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The immune response after severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) infection results in the forma-
tion of antibodies that can interfere with viral replication and 

infection of host cells in over 95% of patients1. Based on previous 
experience in other viral infections2, the use of convalescent plasma 
has been proposed as a therapeutic form of passive immunization 
for patients with acute COVID-19 (refs. 3,4). Early in the pandemic, 
several small randomized trials found no difference in clinical out-
comes5–8. In the United States, an Extended Access Program outside 
of a controlled trial led to the use of convalescent plasma in over half 
a million patients. Data from these patients showed that the transfu-
sion of plasma with high anti-SARS-CoV-2 antibody levels was asso-
ciated with a lower risk of death in non-intubated patients compared 
to lower antibody levels; however, this study lacked a control group9. 
The RECOVERY trial was a large randomized trial in 11,558 hospi-
talized patients that found that the risk of death after the administra-
tion of high-titer plasma was not different from standard of care10.

The Convalescent Plasma for COVID-19 Respiratory Illness 
(CONCOR-1) trial was a multi-center, international, open-label, 
randomized controlled trial designed to assess the effectiveness and 
safety of COVID-19 convalescent plasma in hospitalized patients. 
The trial used plasma collected from four blood suppliers with a 
range of anti-SARS-CoV-2 antibody levels. The variability in anti-
body titers allowed for a characterization of the effect-modifying 
role of functional and quantitative antibodies on the primary out-
come (intubation or death at 30 d).

Results
Patients. This trial was stopped at the planned interim analysis 
because the conditional power estimate was 1.6% (below the stop-
ping criterion of 20%). Between 14 May 2020 and 29 January 2021, 
940 patients were randomized (2:1) to convalescent plasma or stan-
dard of care in 72 hospital sites in Canada, the United States and 
Brazil (Fig. 1 and Supplementary Table 1). Two patients randomized  
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to plasma withdrew consent before treatment. Demographics of 
the baseline study population (n = 938) were balanced between 
groups for all study populations (Table 1 and Supplementary 
Tables 2 and 3). The median age was 69 years, with 59% male and 
41% female, and the median time from the onset of any COVID-
19 symptom was 8 d (interquartile range (IQR), 5–10 d). Most 
patients (n = 766, 81.7%) were receiving systemic corticosteroids 
at the time of enrolment. Seventeen patients were lost to follow-up 
between discharge and day 30, precluding assessment of the  
primary outcome.

Primary outcome. In the intention-to-treat population (n = 921), 
intubation or death occurred in 199 (32.4%) of 614 patients in the 
convalescent plasma group and 86 (28.0%) of 307 patients in the 
standard of care group (RR = 1.16, 95% CI 0.94–1.43, P = 0.18)  
(Fig. 2a). The time to intubation or death was not significantly 
different between groups (Fig. 2b). In the per-protocol analy-
sis (n = 851), intubation or death occurred in 167 (30.5%) of 548 
patients in the convalescent plasma group and 85 (28.1%) of 303 
patients in the standard of care group (RR = 1.09, 95% CI 0.87–1.35, 
P = 0.46) (Supplementary Table 4).

Standard of care
n = 307

Convalescent plasma
n = 548

Standard of care
n = 303

Per-protocol
analysis
n = 851

Assessed for eligibility
n = 10,205

Excluded (n = 9,256)

3,866 (42%) not on supplementary oxygen

1,552 (17%) symptom onset more than 12 d

1,053 (11%) refused consent

919 (10%) patient discharged before screening

634 (7%) intubated or plan in place for intubation 

498 (5%) decision in place for no active treatment or patient deceased

301 (3%) unable to reach patient or family or no translator available

187 (2%) no research personnel to screen (off hours)

144 (2%) patient considered unfit for study by physician

39 (0.4%) unable to reach patient’s physician 

26 (0.3%) enrolled in a study not permitting co-enrollment

20 (0.2%) plasma contraindicated

26 (0.3%) othera

Randomization
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Standard of care
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Did not receive CCP (n = 17)
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n = 938

Convalescent plasma
n = 614
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Fig. 1 | Enrollment, randomization and follow-up. Patient flow in the CONCOR-1 study detailing the intention-to-treat population, per-protocol analysis 
population and excluded patients. Othera, n = 26: <16 years of age (n = 13), <18 years of age (n = 5), ABO-compatible plasma unavailable (n = 5) and other 
(n = 3). bIncludes not receiving supplemental oxygen at the time of randomization (but on oxygen at screening) and any symptom onset >12 d before 
randomization for protocol version 5.0 or earlier.
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Table 1 | Characteristics of the baseline study population (excluding two patients who withdrew consent). Categorical data are 
presented as number (percentage) and continuous variables as mean ± standard deviation and median (IQR)

Characteristic Convalescent plasma, n = 625 Standard of care, n = 313 Overall, n = 938

Age, years 67.7 ± 16.0; 69 (58, 80) 67.1 ± 14.8; 68 (58, 78) 67.5 ± 15.6; 69 (58, 79)

 ≥60 years 438 (70.1) 218 (69.6) 656 (69.9)

Sex

 Male 369 (59.0) 185 (59.1) 554 (59.1)

 Female 256 (41.0) 128 (40.9) 384 (40.9)

Pregnant at randomization 4 (0.6) 1 (0.3) 5 (0.5)

Ethnicity

 White 305 (48.8) 153 (48.9) 458 (48.8)

 Asian 104 (16.6) 46 (14.7) 150 (16.0)

 Hispanic or Latino 34 (5.4) 9 (2.9) 43 (4.6)

 Black 25 (4.0) 11 (3.5) 36 (3.8)

 Other 38 (6.1) 28 (8.9) 66 (7.0)

 Unknown 119 (19.0) 66 (21.1) 185 (19.7)

ABO blood group

 O 270 (43.2) 113 (36.1) 383 (40.8)

 A 235 (37.6) 121 (38.7) 356 (38.0)

 B 89 (14.2) 57 (18.2) 146 (15.6)

 AB 31 (5.0) 22 (7.0) 53 (5.7)

BMI (kg m−2) 30.0 ± 7.5; 29 (25, 33) 30.0 ± 7.4; 29 (25, 33) 30.0 ± 7.4; 29 (25, 33)

 BMI < 30 256 (41.0) 123 (39.3) 379 (40.4)

 BMI ≥ 30 198 (31.7) 102 (32.6) 300 (32.0)

 Unknown 171 (27.4) 88 (28.1) 259 (27.6)

Presence of comorbidity

 Diabetes 220 (35.2) 108 (34.5) 328 (35.0)

 Cardiac disease 385 (61.6) 197 (62.9) 582 (62.0)

 Baseline respiratory diseases 147 (23.5) 79 (25.2) 226 (24.1)

Abnormal CT chest or chest X-ray result before randomization 563 (90.1) 266 (85.0) 829 (88.4)

Medication for other research study at baseline 53 (8.5) 41 (13.1) 94 (10.0)

Medication for COVID-19 at baseline

 Azithromycin 279 (44.6) 137 (43.8) 416 (44.3)

 Other antibiotics 405 (64.8) 186 (59.4) 591 (63.0)

 Systemic corticosteroids 496 (79.4) 258 (82.4) 754 (80.4)

 Antiviral medications 165 (26.4) 80 (25.6) 245 (26.1)

 Anticoagulants 355 (56.8) 180 (57.5) 535 (57.0)

 Other COVID-19 medications 79 (12.6) 3 9(12.5) 118 (12.6)

Medication not for COVID-19 at baseline

 ACE inhibitor 85 (13.6) 63 (20.1) 148 (15.8)

 ACE receptor blocker 77 (12.3) 47 (15.0) 124 (13.2)

 Non-steroidal anti-inflammatory drugs 77 (12.3) 52 (16.6) 129 (13.8)

 Colchicine 5 (0.8) 2 (0.6) 7 (0.7)

 Systemic corticosteroids 61 (9.8) 35 (11.2) 96 (10.2)

 Inhaled corticosteroids 84 (13.4) 42 (13.4) 126 (13.4)

 Immunomodulatory agents 22 (3.5) 18 (5.8) 40 (4.3)

 Anticoagulants 135 (21.6) 64 (20.4) 199 (21.2)

Systemic corticosteroids at baseline 504 (80.6) 262 (83.7) 766 (81.7)

Oxygen status at baseline (FiO2) 49.5 ± 25.2; 40 (30, 65) 48.8 ± 25.1; 40 (30, 60) 49.3 ± 25.2; 40 (30, 60)

Time from any symptom onset to randomization (d) 8.0 ± 3.8; 8 (5, 10) 7.8 ± 3.4; 8 (5, 10) 7.9 ± 3.7; 8 (5, 10)

Time from COVID-19 diagnosisa to randomization (d) 4.9 ± 3.6; 4 (2, 7) 5.1 ± 4.4; 4 (2, 7) 5.0 ± 3.9; 4 (2, 7)

Location at randomization

 Ward 505 (80.8) 260 (83.1) 765 (81.6)

 ICU 120 (19.2) 53 (16.9) 173 (18.4)

Enrolled in other clinical trials 168 (26.9) 98 (31.3) 266 (28.4)
aDay of positive COVID-19 test ACE, angiotensin-converting enzyme; BMI, body mass index; CT, computed tomography; FiO2, fraction of inhaled oxygen; ICU, intensive care unit.
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Secondary efficacy outcomes and subgroup analyses. Secondary 
outcomes for the intention-to-treat population are shown in Fig. 2a.  
There were no differences in mortality or intubation or other sec-
ondary efficacy outcomes. Similarly, in the per-protocol analy-
sis, there were no differences in the secondary efficacy outcomes 
(Supplementary Table 4 and Extended Data Figs. 1–3). No signifi-
cant differences were observed in most subgroups, including time 
from diagnosis to randomization <3 d for both the intention-to-treat 

(Fig. 3) and per-protocol (Extended Data Fig. 4) populations. The 
subgroup of patients served by blood supplier 3 (Fig. 3) and the post 
hoc subgroup of patients who were not receiving corticosteroids 
(Extended Data Figs. 5 and 6) had worse outcomes with convales-
cent plasma compared to standard of care.

Safety. Serious adverse events occurred in 205 (33.4%) of 614 
patients in the convalescent plasma arm compared to 81 (26.4%) of 

Convalescent
plasma

Standard
of care Treatment effecta

Intention-to-treat population with data on primary outcome 
available (n = 921)b n = 614 n = 307

Intubation or death at day 30 (n, %) 199 (32.4) 86 (28.0) RR = 1.16 (0.94, 1.43), P = 0.18

Time to Intubation or in-hospital death by day 30 (d) – – HR = 1.14 (0.89, 1.47), P = 0.30

Ventilation-free days by day 30 (d) 23.4 ± 10.4 24.0 ± 10.5 MD =  –0.6 (–2.1, 0.7), P = 0.41

Any death by day 30 (n, %) 141 (23.0) 63 (20.5) RR = 1.12 (0.86, 1.46), P = 0.40

Length of stay in ICU by day 30 (d) 4.3 ± 7.9 3.7 ± 7.1 MD = 0.7 (–0.3, 1.7), P = 0.22

Need for kidney replacement therapy by day 30 (n, %)c 10 (1.6) 6 (2.0) RR = 0.83 (0.31, 2.27), P = 0.72

Serious adverse event by day 30 (n, %) 205 (33.4) 81 (26.4) RR = 1.27 (1.02, 1.57), P = 0.03

Grade ≥3 events (severe) 260 (42.3) 109 (35.5) RR = 1.19 (1.00,1.42), P = 0.05

Grade ≥4 events (life-threatening) 188 (30.6) 74 (24.1) RR = 1.27 (1.01,1.60), P = 0.04

Grade 5 events (fatal) 141 (23.0) 63 (20.5) RR = 1.12 (0.86,1.46), P = 0.40

Baseline study population (n = 938)d n = 625 n = 313

In-hospital death by day 90 (n, %) 156 (25.0) 69 (22.0) RR = 1.13 (0.88, 1.45), P = 0.33

Time to in-hospital death by day 90 – – HR = 1.02 (0.76, 1.35), P = 0.91

Length of stay in hospital by day 90 – – HR = 0.91 (0.80, 1.04), P = 0.18

a

b

Intention-to-treat Intention-to-treat

CCP in-hospital death
CCP discharge

SOC discharge
SOC in-hospital death
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Fig. 2 | Study outcomes. a, Patient outcomes for the primary and secondary endpoints. b, Cumulative incidence functions of the primary outcome 
(intubation or death) by day 30 and of in-hospital death by day 90. aRR and 95% CI; hazard ratio ((HR), 95% CI); and mean difference ((MD), with 95% 
CI based on robust bootstrap standard errors). bSeventeen patients were discharged before day 30 and were lost to follow-up at 30 d, and two withdrew 
consent before day 30; thus, outcomes collected at day 30 (primary outcome and some other secondary outcomes for day 30) were missing. cExcluding 
11 patients on chronic kidney replacement therapy at baseline. dIntention-to-treat survival analyses were based on the complete baseline population (940 
randomized patients minus two patients who withdrew consent).
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307 patients in the standard of care arm for the intention-to-treat 
population (RR = 1.27, 95% CI 1.02–1.57, P = 0.034; Fig. 2a and 
Supplementary Tables 4–6). Most of these events were worsening 
hypoxemia and respiratory failure. Transfusion-related complica-
tions were recorded in 35 (5.7%) of 614 patients in the convalescent 
plasma group (Supplementary Tables 7 and 8). Of the 35 reactions, 
four were life-threatening (two transfusion-associated circulatory 
overload, one possible transfusion-related acute lung injury and one 
transfusion-associated dyspnea), and none was fatal. Thirteen of the 
35 reactions were classified as transfusion-associated dyspnea. Two 

patients underwent serological investigation for transfusion-related 
acute lung injury (both negative).

Effect-modifying role of antibodies in convalescent plasma. 
The distributions of antibodies in convalescent plasma units var-
ied by blood supplier (Fig. 4, Supplementary Table 9 and Extended 
Data Fig. 7); therefore, antibody analyses controlled for supplier to 
address possible confounding. Transfusion of convalescent plasma 
with average (log-transformed) levels of antibody-dependent cellu-
lar cytotoxicity (ADCC) yielded an OR of 1.16 (95% CI 0.85–1.57) 

Favors convalescent
plasma

Favors standard
of care

All patients
Age

< 60
≥60
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Male
Female

Ethnicity
Asian
White
Black or African American
Hispanic or Latino
Other
Not known

Patient ABO group
O
A
B
AB

Obesity
BMI <30
BMI ≥30

Smoking status
Never smoker
Former smoker
Current smoker

Smoking history
< 15 years
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Diabetes
No
Yes

Cardiac disease
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Yes

Respiratory disease
No
Yes

Enrolled other trials
No
Yes

Diagnosis to randomization
≥3 d
>3 d

Symptom to randomization
≥12 d
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Oxygen status
≥ 2 L
> 2 L

Blood Supplier
Supplier 1
Supplier 2
Supplier 3
Supplier 4

199/614 (32.4)

27/181 (14.9)
172/433 (39.7)

126/362 (34.8)
73/252 (29.0)

26/101 (25.7)
101/300 (33.7)

9/25 (36.0)
8/33 (24.2)

16/37 (43.2)
39/118 (33.1)

91/265 (34.3)
75/231 (32.5)
22/87 (25.3)
11/31 (35.5)

101/248 (40.7)
50/198 (25.3)

100/324 (30.9)
64/188 (34.0)

5/19 (26.3)

105/355 (29.6)
30/84 (35.7)

125/400 (31.3)
74/214 (34.6)

54/235 (23.0)
145/379 (38.3)

149/469 (31.8)
50/145 (34.5)

146/448 (32.6)
53/166 (31.9)

95/273 (34.8)
104/341 (30.5)

188/577 (32.6)
11/37 (29.7)

23/148 (15.5)
173/455 (38.0)

106/343 (30.9)
53/180 (29.4)
37/84 (44.0)

3/7 (42.9)

86/307 (28.0)

11/91 (12.1)
75/216 (34.7)

54/183 (29.5)
32/124 (25.8)

10/44 (22.7)
47/151 (31.1)

3/11 (27.3)
1/9 (11.1)

7/28 (25.0)
18/64 (28.1)

33/112 (29.5)
39/119 (32.8)
11/54 (20.4)
3/22 (13.6)

40/121 (33.1)
24/100 (24.0)

43/159 (27.0)
32/104 (30.8)

2/6 (33.3)

48/172 (27.9)
14/53 (26.4)

58/203 (28.6)
28/104 (26.9)

21/114 (18.4)
65/193 (33.7)

64/228 (28.1)
22/79 (27.8)

62/211 (29.4)
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36/132 (27.3)
50/174 (28.7)

82/288 (28.5)
4/19 (21.1)

8/74 (10.8)
75/225 (33.3)

56/173 (32.4)
19/88 (21.6)
10/43 (23.3)

1/3 (33.3)

1.16 (0.94,1.43)
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1.14 (0.92,1.42)
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Fig. 3 | Subgroup analyses. Forest plots are presented for the subgroup analyses for the intention-to-treat population. P values for RR and homogeneity are 
two sided without adjustment for multiple comparisons. BMI, body mass index.
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Fig. 4 | The effect-modifying role of convalescent plasma antibody content for the primary outcome. a, Absolute antibody amounts transfused per patient 
(n = 597) in the CCP arm for each marker, expressed as the product of volume and concentration. Center line: median; box limits: 25th and 75th percentiles; 
whiskers: 1.5× IQR; points: outliers. b, Effect-modifying role of CCP content for the primary outcome for each marker. The top row presents the trends in CCP 
effect compared to SOC as a function of the marker value, along with 95% CIs. Marker values are expressed as standard deviations of log values centered 
around the mean (standardized log). The horizontal dotted line represents CCP with no effect (OR = 1). The P values (two-sided test for trend without 
adjustment for multiple comparisons) refer to the effect modification observed with each marker (Supplementary Table 10). The histograms present the 
frequency distribution by marker. c,d, Contour plots of the OR for the primary outcome as a function of marker combinations. Overlaid data points indicate the 
value of the two markers for each CCP transfusion. Mfi, mean fluorescence intensity; OD, optical density; S, SARS-CoV-2 spike protein; SOC, standard of care.
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for the primary outcome relative to standard of care. Each one-unit 
increase in the standardized log-transformed ADCC was associated 
with a 24% reduction in the OR of the treatment effect (OR = 0.76, 
95% CI 0.62–0.92) (Fig. 4 and Supplementary Table 10). This 
effect-modifying role was also significant for the neutralization test 
(OR = 0.77, 95% CI 0.63–0.94) but not for anti-receptor-binding 
domain (RBD) enzyme-linked immunosorbent assay (ELISA) 
(OR = 0.84, 95% CI 0.69–1.03) or IgG against the full transmem-
brane spike (OR = 1.01, 95% CI 0.82–1.23).

When all four serologic markers were included in the multivariate 
model, each one-unit increase in the standardized log-transformed 
anti-spike IgG marker was associated with a 53% increase in the OR 
for the deleterious effect of convalescent plasma on the primary out-
come (OR = 1.53, 95% CI 1.14–2.05); increases in ADCC and neu-
tralization independently improved the effect of CCP (OR = 0.66, 
95% CI 0.50–0.87 and OR = 0.74, 95% CI 0.57–0.95, respectively), 
whereas levels of anti-RBD antibodies had no effect-modifying role 
(OR = 1.02, 95% CI 0.76–1.38) (Supplementary Table 10). There was 
no evidence of significant interaction among the four serologic mea-
sures in the general additive model (Fig. 4 and Extended Data Fig. 8).

Meta-analysis. Of the 15 other reported randomized trials, 11 used 
only high-titer plasma5,7,10–18, and four applied less stringent plasma 
selection criteria, allowing for variable plasma titers6,19–21. Including 
the results from CONCOR-1, a total of 15,301 patients participated 
in trials using high-titer plasma, and 968 participated in trials 
applying less stringent criteria. The summary estimates for the RR 
of mortality in high-titer plasma trials was 0.97 (95% CI 0.92–1.02) 
compared to 1.25 (95% CI 0.92–1.69) in trials using unselected con-
valescent plasma (Fig. 5).

Discussion
The CONCOR-1 trial found that the use of convalescent plasma 
for the treatment of hospitalized patients with COVID-19 did not 
reduce the risk of intubation or death at 30 d. Patients in the con-
valescent plasma arm experienced more serious adverse events. 
Convalescent plasma was not associated with an improvement in 
any of the secondary efficacy outcomes or in any of the subgroup 
analyses. These results are consistent with the RECOVERY trial and 
a recent Cochrane meta-analysis8. A major additional contribution 
of our study comes from the study of immunologic markers, which 
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suggest that the antibody profile significantly modified the effect of 
convalescent plasma compared to standard of care.

The RECOVERY trial showed that transfusion of high-titer 
plasma was no better than standard of care in the prevention of key 
outcomes. The U.S. National Registry report showed that high anti-
body level plasma was associated with a 34% RR reduction in mor-
tality compared to low antibody level plasma9. Our assessment of 
the role of antibody profile on the clinical effect relative to standard 
of care is aligned with both of these conclusions. In the RECOVERY 
trial, plasma with a commercial ELISA cutoff corresponding to 
a neutralizing antibody titer of 100 or greater was used, and the 
mortality rate ratio compared to standard of care was 1.00 (95% 
CI 0.93–1.07). In our trial, plasma from one of the blood suppliers 
(blood supplier 1) that used a similar antibody threshold (neutral-
izing antibody titer of 160 of greater) was associated with a similar 
effect size (OR = 0.95 (95% CI 0.73–1.25)) (Fig. 4). In contrast, the 
U.S. National Registry study, which lacked a control group, reported 
that plasma containing high antibody levels (Ortho VITROS IgG 
anti-spike subunit 1, which contains the RBD, signal-to-cutoff ratio 
>18.45) was associated with a 34% reduction in mortality com-
pared to plasma containing low antibody levels (signal-to-cutoff 
ratio <4.62)9. In our regression model (Supplementary Table 10), 
plasma with anti-RBD ELISA values corresponding to this low 
antibody cutoff (Fig. 4 and Extended Data Figure 9) would have 
a predicted OR of 1.49 compared to controls (95% CI 0.98–2.29), 
whereas plasma with the corresponding high antibody cutoff would 
have a predicted OR of 0.91 (95% CI 0.60–1.40), representing a 38% 
RR reduction. Thus, the 34% RR reduction observed by the U.S. 
National Registry9 could be explained by increased mortality with 
low antibody plasma rather than improved mortality with high anti-
body plasma.

This conclusion is corroborated by the meta-analysis of previ-
ous trials based on plasma selection strategy. Although the vast 
majority of patients included in convalescent plasma trials received 
high-titer plasma, most patients treated outside of clinical trials did 
not, including many of those who received plasma according to the 
current U.S. Food and Drug Administration (FDA) requirements 
(Ortho VITROS ≥9.5). Only 20% of convalescent plasma included 
in the U.S. National Registry was considered high-titer9. In our 
study, blood supplier 3 issued the same plasma as the one used in 
clinical practice as part of the emergency use authorization, and, in 
our subgroup analysis, convalescent plasma from this blood sup-
plier was associated with worse clinical outcomes (OR = 1.89, 95% 
CI 1.05–3.43).

The antibody content is critical in determining the potency 
and potential harm of passive antibody therapy. Convalescent 
plasma demonstrating high levels of viral neutralization and high 
levels of Fc-mediated function were independently associated 
with a reduced risk for intubation or death. The importance of 
Fc-mediated function is in line with the known functional determi-
nants of the anti-SARS-CoV-2 humoral response. In animal models 
of COVID-19, mutation of monoclonal antibodies leading to loss of 
Fc-mediated function, but sparing the neutralizing function, abro-
gated the protective effect of the antibody22–25. In cohort studies of 
severe COVID-19, low Fc-mediated function, but not neutraliza-
tion, was associated with mortality26,27.

In contrast, high levels of IgG antibodies against the full trans-
membrane spike protein measured by flow cytometry (which is dis-
tinct from commercial assays for IgG against spike subunit 1) were 
associated with an increased risk of intubation or death after control-
ling for other antibody markers, suggesting that the transfusion of 
convalescent plasma containing non-functional anti-SARS-CoV-2 
antibodies might be harmful. Antibody Fc-mediated function is 
dependent on the ability to aggregate and crosslink Fc receptors 
on target cells. This process can be disrupted by competition from 
other antibodies with low or absent Fc function28. Similar observa-

tions were made during HIV vaccine trials, where the development 
of IgA antibodies against the virus envelope paradoxically increased 
the risk of infection due to competition with IgG29,30, and in animal 
models of passive immunization where transfer of antibodies could 
be deleterious to the host31.

One positive clinical trial in mild disease (n = 160) found that 
high-titer convalescent plasma administered within 72 h of the onset 
of mild COVID-19 symptoms improved clinical outcomes com-
pared to placebo in an elderly outpatient population13. Furthermore, 
in a Bayesian re-analysis of the RECOVERY trial, the subgroup of 
patients who had not yet developed anti-SARS-CoV-2 antibod-
ies appeared to benefit from convalescent plasma32. The C3PO 
trial, which also assessed early treatment with high-titer plasma in 
high-risk patients, was stopped prematurely for futility after enroll-
ing 511 of 900 planned participants (NCT04355767). In our trial, 
the median time from the onset of symptoms was 8 d; however, we 
did not observe a difference in the primary outcome in the sub-
group of patients who were randomized within 3 d of diagnosis.

The frequency of serious adverse events was higher in the con-
valescent plasma group compared to the standard of care group 
(33.4% versus 26.4%; RR = 1.27, 95% CI 1.02–1.57). Most of these 
events were caused by worsening hypoxemia and respiratory failure 
occurring throughout the 30-d follow-up period. This frequency is 
consistent with the recent Cochrane review that reported an OR of 
1.24 (95% CI 0.81–1.90) for serious adverse events8. The frequency 
of transfusion-associated dyspnea and transfusion-associated circu-
latory overload was 2.1% and 0.8%, respectively, which is similar to 
other studies of non-convalescent plasma33. The rates of transfusion 
reactions in CONCOR-1 were higher than what were reported in 
the RECOVERY trial, where transfusion reactions were reported in 
13 of 5,795 (0.22%) patients. CONCOR-1 site investigators included 
many transfusion medicine specialists, and the open-label design 
might have encouraged reporting. However, the rate of serious 
transfusion-related adverse events was low (4/614 (0.65%) patients 
treated with convalescent plasma) and, thus, does not explain the 
difference in serious adverse events between groups.

CONCOR-1 was a randomized trial designed to examine the 
effect of convalescent plasma versus standard of care for the pri-
mary composite outcome of intubation or death, with a capacity 
to explore the immunological profile of convalescent plasma and 
its impact on the effect of convalescent plasma. The trial involved 
four blood suppliers that provided local convalescent plasma units 
based on different antibody criteria. As a result, plasma units with 
a wide distribution of antibody content were included, and com-
prehensive antibody testing using both quantitative and functional 
assays provided a detailed description of the plasma product. The 
open-label design represents a limitation of this study, as knowledge 
of the treatment group could influence the decision to intubate, 
report adverse events or administer other treatments. The antibody 
profile of recipients was unavailable at the time of this analysis. In 
future work, we will investigate the value of convalescent plasma in 
patients without a detectable humoral immune response. In addi-
tion, other antibody isotypes (IgM and IgA) and IgG subclasses 
should be evaluated in future studies to determine their effect on 
clinical outcomes. Additional randomized trials are warranted 
to assess the early use of high-titer convalescent plasma units in 
immunocompromised patients with COVID-19 who are unable to 
mount an efficient anti-SARS-CoV-2 antibody response.

In summary, the CONCOR-1 trial did not demonstrate a dif-
ference in the frequency of intubation or death at 30 d with con-
valescent plasma or standard of care in hospitalized patients with 
COVID-19 respiratory illness. The antibody content had a signifi-
cant effect-modifying role for the effect of convalescent plasma on 
the primary outcome. The lack of benefit and the potential concern 
of harm caution against the unrestricted use of convalescent plasma 
for hospitalized patients with COVID-19.
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Methods
Trial design and oversight. CONCOR-1 was an investigator-initiated, 
multi-center, open-label, randomized controlled trial conducted at 72 hospital 
sites in Canada, the United States and Brazil34. Eligible patients were randomly 
assigned to receive either convalescent plasma or standard of care. The study was 
approved by Clinical Trials Ontario (research ethics board of record: Sunnybrook 
Health Sciences Centre), project no. 2159; the Quebec Ministry of Health and 
Social Services multicenter ethics review (research ethics board of record: Comité 
d’éthique de la recherche du CHU Sainte-Justine), project no. MP-21-2020-
2863; the Weil Cornell Medicine General Institutional Review Board, protocol 
no. 20-04021981; the Comissão Nacional de Ética em Pesquisa, approval no. 
4.305.792; the Héma-Québec Research Ethics Board; the Canadian Blood Services 
Research Ethics Board; Research Ethics BC (research ethics board of record: the 
University of British Columbia Clinical Research Ethics Board); the Conjoint 
Health Research Ethics Board; the University of Alberta Health Research Ethics 
Board (Biomedical Committee); the Saskatchewan Health Authority Research 
Ethics Board; the University of Saskatchewan Biomedical Research Ethics Board; 
the University of Manitoba Biomedical Research Board; the Queensway Carleton 
Hospital Research Ethics Board; the Scarborough Health Network Research Ethics 
Board; the Windsor Regional Hospital Research Ethics Board; and the Bureau de 
l’Éthique of Vitalité Health Network. Regulatory authorization was obtained from 
Health Canada (control no. 238201) and the U.S. FDA (IND 22075). The trial 
was registered at ClinicalTrials.gov (NCT04348656). An independent data safety 
monitoring committee performed trial oversight and made recommendations after 
review of safety reports planned at every 100 patients and at the planned interim 
analysis based on the first 600 patients. External monitoring was performed at all 
sites to assess protocol adherence, reporting of adverse events and accuracy of data 
entry. Full details of the study design, conduct, oversight and analyses are provided 
in the protocol and statistical analysis plan, which are available online.

Participants. Eligible participants were (1) ≥16 years of age in Canada or ≥18 
years of age in the United States and Brazil; (2) admitted to the hospital ward 
with confirmed COVID-19; (3) required supplemental oxygen; and (4) a 500-ml 
of ABO-compatible COVID-19 convalescent plasma (CCP) was available. The 
availability of ABO-compatible convalescent plasma from donors who had 
recovered from COVID-19 infection was an eligibility requirement. Exclusion 
criteria were (1) more than 12 d from the onset of respiratory symptoms;  
(2) imminent or current intubation; (3) a contraindication to plasma transfusion; 
or (4) a plan for no active treatment. Consent was obtained from all donors and 
participants (or their legally authorized representative).

Randomization and intervention. Patients were randomized in a 2:1 ratio 
to receive convalescent plasma or standard of care using a secure, concealed, 
computer-generated, web-accessed randomization sequence (REDCap v11.0.1)35. 
Randomization was stratified by site and age (<60 and ≥60 years) with allocation 
made with permuted blocks of size 3 or 6. Patients randomized to convalescent 
plasma received one or two units of apheresis plasma amounting to approximately 
500 ml from one or two donors. The plasma was stored frozen and was thawed as 
per standard blood bank procedures and infused within 24 h of randomization. 
Patients were monitored by clinical staff for transfusion-related adverse events 
as per local procedures. Individuals assigned to standard of care received usual 
medical care as per routine practices at each site. The investigational product 
was prepared by Canadian Blood Services and Héma-Québec (Canada), the New 
York Blood Center (United States)36 and Hemorio (Brazil). Each supplier had 
different criteria for qualifying convalescent plasma units that were based on the 
presence of either viral neutralizing antibodies, measured by the plaque reduction 
neutralization assay and expressed as the concentration of serum that reduced the 
number of virus-induced plaques by 50% (PRNT50)37,38 using a threshold titer of 
>1:160 or antibodies against the RBD of the SARS-CoV-2 spike protein using a 
threshold titer of >1:100. Female donors with previous pregnancies were excluded 
from donation, unless they tested negative for HLA antibodies. In addition, a 
retained sample from every plasma donation was tested at reference laboratories 
after the transfusion for (1) anti-RBD antibodies (IgM, IgA and IgG) by  
ELISA;39,40 (2) viral neutralization by the PRNT50 assay using live virus;37,38  
(3) IgG antibodies binding to the full-length trimeric transmembrane SARS-CoV-2 
spike protein expressed on 293T cells by flow cytometry;41 and (4) Fc-mediated 
function by ADCC assay against the full spike protein expressed on CEM.NKr  
cells (see supplement for complete description)42,43. For each plasma unit, the 
absolute antibody content was defined as the product of the unit volume and  
the concentration of the antibody (or functional capacity) in the plasma.  
These calculations were used to estimate the total antibody content from the 
transfusion of two units.

Trial outcomes. The primary outcome was the composite of intubation or  
death by day 30. Secondary outcomes were: time to intubation or death; 
ventilator-free days by day 30; in-hospital death by day 90; time to in-hospital 
death; death by day 30; length of stay in critical care and hospital; need for 
extracorporeal membrane oxygenation; need for renal replacement therapy; 
convalescent plasma-associated adverse events; and occurrence of ≥3 grade 

adverse events by day 30 (classification of adverse events was performed using 
MedDRA (https://www.meddra.org/) and was graded by Common Terminology 
Criteria for Adverse Events, v4.03). All transfusion-related adverse events were 
classified and graded by International Society for Blood Transfusion (www.isbtweb.
org) definitions. All patients were followed to day 30, including a 30-d telephone 
visit for patients who were discharged from hospital. Patients who were in hospital 
beyond day 30 were followed until discharge for the purpose of determining 
in-hospital mortality up to day 90.

Statistical analysis. The primary analysis was based on the intention-to-treat 
population, which included all individuals who were randomized and for whom 
primary outcome data were available. The per-protocol population was comprised 
of eligible patients who were treated according to the randomized allocation of the 
intervention and received two units (or equivalent) of convalescent plasma within 
24 h of randomization.

The effect of convalescent plasma on the composite primary outcome of 
intubation or death by day 30 was assessed by testing the null hypothesis that the 
composite event rate was the same under convalescent plasma and standard of care. 
The RR for the primary outcome (convalescent plasma versus standard of care) 
was computed with a 95% CI. Secondary outcomes were analyzed as described in 
the statistical analysis plan (Appendix B in the (Supplementary Information). No 
multiplicity adjustments were implemented for the secondary analyses. Procedures 
planned for addressing missing data and subgroup analyses are described in the 
statistical analysis plan. Forest plots were used to display point estimates, and CIs 
across subgroups with interaction tests were used to assess effect modification.

The effect-modifying role of antibody content on the primary outcome was 
assessed via logistic regression controlling for the blood supplier, treatment and 
the antibody marker. Antibody markers were log-transformed, centered and then 
divided by the corresponding standard deviation before being entered into logistic 
regression models (see statistical analysis plan, Appendix B in the Supplementary 
Information). A multivariate logistic regression model was then fitted adjusting for 
all four markers. Generalized additive models were used to examine the joint effect 
of each pair of serologic markers on the primary outcome44.

The results from CONCOR-1 were subsequently included in a meta-analysis 
based on the 20 May 2021 update of the Cochrane systematic review8 and known 
randomized trials published since comparing convalescent plasma to placebo or 
standard care in patients with COVID-19. These were divided based on whether 
they used plasma with high antibody titer or not. For each trial, we compared 
the observed number of deaths at 30 d (or closest available time point before 
a crossover, if applicable) of patients allocated to convalescent plasma or the 
control group. Summary estimates for RR with 95% CI were calculated using 
random effects meta-analysis to account for variation in effect size among studies. 
Heterogeneity was quantified using inconsistency index (I2) and P values from the 
chi-square test for homogeneity.

With a 2:1 randomization ratio, 1,200 patients (800 in the convalescent plasma 
group and 400 in the standard of care group) were needed to provide 80% power 
to detect an RR reduction of 25% with convalescent plasma for the primary 
outcome with a 30% event rate under standard of care, based on a two-sided test 
at the 5% significance level. An interim analysis by a biostatistician unblinded to 
the allocation of the intervention was planned for when the primary outcome was 
available for 50% of the target sample. An O’Brien–Fleming stopping rule was 
employed45 to control the overall type I error rate at 5%. Conditional power was 
used to guide futility decisions with the nominal threshold of 20% to justify  
early stopping.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
De-identified individual patient data with the data dictionary that underlie 
the reported results will be made available upon request if the intended use is 
concordant with existing research ethics board approvals (requests will be reviewed 
by the CONCOR-1 Steering Committee within 3 months). Proposals for access 
should be sent to arnold@mcmaster.ca. The protocol and statistical analysis plan 
are available in the online supplement.

Code availability
Data were collected with RedCAP v11.0.1 (ref. 35). Statistical analyses were 
conducted in SAS v9.4 and R v4.0.2 using the mgcv package v1.8–36 (refs. 46,47).
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Extended Data Fig. 1 | Cumulative incidence functions of intubation or in-hospital death by day 30. Panel A presents the intention-to-treat population 
and panel B presents the per protocol population.
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Extended Data Fig. 2 | Cumulative incidence functions of in-hospital death by day 90. Panel A presents the intention-to-treat population and panel B 
presents the per protocol population.
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Extended Data Fig. 3 | Kaplan-Meier estimate of distribution of length of stay in hospital by day 90. Panel A presents the intention-to-treat population 
and panel B presents the per protocol population.
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Extended Data Fig. 4 | Subgroup analysis for the per-protocol population. P-values for relative risk and homogeneity are two-sided without adjustment 
for multiple comparisons. BMI: Body mass index.
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Extended Data Fig. 5 | Post-hoc subgroup analyses for the intention-to-treat population. Subgroups based on corticosteroid use and location at time 
of randomizations were added post-hoc at time of review. P-values for relative risk and homogeneity are two-sided without adjustment for multiple 
comparisons.
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Extended Data Fig. 6 | Post-hoc subgroup analyses for the per-protocol population. Subgroups based on corticosteroid use and location at time 
of randomizations were added post-hoc at time of review. P-values for relative risk and homogeneity are two-sided without adjustment for multiple 
comparisons.
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Extended Data Fig. 7 | Pairwise scatter plots of plasma antibody markers and empirical distribution functions. Markers (log transformed and 
standardized) include antibody (IgM,IgA,IgG) against the receptor binding domain (anti-RBD) by ELISA, plaque reduction neutralization test, IgG antibody 
against the full transmembrane Spike protein (anti-S IgG) by flow cytometry and the antibody-dependent cellular cytotoxicity (ADCC) assay.corr: Pearson 
correlation coefficients of pair of antibody markers.
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Extended Data Fig. 8 | Contour plots of the joint effect-modifying role of antibody markers for convalescent plasma versus standard of care on the 
composite endpoint of intubation or death. The contours convey pairwise combinations of antibody markers yielding similar odds ratios for the CCP 
effect with the black line corresponding to an odds ratio of 1 (that is no effect of CCP). Data points for individual patients are overlaid with colours denoting 
the blood supply centre. Contours were obtained from fitting generalized additive logistic regression models for the primary outcome adjusting for blood 
supply center, treatment and the log transformed and standardized biomarkers - smoothing splines were used to relax linearity assumptions. The contour 
lines with positive slope suggest combinations of high (or low) values for both markers yield similar effects of CCP; the contour lines with negative slopes 
suggest high values of both markers yield strong CCP effects. For the combination of anti-S IgG with ADCC or anti-S IgG with anti-RBD, the general 
additive logistic regression models led to a complex equation that was not statistically significant nor clinical interpretable. These combinations were 
therefore excluded from this figure.
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Extended Data Fig. 9 | Comparison of in-house ELISA to commercial assays. Values from the Héma-Québec in-house ELISA measuring antibody (IgM, 
IgA, IgG) binding the receptor binding domain of SARS-CoV-2 Spike protein (used in the current study) are compared to results from Euroimmun (Panel 
A) and Ortho Vitros (Panel B) commercial assays measuring IgG binding to subunit 1 of the SARS-CoV-2 Spike protein, which contains the receptor 
binding domain and which were used to qualify convalescent plasma in previous clinical trials. Each sample was tested with the commercial assays twice.
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