminary extension for deep-tissue OR-PAM 

To further explore the application of the proposed network for deep- 
tissue photoacoustic imaging, we prepared a hair phantom by covering 
human hairs with chicken breast slices of different thicknesses. As the 
thickness of the tissue sample can be adjusted gradually, it is possible to 
find out the maximum imaging depth that our network transformation 
could handle in the experiment. Fig. 8 shows the evaluation results of 
our network based on AR-PAM images of hair pattern that were not 
covered or covered with tissue slice of a thickness of 700, 1300, and 
1700 µm. Note that there was slight position shift of the hairs beneath 
when changing the tissue slices of various thicknesses, which, however, 
does not affect the evaluation of image enhancement at different depths. 
Since ground truth OR-PAM images were no longer available in these 
tissue depths, we thus used contrast-to-noise ratio (CNR) and hair edge 
10–90% rise distance [58], to indicate the imaging SNR and resolution 
performance under different penetration depths. The logarithmic CNR 
using the decibel scale is given by: 

CNR = 20⋅log10

(
μobject − μbackground

)

σbackground
, (9) 

where μobject and μbackground denote the mean intensity of hair object 
and background noise respectively, and σbackground the standard deviation 
of background noise. Practically, the white dashed boxes in both the AR- 
PAM images (Fig. 8a1–a4) and network outputs (Fig. 8b1–b4) were 
selected as the ROIs to measure the object signal, while the bigger yellow 
dashed boxes were denoted as the backgrounds. Note that altogether 10 
different areas of object and background were used for average CNR 

Fig. 6. Demonstration of lateral resolution enhancement of AR-PAM by deep learning. Lateral resolution of (a) AR-PAM, (b) network output, and (c) OR-PAM was 
measured to be ~ 54.0 µm, ~ 5.1 µm, and ~ 4.7 µm, respectively, using the edge response of a sharp blade. ESF, edge spread function; LSF, line spread function. The 
color insets are the blade images of AR-PAM, network output, and OR-PAM, respectively. (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 
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calculation at each penetration depth, but only one ROI is marked in 
Fig. 8 for conciseness. Regarding the measured hair edge sharpness 
under different imaging depths, the 10–90% rise distance of hair edge at 
the positions marked by the cyan dashed lines were used. Again, mul-
tiple such positions were selected to obtain an averaged metric at each 
depth. 

From Fig. 8a and b, we can see that for AR-PAM images, overall both 
hair signal and the contrast decrease with increasing penetration depth, 
due to the weak and diffusive optical excitation in situ under increas-
ingly strong scattering. Note that the signals in some target areas at the 
thickness of 1700 µm case might be a bit stronger, mainly due to the 
increased laser pulse energy and the possible existence of microporous 
structure in the chicken tissue slices. Nevertheless, the overall image 
signal at 1700 µm is weaker than that at 1300 µm, in which the hair 
signal incompleteness caused by strong optical scattering was more 
serious. The network outputs follow a similar trend, but enjoys enhanced 
contrast, especially for penetration depths of 1300 and 1700 µm that 
have been sufficiently beyond the diffusion limit. Quantitatively, as 
shown in Fig. 8c and d, the CNR drops from ~ 34.9 dB to ~ 10.6 dB and 
the measured 10–90% rise distance increases from ~ 57 µm to ~ 95 µm 
for AR-PAM images in the range of 1700 µm tissue depth. With deep 
learning, the CNR declines only to ~ 17.1 dB. More strikingly, the 
measured 10–90% rise distances merely see a slight increase from ~ 
46 µm to ~ 60 µm, suggesting a greatly improved lateral resolution for 
tissue depth up to 1700 µm. To sum up, this hair phantom experiment 
reveals potentials for deep-tissue OR-PAM with our approach, which can 
remarkably enhance imaging resolution and SNR. 

4. Discussions 

To achieve high-resolution OR-PAM imaging in deep tissue, we 
propose a deep neural network to transform blurry images acquired with 
an AR-PAM setting to match the OR-PAM results. The network was first 
trained with AR- and OR-PAM data sets experimentally obtained from in 
vivo mouse ear. Then, the performance of the network was validated 

with AR-PAM mouse ear images that were not used in network training, 
yielding superior lateral resolution comparable to the ground truth OR- 
PAM images. It should be emphasized that although the network 
training was implemented with data obtained from the mouse ear, the 
successful application for in vivo mouse brain photoacoustic imaging 
verifies the universal applicability of the developed network. Our 
method could thus be extended to other imaging scenarios or deep tissue 
where experimental OR-PAM is not possible. Apart from the benefit for 
deep penetration, the transformation capability also initiates other po-
tentials: an inexpensive multimode pulsed laser source can be adopted to 
reduce the system cost, as the beam quality requirement in AR-PAM is 
way less demanding; a multimode fiber can be used for light delivery 
that is equipped with much higher beam coupling efficiency and optical 
damage threshold, allowing laser pulses at higher repetition rates 
delivered to the ROI and hence stronger signals and faster imaging 
speed; larger scanning step size can be adopted for AR-PAM set-up which 
can significantly reduce the time of raster scanning. All these, in com-
bination, empower conceivable all-round boost of penetration depth, 
SNR, cost control, as well as scanning speed to OR-PAM. 

That said, a few more aspects need to be discussed herein. There are 
mainly two limitations of our approach. The first is related to the arti-
facts, which might be generated by the network due to several reasons. 
In the network training phase, not all capillary patterns inside the paired 
AR- and OR-PAM images are always consistent due to the relatively 
large resolution discrepancy. Some physically existing local capillaries 
might be missed as they are represented by only blurry and dispersive 
pixels in AR-PAM. Such inconsistency could be an obstacle for the 
network to conduct pixel-to-pixel transformation in the training phase. 
In the network test phase, it is intuitive that the quality of the network 
output is highly dependent on that of the input AR-PAM data; the 
network may produce inaccurate pixel predictions when there are 
extremely blurry and dispersive pixels in the input. Hence, there may be 
some subtle distinctions between the network output and the ground 
truth OR-PAM image, mainly because of the latent capillary missing and 
artifacts. These subtle distinctions lead to limited improvements of 

Fig. 7. Application of the network on in vivo mouse brain AR-PAM images. (a) is the network input (AR-PAM image) and (b) is the network output. Two ROIs in both 
network input (a1, a2) and output (b1, b2) are enlarged and shown. Comparison of signal intensity profiles along the horizontal dashed line in (c) the first ROI and (d) 
the second ROI are also given. 
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metrics like SSIM (averagely by 13%) and PCC (averagely by 3%) that 
are sensitive to the perfect pixel-by-pixel match between the network 
output and ground truth. To minimize the latent artifacts and improve 
the metrics, we adopted data preprocessing and network training 
methods carefully. Accurate registration in the process of image patch 
extraction is of crucial importance, in which the sub-pixel alignment 
between the AR and OR image pairs allows the network to optimally 
learn a pixel-to-pixel transformation. Besides, the design and training of 
the network also play an important role. Different from conventional 
CNN where the optimization is solely driven by a pixel-wise loss that 
tends to produce overly smoothed results, the WGAN-GP model we used 
benefits from the adversarial training where the adaptive adversarial 
loss is crucial to guide the Generator network to generate images 
resembling OR labels. Further improvement could be made by acquiring 
more PAM image data used for training, to equip the network with 
stronger and more general imaging transformation ability. Lastly, it 
should also be emphasized that the aim of the network is not to perfectly 
transform AR-PAM images in all details, but to approximate the reso-
lution of OR-PAM as possible as it can. The other limitation is our 
transformation method still finds a distance to ideal deep-tissue OR-PAM 
imaging. As mentioned earlier, the quality of the network output is 
highly dependent on that of the input AR-PAM data; the low SNR and 
spatial resolution of AR-PAM imaging at depths in tissue pose a physical 
limit for our image-based post-processing method. Nevertheless, with 
the recent developments towards faster and more efficient photo-
acoustically guided wavefront shaping [59–61], we believe ideal 
OR-PAM imaging at depths in the tissue will be possible soon. 

More recently, a similar research was reported [62], where simulated 
rather than experimentally acquired AR-PAM data generated by blurring 
the corresponding OR-PAM images were used and did not experimen-
tally demonstrate its ability of deep-penetration imaging. In addition, its 
conventional network model is also different from the WGAN-GP model 
in our study. Also note that the proposed PAM imaging transformation 
method in this work should be distinguished from single image super 
resolution and blind deconvolution, although they are closely related. 
For image super resolution, the aim is to reconstruct the baseline reso-
lution when given an input solely down-sampled from the baseline 
image; but for our network, it is to approximate the resolution of 
OR-PAM from another poorer imaging modality. For the blind decon-
volution method, it has been shown earlier that it failed to recover 
high-quality images, whether in flat priors or fractional-order priors. 
The deblurring performance is inclined to be suboptimal, as it is often 
difficult to determine the PSF of the conceptual imaging system from 
ground truth OR to AR images. What’s more, the computation cost of 
deconvolution is demanding due to the multiple iterations it requires for 
parameter updates. In our example, it took about one and half minutes 
for producing a deblurred image with 30 iterations on average. In 
comparison, the trained network could rapidly output a high-resolution 
image from the blurry input within seconds. 

5. Conclusion 

In this study, a WGAN-GP neural network is designed and trained 
based on co-registered AR-to-OR PAM images experimentally acquired 

Fig. 8. Preliminary demo for deep-penetrating OR-PAM imaging using a hair phantom covered with chicken tissues of different thicknesses. (a1–a4) Experimentally 
acquired AR-PAM images. (b1–b4) Network output results corresponding to tissue thicknesses of 0 (no tissue covered), 700, 1300, and 1700 µm. The white and green 
dashed boxes in (a1–a4) and (b1–b4) denote the ROIs for object and background, respectively, and the cyan lines indicate the positions for measuring the hair edge 
10–90% rise distance. (c) CNR and (d) measured hair width versus different penetration depths (tissue thicknesses) for both AR-PAM images and the network output 
results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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from in vivo mouse ears. The feasibility and reliability of the proposed 
network to improve imaging resolution are demonstrated in vivo. The 
network outputs have also been compared with those obtained with a 
blind deconvolution method, showing perceptually better image 
deblurring results and improved evaluation metrics. Moreover, the 
transformation capability can be extended to other types (e.g., the brain 
vessel) or deep tissues (e.g., chicken breast slice of 1700 µm thickness) 
that are not readily accessible by OR-PAM. Note that the proposed 
method has its limitations, such as the existence of artifacts in the 
network output and the performance dependence on the input data 
quality (AR-PAM images). As an extension to the imaging depth of OR- 
PAM via computation, the proposed method potentially provides new 
insights to expand the scope of OR-PAM towards deep-tissue imaging 
and wide applications in biomedicine. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgments 

This work was supported by the National Natural Science Foundation 
of China (NSFC) (81930048, 81627805), Hong Kong Innovation and 
Technology Commission (GHP/043/19SZ, GHP/044/19GD), Hong 
Kong Research Grant Council (15217721, R5029-19, 25204416, 
21205016, 11215817, 11101618, 11103320), and Guangdong Science 
and Technology Commission (2019BT02X105, 2019A1515011374). All 
authors declare no conflict of interests. 

References 

[1] L.V. Wang, Multiscale photoacoustic microscopy and computed tomography, Nat. 
Photonics 3 (9) (2009) 503–509. 

[2] L.V. Wang, J. Yao, A practical guide to photoacoustic tomography in the life 
sciences, Nat. Methods 13 (8) (2016) 627–638. 

[3] K. Maslov, H.F. Zhang, S. Hu, L.V. Wang, Optical-resolution photoacoustic 
microscopy for in vivo imaging of single capillaries, Opt. Lett. 33 (9) (2008) 
929–931. 

[4] L. Wang, K. Maslov, J. Yao, B. Rao, L.V. Wang, Fast voice-coil scanning optical- 
resolution photoacoustic microscopy, Opt. Lett. 36 (2) (2011) 139–141. 

[5] Y. Zhou, J. Chen, C. Liu, C. Liu, P. Lai, L. Wang, Single-shot linear dichroism 
optical-resolution photoacoustic microscopy, Photoacoustics 16 (2019), 100148. 

[6] Y. Zhou, S. Liang, M. Li, C. Liu, P. Lai, L. Wang, Optical-resolution photoacoustic 
microscopy with ultrafast dual-wavelength excitation, J. Biophotonics 13 (6) 
(2020), e201960229. 

[7] R. Cao, J. Li, B. Ning, N.D. Sun, T.X. Wang, Z.Y. Zuo, S. Hu, Functional and oxygen- 
metabolic photoacoustic microscopy of the awake mouse brain, Neuroimage 150 
(2017) 77–87. 

[8] T. Jin, H. Guo, H.B. Jiang, B.W. Ke, L. Xi, Portable optical resolution photoacoustic 
microscopy (pORPAM) for human oral imaging, Opt. Lett. 42 (21) (2017) 
4434–4437. 

[9] B. Zabihian, J. Weingast, M.Y. Liu, E. Zhang, P. Beard, H. Pehamberger, W. Drexler, 
B. Hermann, In vivo dual-modality photoacoustic and optical coherence 
tomography imaging of human dermatological pathologies, Biomed. Opt. Express 6 
(9) (2015) 3163–3178. 

[10] T.T. Wong, R. Zhang, P. Hai, C. Zhang, M.A. Pleitez, R.L. Aft, D.V. Novack, L. 
V. Wang, Fast label-free multilayered histology-like imaging of human breast 
cancer by photoacoustic microscopy, Sci. Adv. 3 (5) (2017), e1602168. 

[11] A. Berezhnoi, M. Schwarz, A. Buehler, S.V. Ovsepian, J. Aguirre, V. Ntziachristos, 
Assessing hyperthermia-induced vasodilation in human skin in vivo using 
optoacoustic mesoscopy, J. Biophotonics 11 (11) (2018), e201700359. 

[12] Y. Zhou, F. Cao, H. Li, X. Huang, D. Wei, L. Wang, P. Lai, Photoacoustic imaging of 
microenvironmental changes in facial cupping therapy, Biomed. Opt. Express 11 
(5) (2020) 2394–2401. 

[13] Y. Zhou, C. Liu, X. Huang, X. Qian, L. Wang, P. Lai, Low-consumption 
photoacoustic method to measure liquid viscosity, Biomed. Opt. Express 12 (11) 
(2021) 7139–7148. 

[14] H. Dai, Q. Shen, J. Shao, W. Wang, F. Gao, X. Dong, Small molecular NIR-II 
fluorophores for cancer phototheranostics, Innovation 2 (1) (2021), 100082. 

[15] S. Park, C. Lee, J. Kim, C. Kim, Acoustic resolution photoacoustic microscopy, 
Biomed. Eng. Lett. 4 (3) (2014) 213–222. 

[16] H. Zhong, T. Duan, H. Lan, M. Zhou, F. Gao, Review of low-cost photoacoustic 
sensing and imaging based on laser diode and light-emitting diode, Sensors 18 (7) 
(2018) 2264. 

[17] M. Erfanzadeh, Q. Zhu, Photoacoustic imaging with low-cost sources; a review, 
Photoacoustics 14 (2019) 1–11. 

[18] X. Li, V.T. Tsang, L. Kang, Y. Zhang, T.T. Wong, High-speed high-resolution laser 
diode-based photoacoustic microscopy for in vivo microvasculature imaging, Vis. 
Comput. Ind. Biomed. Art 4 (1) (2021) 1–6. 

[19] J. Grohl, M. Schellenberg, K. Dreher, L. Maier-Hein, Deep learning for biomedical 
photoacoustic imaging: a review, Photoacoustics 22 (2021), 100241. 

[20] C.C. Yang, H.R. Lan, F. Gao, F. Gao, Review of deep learning for photoacoustic 
imaging, Photoacoustics 21 (2021), 100215. 

[21] A. Hariri, K. Alipour, Y. Mantri, J.P. Schulze, J.V. Jokerst, Deep learning improves 
contrast in low-fluence photoacoustic imaging, Biomed. Opt. Express 11 (6) (2020) 
3360–3373. 

[22] R. Manwar, X. Li, S. Mahmoodkalayeh, E. Asano, D.X. Zhu, K. Avanaki, Deep 
learning protocol for improved photoacoustic brain imaging, J. Biophotonics 13 
(10) (2020), e202000212. 

[23] A.S. Harma, M.P. Ramanik, Convolutional neural network for resolution 
enhancement and noise reduction in acoustic resolution photoacoustic microscopy, 
Biomed. Opt. Express 11 (12) (2020) 6826–6839. 

[24] A. DiSpirito, D. Li, T. Vu, M. Chen, D. Zhang, J. Luo, R. Horstmeyer, J. Yao, 
Reconstructing undersampled photoacoustic microscopy images using deep 
learning, IEEE Trans. Med. Imaging 40 (2) (2020) 562–570. 

[25] H.X. Zhao, Z.W. Ke, F. Yang, K. Li, N.B. Chen, L. Song, C.S. Zheng, D. Liang, C. 
B. Liu, Deep learning enables superior photoacoustic imaging at ultralow laser 
dosages, Adv. Sci. 8 (3) (2021), 2003097. 

[26] A. Hauptmann, F. Lucka, M. Betcke, N. Huynh, J. Adler, B. Cox, P. Beard, 
S. Ourselin, S. Arridge, Model-based learning for accelerated, limited-view 3-D 
photoacoustic tomography, IEEE Trans. Med. Imaging 37 (6) (2018) 1382–1393. 

[27] N. Davoudi, X.L. Dean-Ben, D. Razansky, Deep learning optoacoustic tomography 
with sparse data, Nat. Mach. Intell. 1 (10) (2019) 453–460. 

[28] S. Guan, A.A. Khan, S. Sikdar, P.V. Chitnis, Fully dense UNet for 2-D sparse 
photoacoustic tomography artifact removal, IEEE J. Biomed. Health 24 (2) (2020) 
568–576. 

[29] T. Vu, M.C. Li, H. Humayun, Y. Zhou, J.J. Yao, A generative adversarial network 
for artifact removal in photoacoustic computed tomography with a linear-array 
transducer, Exp. Biol. Med. 245 (7) (2020) 597–605. 

[30] C. Dong, C.C. Loy, K. He, X. Tang, Image super-resolution using deep convolutional 
networks, IEEE Trans. Pattern Anal. Mach. Intell. 38 (2) (2015) 295–307. 

[31] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. 
Tejani, J. Totz, Z. Wang, Photo-realistic single image super-resolution using a 
generative adversarial network, in: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, 2017, pp. 4681–4690. 

[32] B. Lim, S. Son, H. Kim, S. Nah, K. Mu Lee, Enhanced deep residual networks for 
single image super-resolution, in: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition Workshops, 2017, pp. 136–144. 

[33] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, C. Change Loy, Esrgan: 
enhanced super-resolution generative adversarial networks, in: Proceedings of the 
European Conference on Computer Vision (ECCV), 2018, pp. 0–0. 

[34] Y. Rivenson, Z. Gorocs, H. Gunaydin, Y.B. Zhang, H.D. Wang, A. Ozcan, Deep 
learning microscopy, Optica 4 (11) (2017) 1437–1443. 

[35] H.X. Zhao, Z.W. Ke, N.B. Chen, S.J. Wang, K. Li, L.D. Wang, X.J. Gong, W. Zheng, 
L. Song, Z.C. Liu, D. Liang, C.B. Liu, A new deep learning method for image 
deblurring in optical microscopic systems, J. Biophotonics 13 (3) (2020), 
e201960147. 

[36] S.F. Cheng, H.H. Li, Y.Q. Luo, Y.J. Zheng, P.X. Lai, Artificial intelligence-assisted 
light control and computational imaging through scattering media, J. Innov. Opt. 
Health Sci. 12 (4) (2019), 1930006. 

[37] Y. Rivenson, H.D. Wang, Z.S. Wei, K. de Haan, Y.B. Zhang, Y.C. Wu, H. Gunaydin, 
J.E. Zuckerman, T. Chong, A.E. Sisk, L.M. Westbrook, W.D. Wallace, A. Ozcan, 
Virtual histological staining of unlabelled tissue-autofluorescence images via deep 
learning, Nat. Biomed. Eng. 3 (6) (2019) 466–477. 

[38] H.D. Wang, Y. Rivenson, Y.Y. Jin, Z.S. Wei, R. Gao, H. Gunaydin, L.A. Bentolila, 
C. Kural, A. Ozcan, Deep learning enables cross-modality super-resolution in 
fluorescence microscopy, Nat. Methods 16 (1) (2019) 103–110. 

[39] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, A.C. Courville, Improved 
training of wasserstein gans, in: Proceedings of the Advances in Neural Information 
Processing Systems, 2017, pp. 5767–5777. 

[40] W. Xing, L. Wang, K. Maslov, L.V. Wang, Integrated optical-and acoustic-resolution 
photoacoustic microscopy based on an optical fiber bundle, Opt. Lett. 38 (1) (2013) 
52–54. 

[41] A. Dosovitskiy, P. Fischer, J.T. Springenberg, M. Riedmiller, T. Brox, 
Discriminative unsupervised feature learning with exemplar convolutional neural 
networks, IEEE Trans. Pattern Anal. Mach. Intell. 38 (9) (2016) 1734–1747. 

[42] E. Castro, J.S. Cardoso, J.C. Pereira, Elastic deformations for data augmentation in 
breast cancer mass detection, in: Proceedings of the 2018 IEEE EMBS International 
Conference on Biomedical & Health Informatics (BHI), 2018, pp. 230–234. 

[43] O. Ronneberger, P. Fischer, T. Brox, U-net: convolutional networks for biomedical 
image segmentation, in: Proceedings of the International Conference on Medical 
Image Computing and Computer-Assisted Intervention, 2015, pp. 234–241. 

[44] A. Buslaev, V.I. Iglovikov, E. Khvedchenya, A. Parinov, M. Druzhinin, A.A. Kalinin, 
Albumentations: fast and flexible image augmentations, Information 11 (2) (2020) 
125. 

[45] I. Goodfellow, Nips 2016 Tutorial: Generative Adversarial Networks, arXiv preprint 
arXiv:1701.00160, 2016. 

[46] M. Arjovsky, L. Bottou, Towards Principled Methods for Training Generative 
Adversarial Networks, arXiv preprint arXiv:1701.04862, 2017. 

S. Cheng et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref1
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref1
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref2
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref2
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref3
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref3
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref3
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref4
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref4
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref5
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref5
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref6
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref6
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref6
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref7
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref7
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref7
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref8
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref8
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref8
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref9
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref9
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref9
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref9
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref10
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref10
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref10
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref11
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref11
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref11
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref12
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref12
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref12
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref13
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref13
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref13
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref14
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref14
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref15
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref15
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref16
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref16
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref16
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref17
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref17
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref18
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref18
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref18
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref19
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref19
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref20
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref20
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref21
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref21
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref21
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref22
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref22
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref22
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref23
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref23
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref23
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref24
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref24
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref24
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref25
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref25
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref25
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref26
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref26
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref26
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref27
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref27
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref28
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref28
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref28
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref29
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref29
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref29
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref30
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref30
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref31
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref31
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref32
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref32
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref32
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref32
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref33
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref33
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref33
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref34
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref34
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref34
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref34
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref35
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref35
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref35
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref36
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref36
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref36
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref37
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref37
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref37
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref38
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref38
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref38


Photoacoustics 25 (2022) 100314

12

[47] M. Arjovsky, S. Chintala, L. Bottou, Wasserstein generative adversarial networks, 
in: Proceedings of the International Conference on Machine Learning, 2017, pp. 
214–223. 

[48] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
2016, pp. 770–778. 

[49] Y. Wu, K. He, Group normalization, in: Proceedings of the European Conference on 
Computer Vision (ECCV), 2018, pp. 3–19. 

[50] D. Ulyanov, A. Vedaldi, V. Lempitsky, Instance Normalization: The Missing 
Ingredient for Fast Stylization, arXiv preprint arXiv:1607.08022, 2016. 

[51] T. Nguyen, Y. Xue, Y. Li, L. Tian, G. Nehmetallah, Deep learning approach for 
Fourier ptychography microscopy, Opt. Express 26 (20) (2018) 26470–26484. 

[52] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level 
performance on imagenet classification, Proc. IEEE Int. Conf. Comput. Vis. (2015) 
1026–1034. 

[53] I. Loshchilov, F. Hutter, Decoupled Weight Decay Regularization, arXiv preprint 
arXiv: 1711.05101, 2017. 

[54] P. Ruiz, X. Zhou, J. Mateos, R. Molina, A.K. Katsaggelos, Variational Bayesian blind 
image deconvolution: a review, Digit. Signal Process. 47 (2015) 116–127. 

[55] T.E. Bishop, S.D. Babacan, B. Amizic, A.K. Katsaggelos, T. Chan, R. Molina, Blind 
image deconvolution: problem formulation and existing approaches. Blind Image 
Deconvolution, CRC Press, 2017, pp. 21–62. 

[56] M.R. Chowdhury, J. Qin, Y. Lou, Non-blind and blind deconvolution under poisson 
noise using fractional-order total variation, J. Math. Imaging Vis. 62 (9) (2020) 
1238–1255. 

[57] Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from 
error visibility to structural similarity, IEEE Trans. Image Process. 13 (4) (2004) 
600–612. 

[58] M. Fauver, E.J. Seibel, J.R. Rahn, M.G. Meyer, F.W. Patten, T. Neumann, A. 
C. Nelson, Three-dimensional imaging of single isolated cell nuclei using optical 
projection tomography, Opt. Express 13 (11) (2005) 4210–4223. 

[59] P. Lai, L. Wang, J.W. Tay, L.V. Wang, Photoacoustically guided wavefront shaping 
for enhanced optical focusing in scattering media, Nat. Photonics 9 (2) (2015) 
126–132. 

[60] T. Chaigne, J. Gateau, O. Katz, E. Bossy, S. Gigan, Light focusing and two- 
dimensional imaging through scattering media using the photoacoustic 
transmission matrix with an ultrasound array, Opt. Lett. 39 (9) (2014) 2664–2667. 

[61] T. Zhao, S. Ourselin, T. Vercauteren, W. Xia, High-speed photoacoustic-guided 
wavefront shaping for focusing light in scattering media, Opt. Lett. 46 (5) (2021) 
1165–1168. 

[62] Z. Zhang, H. Jin, Z. Zheng, Y. Luo, Y. Zheng, Photoacoustic microscopy imaging 
from acoustic resolution to optical resolution enhancement with deep learning, in: 
Proceedings of the 2021 IEEE International Symposium on Circuits and Systems 
(ISCAS), 2021, pp. 1–5.  

Shengfu Cheng is a Ph.D. student at the Department of 
Biomedical Engineering in the Hong Kong Polytechnic Uni-
versity. He received his Bachelor degree from Sichuan Uni-
versity. His research interests include deep learning application 
for photoacoustic imaging and multimode fiber based 
endoscopy.  

Yingying Zhou is a Ph.D. student at the Department of 
Biomedical Engineering, The Hong Kong Polytechnic Univer-
sity. She received bachelor’s degree from the SUN YAT-SEN 
UNIVERSITY. Her research focuses on photoacoustic micro-
scopy and its applications.  

Jiangbo Chen is a Ph.D. student at the Department of 
Biomedical Engineering, City University of Hong Kong. He 
received bachelor’s degree from the Northeast Forestry Uni-
versity, and received Master degrees from Harbin institute of 
technology. His research focuses on photoacoustic imaging.  

Dr. Huanhao Li obtained his Ph.D. from the Hong Kong 
Polytechnic University in 2021. His research interest is to study 
the optical scattering and wavefront shaping. Specifically, how 
the optical speckle pattern encodes information and develop-
ment of the advanced algorithms to overcome the scrambled 
wavefront are of focus.  

Lidai Wang received the Bachelor and Master degrees from the 
Tsinghua University, Beijing, and received the Ph.D. degree 
from the University of Toronto, Canada. After working as a 
postdoctoral research fellow in the Prof Lihong Wang’s group, 
he joined the City University of Hong Kong in 2015. His 
research focuses on biophotonics, biomedical imaging, wave-
front engineering, instrumentation and their biomedical ap-
plications. He has invented single-cell flowoxigraphy (FOG), 
ultrasonically encoded photoacoustic flowgraphy (UE-PAF) 
and nonlinear photoacoustic guided wavefront shaping 
(PAWS). He has published more 30 articles in peer-reviewed 
journals and has received four best paper awards from inter  

national conferences.  

Dr. Puxiang Lai received his Bachelor from Tsinghua Univer-
sity in 2002, Master from Chinese Academy of Sciences in 
2005, and Ph.D. from Boston University in 2011. After that, he 
joined Dr. Lihong Wang’s lab in Washington University in St. 
Louis as a Postdoctoral Research Associate. In September 2015, 
he joined The Hong Kong Polytechnic University, and 
currently, he is an Associate Professor in Department of 
Biomedical Engineering. Puxiang’s research focuses on the 
synergy of light and sound as well as its applications in 
biomedicine, such as wavefront shaping, photoacoustic imag-
ing, acousto-optic imaging, and computational optical imag-
ing. His research has fueled more than 50 premium journal   

publications, such as Nature Photonics and Nature Communications, and his research has 
been continuously supported by national and regional funding agents with allocated 
budget of more than 25 million Hong Kong dollars. 

S. Cheng et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref39
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref39
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref40
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref40
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref40
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref41
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref41
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref42
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref42
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref42
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref43
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref43
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref43
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref44
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref44
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref44
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref45
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref45
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref45
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref46
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref46
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref46
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref47
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref47
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref47
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref48
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref48
http://refhub.elsevier.com/S2213-5979(21)00073-2/sbref48

	High-resolution photoacoustic microscopy with deep penetration through learning
	1 Introduction
	2 Methods
	2.1 Integrated OR- and AR-PAM system
	2.2 Sample preparation
	2.3 Image pre-processing and data augmentation
	2.4 GAN model and network training
	2.5 Blind deconvolution for AR-PAM image deblurring

	3 Results
	3.1 Network feasibility: evaluation with in vivo mouse ear photoacoustic images
	3.2 Network performance: comparison and characterization
	3.3 Network generalization: application for in vivo mouse brain photoacoustic imaging
	3.4 Network application: preliminary extension for deep-tissue OR-PAM

	4 Discussions
	5 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References


