

HHS Public Access

Author manuscript *J Pediatr*. Author manuscript; available in PMC 2022 December 01.

Published in final edited form as:

J Pediatr. 2021 December; 239: 32-38.e5. doi:10.1016/j.jpeds.2021.06.075.

Prevalence, Risk Factors, and Outcomes of Influenza-Associated Neurologic Complications in Children

James W. Antoon, MD, PhD^{1,2}, Matt Hall, PhD³, Alison Herndon, MD, MPH^{1,2}, David P. Johnson, MD^{1,2}, Charlotte M. Brown, MD^{1,2}, Whitney L. Browning, MD^{1,2}, Todd A. Florin, MD, MSCE⁴, Leigh M. Howard, MD, MPH², Carlos G. Grijalva, MD, MPH⁵, Derek J. Williams, MD, MPH^{1,2}

¹Monroe Carell Jr Children's Hospital at Vanderbilt, Nashville, TN

²Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN

³Children's Hospital Association, Lenexa, KS

⁴Division of Emergency Medicine, Ann and Robert H. Lurie Children's Hospital of Chicago & Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL

⁵Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN

Abstract

Objective—To determine the frequency of neurologic complications associated with influenza in hospitalized children.

Stud design—We performed a cross-sectional study of children (2 months through 17 years of age) with influenza discharged from 49 children's hospitals in the Pediatric Health Information System during the influenza seasons of 2015–2020. Neurologic complications were defined as encephalopathy, encephalitis, aseptic meningitis, febrile seizure, nonfebrile seizure, brain abscess and bacterial meningitis, Reye syndrome, and cerebral infarction. We assessed length of stay (LOS), intensive care unit (ICU) admission, ICU LOS, 30-day hospital readmissions, deaths, and hospital costs associated with these events. Patient-level risk factors associated with neurologic complications were identified using multivariable logistic regression.

Results—Of 29 676 children hospitalized with influenza, 2246 (7.6%) had a concurrent diagnosis of a neurologic complication; the most frequent were febrile seizures (5.0%), encephalopathy (1.7%), and nonfebrile seizures (1.2%). Hospital LOS, ICU admission, ICU LOS, deaths, and hospital costs were greater in children with neurologic complications compared with those without complications. Risk factors associated with neurologic complications included male sex (aOR 1.1, 95% CI 1.02–1.21), Asian race/ethnicity (aOR 1.7, 95% CI 1.4–2.1) (compared with non-Hispanic White), and the presence of a chronic neurologic condition (aOR 3.7, 95% CI 3.1–4.2).

Conclusions—Neurologic complications are common in children hospitalized with influenza, especially among those with chronic neurologic conditions, and are associated with worse

Reprint requests: James W. Antoon MD, PhD, 2200 Children's Way, Nashville, TN 37232. james.antoon@vumc.org. The other authors declare no conflicts of interest.

outcomes compared with children without neurologic complications. These findings emphasize the strategic importance of influenza immunization and treatment, especially in high-risk populations.

According to statistics from the Centers for Disease Control and Prevention (CDC), 8% of the US population is infected with influenza, and up to 1 million individuals are hospitalized each season.^{1,2} The disease burden among young children is disproportionally high and severe.³ For example, the rate of influenza-related acute respiratory tract illness in children is almost twice the rate in elderly patients.⁴ Influenza results in approximately 27 visits to the emergency department and 1 hospitalization per 1000 infected children.³ In the US, approximately 25 000 children are hospitalized annually, accounting for up to 10% of all pediatric hospitalizations during the winter season.^{5,6}

The most common complications of influenza include lower respiratory tract infection, pneumonia, acute respiratory failure, and acute respiratory distress syndrome.^{1,7} During the 2009 pandemic, there were several reports of neurologic complication in children with influenza.^{8,9} Since that time, there has been increasing awareness of, and concern for, neurologic complications associated with influenza infection, particularly in children.^{7,10,11} Neurologic complications associated with influenza include seizures (febrile and nonfebrile), encephalitis, encephalopathy, acute necrotizing encephalopathy, aseptic meningitis, myelitis, secondary bacterial meningitis and brain abscess, and, rarely, cerebral infarction or Reye syndrome.^{10–12}

Recent studies attempting to characterize neurologic complications of influenza in children have reported conflicting results and were limited by small sample size or narrowly defined populations that may not be generalizable.^{7,13–21} A single-center study of the 2000–2004 influenza seasons in the US found that 8.6% of children hospitalized with influenza had a neurologic complication. In this study, younger age, concurrent neurologic condition, and influenza B infection were associated with neurologic complications.⁷ In contrast, 2 large retrospective studies performed in Japan during the 1997–2001¹⁶ and 2012–2016¹⁵ influenza seasons found that influenza A infection was more common among those hospitalized with neurologic complications.

Because previous studies have been limited in scope and have yielded conflicting results, the objectives of this study were to determine the prevalence of influenza-associated neurologic complications in hospitalized children and determine the risk factors and outcomes associated with these complications.

Methods

We conducted a multicenter cross-sectional study of children admitted (inpatient and observation status) to children's hospitals that contribute data to the Pediatric Health Information System (PHIS) database. The PHIS administrative database includes billing and use data from 49 tertiary care children's hospitals across the US that are affiliated with the Children's Hospital Association. Data quality and reliability are ensured through a joint effort between the Children's Hospital Association and participating hospitals. Hospitals submit discharge data including demographics, diagnoses, procedures using *International*

Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM), as well as detailed daily resource use.

Study Population

We included children from 2 months through 17 years of age hospitalized at a PHIS hospital with a discharge ICD-10-CM diagnosis of influenza (Table I; available at www.jpeds.com) during influenza seasons (see Influenza Season Definition section) from 2015 through 2020. Laboratory confirmation of influenza diagnosis was not available in the PHIS database. Children cared for in the neonatal intensive care unit (ICU) and those with a surgical primary diagnosis were excluded. Children younger than 2 months of age were excluded, as there are special considerations for hospitalization in this age group.

Influenza Season Definition

Seasonal influenza activity, obtained from the CDC Flu Activity & Surveillance program and stratified by week and geographic census division, was used to define the influenza season for each year of the study.² The specificity of influenza diagnosis is directly related to circulating prevalence of the virus.^{22,23} To increase the specificity of influenza cases and mitigate the potential for misclassification of influenza diagnoses included in the study, the influenza season comprised the 13 consecutive weeks that contained the maximum number of influenza cases for each geographic census division, similar to previous published studies (Table II; available at www.jpeds.com).³ The maximum number of influenza cases for the referenced season.

Risk Factors for Neurologic Complications

Potential risk factors for influenza complications include age, sex, race/ethnicity (non-Hispanic White, non-Hispanic Black, Hispanic, Asian, Other [defined as Pacific Islander, American Indian, multiracial, and other unspecified race/ethnicity]), geographic region (based on census division), chronic neurologic conditions (neurologic conditions defined using the pediatric complex chronic conditions classification system version 2),²⁴ other complex chronic conditions, ICU status, and predominant influenza type or subtype. Influenza type/subtype (A/H1N1, A/H3N2, or B) was extrapolated from each patient's census division during the week of admission for each encounter, identified by CDC Flu Activity & Surveillance on week of admission.

Outcomes

The primary outcome was a neurologic complication identified during the hospitalization by ICD-10-CM diagnostic codes. Neurologic complications were categorized as encephalopathy, encephalitis, aseptic meningitis, febrile seizure, nonfebrile seizure, brain abscess and bacterial meningitis, Reye syndrome, or cerebral infarction (Table III; available at www.jpeds.com). Our secondary, hospital-based outcomes included length of stay (LOS), admission to the ICU, ICU LOS, in-hospital death, and costs associated with hospitalizations in which an influenza-associated neurologic complication occurred. Costs were estimated

from charges using hospital-specific cost-to-charge ratios and adjusted for hospital location using the Centers for Medicare and Medicaid price wage index.

Statistical Analyses

Demographic characteristics were summarized using frequencies and percentages for categorical variables and geometric means with SDs for continuous variables. Bivariate comparisons using χ^2 tests were made between children with and without neurologic complications. The proportion of children with neurologic complications was calculated by dividing the number of influenza-associated hospitalizations with neurologic complications by the total number of influenza-associated hospitalizations. Results were stratified by neurologic complication category. Factors independently associated with neurologic complications were evaluated using multivariable logistic regression incorporating the following covariates: age, sex, race/ethnicity, payer, number of complex chronic conditions,²⁴ neurologic complications status, and predominant circulating influenza strain. aOR for each risk factor were generated using generalized linear mixed effects models with a binomial distribution and random intercepts for each hospital. Febrile seizures, by definition, occur in children 6 years in age and are a known complication of viral illnesses. Therefore, we conducted analyses stratified by age 6 years and 7 years of age to account for the frequent occurrence of febrile seizures among younger children. We also performed a sensitivity analysis excluding febrile seizures from the outcome definition. All analyses were performed using SAS, version 9.4 (SAS Institute), and P < .05 was considered statistically significant.

Results

Study Population

A total of 29 676 influenza-associated hospitalizations were included in the study. Of these, 15 406 (51.9%) had a primary diagnosis of influenza. The most common primary diagnoses recorded when influenza was listed as a secondary diagnosis included dehydration (2151, 10.5%), acute respiratory failure with hypoxia (8.1%), and sepsis (3.8%). The majority of influenza-associated hospitalizations occurred in male patients (16,627, 56%), children 6 years of age (19 644; 66.2%), and those with government insurance (18 336; 61.8%). Most patients (7509; 74.7%) received an antiviral medication during the hospitalization. More than one-third (37.1%) of children had a complex chronic condition, and 8.1% had at least 1 neurologic complex chronic condition. Additional demographic characteristics are shown in Table IV.

Prevalence of Neurologic Complications

Of the 29 676 influenza-associated hospitalizations, 2246 (7.6%) children had a neurologic complication. The most common neurologic complication was febrile seizure (1477; 5.0%) followed by encephalopathy (514; 1.7%) and nonfebrile seizure (364; 1.2%). The least common neurologic complications were brain abscess and bacterial meningitis (29; 0.1%), cerebral infarction (16; 0.05%), and Reye syndrome (2; 0.01%) (Table V). The proportion of children receiving antiviral therapy was greater in children with neurologic complications compared with those with influenza without neurologic complication (78.6% vs 74.4%, *P*

<.001). Oseltamivir accounted for more than 99.9% of antiviral agents used (Table VI; available at www.jpeds.com).

Hospital-Based Outcomes

In unadjusted analysis, compared with children without neurologic complications, children with neurologic complications had longer hospital LOS (2.5 vs 2.2 days, P<.001), longer ICU LOS (2.7 vs 2.2 days, P<.05), more ICU admissions (24.5% vs 15.3%, P<.001), more in-hospital deaths (0.7% vs 0.2%, P<.001), and greater hospital costs (\$6013 vs \$5282, P<.001). When stratified by age, all reported hospital outcomes were worse in children >6 years old compared with younger children (Table VII).

Factors Associated with Neurologic Complications

In multivariable analyses including all ages, children with neurologic complications were more likely to be male (aOR 1.1, 95% CI 1.0–1.2), Asian (aOR 1.7, 95% CI 1.4– 2.1), or other race (which includes Pacific Islander, American Indian, multiracial, and other unspecified race/ethnicities) (aOR 1.2, 95% CI 1.03–1.4), and have a chronic neurologic condition (aOR 3.7, 95% CI 3.1–4.2) compared with children without neurologic complications. Children with 2–3 complex chronic conditions had lower odds of neurologic complications compared with children with no complex chronic conditions (aOR 0.6, 95% CI 0.5–0.7). This association was not significant in children with 4 or more non-neurologic complex chronic conditions. There were no significant differences in age, payor types, or predominant circulating influenza strain between those with and without neurologic complications (Figure and Table VIII [available at www.jpeds.com]).

To account for the greater prevalence of febrile seizures in younger children, results were stratified by those 6 and 7 years. Among children 6 years old, age (aOR 0.97, 95% CI 0.96–0.98), Asian (aOR 1.7, 95% CI 1.3, 2.1) and other race (aOR 1.2, 95% CI 1.03–1.4), and chronic neurologic conditions (aOR 3.7, 95% CI 3.2–4.2) were associated with neurologic complications. Among children 7 years old, male sex (aOR 1.3 95% CI 1.1–1.6), other race (aOR 1.4, 95% CI 1.05–1.9), and chronic neurologic conditions (aOR 4.0, 95% CI 3.2–4.8) were associated with neurologic complications, but Asian race was not (Figure and Table VIII).

Sensitivity Analysis

A sensitivity analysis excluding febrile seizures from the outcome definition was performed. Removing febrile seizures resulted in an overall reduction of neurologic compilations (1181; 4.0%). Hospital outcomes in children >6 years were unchanged and remained overall worse than children 6 years (Table IX; available at www.jpeds.com). When evaluating risk factors for neurologic complications, there was no association between race/ethnicity and neurologic complications (Table X; available at www.jpeds.com).

Discussion

In this large, multicenter study evaluating neurologic complications among children hospitalized with influenza in the US, we conclude that neurologic complications

are common and are associated with prolonged LOS, increased hospital costs, and increased in-hospital mortality compared with influenza hospitalizations without neurologic complications. Factors associated with neurologic complications included Asian and other races, male sex, and chronic neurologic conditions.

Much of the literature on influenza associated neurologic complications has involved a small number of cases (eg, 6 children,²¹ 8 children,¹⁸ 14 children,¹⁹ and 23 children²⁰). In a study of 72 children hospitalized with influenza during the 2002–2004 influenza seasons, 10% had neurologic complications.⁷ A similar study of 59 children hospitalized with influenza, neurologic complications were present in 9.7%.¹⁷ We found a slightly lower 7.6% prevalence during more recent influenza seasons, which is consistent with a single center study including 23 children with influenza and neurologic complications.²⁰

Although our study had similar rates for encephalopathy and seizures compared with other studies,^{7,17} there were differences in the proportion of seizures by type. Whereas the Newland study documented a similar proportion of febrile and nonfebrile seizures (3.2% and 3.4%, respectively), our study found a clear predominance of febrile seizures (5%) compared with nonfebrile seizures (1.2%), which is similar to the study of Khandaker et al (4.5% and 3%, respectively).⁶ The reason for these differences is unclear but may be related to population differences and sample size. A smaller (72 neurologic complications) single-center study did not report Table V. Influenza-associated neurologic complications in hospitalized children with influenza patient demographics.⁷ The study of Khandaker et al was performed in Australia with a relatively high proportion of Asian, Aboriginal Australian, and Pacific Islander patients. It is possible that these study populations had a different composition of sociodemographic and clinical characteristics, which were found to be risk factors for neurologic complications in our study.

We found that medical care for children with influenza and neurologic complications was uniformly more resource intense, with more ICU admissions, greater hospital costs, and longer hospital stays as well as more deaths than in children without neurologic complications. When stratified by age, the differences in outcomes were magnified in children 7 years of age. This may be due to the greater frequency of febrile seizures in the younger age group, which are self-limited and relatively benign compared with other neurologic complications. Therefore, the decreased LOS and lower costs found in children 6 years of age may be driven by short hospitalizations in children admitted for febrile seizures. It also is possible that younger children may recover more quickly or have less severe complications than children in older age groups. In addition, there likely is variability in admission rate for febrile seizures and some overlap in diagnosis of febrile and non-febrile seizures.

We found that Asian race was a risk factor for neurologic complications; however, this was only observed in children 6 years and likely driven by the frequent occurrence of febrile seizures in this age group. Febrile seizures are known to occur more frequently in the Asian population²⁵ and with influenza,²⁶ and febrile seizures were a very common neurologic complication in our population. We also found an increased risk of neurologic complications in children 7 years in the Other race/ethnicity cohort, which comprised Pacific Islander,

Antoon et al.

American Indian, multiracial, and other unspecified race/ethnicities.²⁷ The reason for this is unclear but social determinants have been linked to influenza outcomes.²⁸ Data from the CDC demonstrate that American Indians and Pacific Islanders have a lower rate of influenza immunization compared with Asian and non-Hispanic White persons. Non-Hispanic Black, American Indian, and Alaska Natives also have greater rates of influenza hospitalizations compared with other race ethnicities.²⁹

Unlike previous studies,^{7,16,30} we did not find an association between age or influenza type/ subtype and neurologic complications. Our definition of influenza season was also highly specific, which likely minimized the inclusion of false-positive influenza cases. However, influenza subtype and strain information were not available for individual patients; thus, we categorized each influenza-associated hospitalization using the predominant regional circulating virus at the time of admission. It is possible that weak associations between neurologic complications and less common circulating influenza strains were not measured using this strain definition.

Children with chronic neurologic conditions have a diverse array of conditions including epilepsy, neuromuscular disorders, and cerebral palsy.^{24,31} Many of these children also have concurrent cardiac and respiratory conditions and represent a broad range of functional impairment.^{32,33} Children with underlying neurologic conditions are a particularly vulnerable population that is at high risk for influenza infection and resulting influenza associated complications, including hospitalization and death.^{7,8,13,34,35} As in other studies,^{7,17} we identified a strong association with underlying neurologic conditions. Acute respiratory infections are known to elicit seizures in children and fever can lower the seizure trigger threshold in those with epilepsy.^{36–39} These factors may contribute to the observed association between chronic neurologic conditions and neurologic complications.

The number of chronic non-neurologic conditions was negatively associated with risk of influenza complications, although the reasons for this are unclear. It is possible that children with chronic conditions have a lower clinical threshold for admission to the hospital than children without chronic condition. Children with chronic conditions also may have an increased rate of non-neurologic symptoms that precipitate admission, such as dehydration or inability to take oral medications.

Limitations of our findings include the retrospective nature of the study and that we only included children's hospitals, which may limit the generalizability of our results to the outpatient setting. Diagnosis codes were used to identify our population and outcomes, which may have led to misclassification. For example, some mild influenza cases or neurologic complications, such assimple febrile seizures, not identified by ICD-10-CM code may have been excluded from the study, thus potentially underestimating the proportion of neurologic complications associated with influenza. It is also possible that mild influenza cases were not captured resulting in an overestimate of neurologic complications. However, our specific definition of the influenza season, limiting the season to peak influenza incidence, likely mitigated misclassification. Due to limitation of the PHIS databases, we were unable to ascertain use of antiviral medications or immunization status before hospitalization and were unable to account for these covariates in our analysis. Similarly, a

Antoon et al.

history of febrile seizures is not included in the definition of chronic neurologic condition but is a predictor of febrile seizure. History of febrile seizures would not be accounted for in this analysis.

Chronic neurologic conditions are associated with poor influenza outcomes, including influenza associated complications and death.⁸ Our findings emphasizing the strategic importance of influenza immunization and treatment in this high-risk population⁴⁰ provide targets for immediate, actionable changes in clinical practice.

Acknowledgments

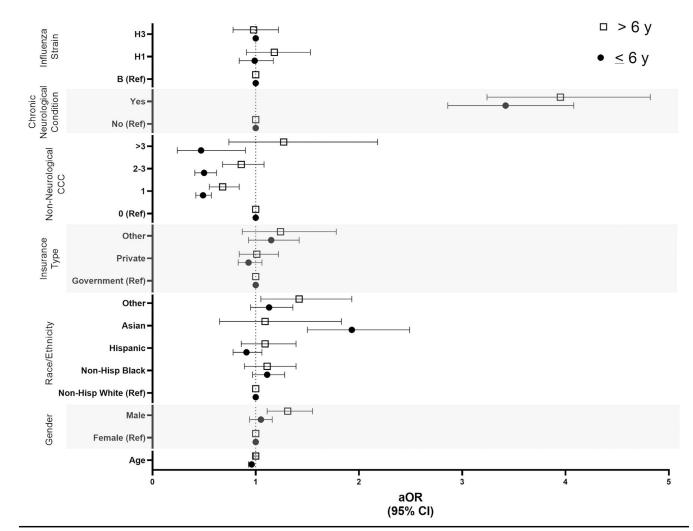
Supported by the National Heart, Lung, and Blood Institute (K12 HL137943 [to J.A.]) and National Institute of Allergy and Infectious Diseases (K23AI121325 [to T.F.], K23AI141621 [to L.H.], K24 AI148459 [to C.G.], and R01AI125642 [to D.W.]) of the National Institutes of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. C.G. has received consulting fees from Pfizer, Sanofi, and Merck.

Glossary

CDC	Centers for Disease Control and Prevention
ICD-10-CM	International Classification of Diseases, Tenth Revision, Clinical Modification
ICU	Intensive care unit
LOS	Length of stay
PHIS	Pediatric Health Information System

References

- 1. Thompson WW, Shay DK, Weintraub E, Brammer L, Bridges CB, Cox NJ, et al. Influenzaassociated hospitalizations in the United States. JAMA 2004;292:1333–40. [PubMed: 15367555]
- 2. Centers for Disease Control and PreventionCDC Flu View. Accessed January 22, 2021. https://www.cdc.gov/flu/weekly/index.htm
- Poehling KA, Edwards KM, Weinberg GA, Szilagyi P, Staat MA, Iwane MK, et al. The underrecognized burden of influenza in young children. N Engl J Med 2006;355:31–40. [PubMed: 16822994]
- Long CE, Hall CB, Cunningham CK, Weiner LB, Alger KP, Gouveia M, et al. Influenza surveillance in community-dwelling elderly compared with children. Arch Fam Med 1997;6:459– 65. [PubMed: 9305689]
- Miyakawa R, Barreto NB, Kato RM, Neely MN, Russell CJ. Early use of anti-influenza medications in hospitalized children with tracheostomy. Pediatrics 2019;143(3):e20182608. [PubMed: 30814271]
- Rolfes MA, Foppa IM, Garg S, Flannery B, Brammer L, Singleton JA, et al. Annual estimates of the burden of seasonal influenza in the United States: a tool for strengthening influenza surveillance and preparedness. Influenza Other Respir Viruses 2018;12:132–7. [PubMed: 29446233]
- Newland JG, Laurich VM, Rosenquist AW, Heydon K, Licht DJ, Keren R, et al. Neurologic complications in children hospitalized with influenza: characteristics, incidence, and risk factors. J Pediatr 2007;150:306–10. [PubMed: 17307552]


- Blanton L, Peacock G, Cox C, Jhung M, Finelli L, Moore C. Neurologic disorders among pediatric deaths associated with the 2009 pandemic influenza. Pediatrics 2012;130:390–6. [PubMed: 22931899]
- Farooq O, Faden HS, Cohen ME, Ramanathan M, Barrett H, Farkas MK, et al. Neurologic complications of 2009 influenza-a H1N1 infection in children. J Child Neurol 2012;27:431–8. [PubMed: 21997845]
- Shah S, Keil A, Gara K, Nagarajan L. Neurologic complications of influenza. J Child Neurol 2014;29:NP49–53. [PubMed: 24072018]
- 11. Chen Q, Peiqing L, Li S, Ziao W, Yang S, Lu H. Brain complications with influenza infection in children. J Behav Brain Sci 2020;10:129–52.
- 12. Ruben FL, Michaels RH. Reye syndrome with associated influenza A and B infection. JAMA 1975;234:410–2. [PubMed: 1174373]
- Coffin SE, Zaoutis TE, Rosenquist AB, Heydon K, Herrera G, Bridges CB, et al. Incidence, complications, and risk factors for prolonged stay in children hospitalized with communityacquired influenza. Pediatrics 2007;119:740–8. [PubMed: 17403845]
- Okuno H, Yahata Y, Tanaka-Taya K, Arai S, Satoh H, Morino S, et al. Characteristics and outcomes of influenza-associated encephalopathy cases among children and adults in Japan, 2010– 2015. Clin Infect Dis 2018;66:1831–7. [PubMed: 29293894]
- 15. Yokomichi H, Mochizuki M, Lee JJ, Kojima R, Yokoyama T, Yamagata Z. Incidence of hospitalisation for severe complications of influenza virus infection in Japanese patients between 2012 and 2016: a cross-sectional study using routinely collected administrative data. BMJ Open 2019;9:e024687.
- Yoshikawa H, Yamazaki S, Watanabe T, Abe T. Study of influenza-associated encephalitis/ encephalopathy in children during the 1997 to 2001 influenza seasons. J Child Neurol 2001;16:885–90. [PubMed: 11785501]
- Khandaker G, Zurynski Y, Buttery J, Marshall H, Richmond PC, Dale RC, et al. Neurologic complications of influenza A(H1N1)pdm09: surveillance in 6 pediatric hospitals. Neurology 2012;79:1474–81. [PubMed: 22993280]
- Maricich SM, Neul JL, Lotze TE, Cazacu AC, Uyeki TM, Demmler GJ, et al. Neurologic complications associated with influenza A in children during the 2003–2004 influenza season in Houston, Texas. Pediatrics 2004;114:e626–33. [PubMed: 15520093]
- Landau YE, Grisaru-Soen G, Reif S, Fattal-Valevski A. Pediatric neurologic complications associated with influenza A H1N1. Pediatr Neurol 2011;44:47–51. [PubMed: 21147387]
- Kedia S, Stroud B, Parsons J, Schreiner T, Curtis DJ, Bagdure D, et al. Pediatric neurological complications of 2009 pandemic influenza A (H1N1). Arch Neurol 2011;68:455–62. [PubMed: 21149805]
- Goenka A, Michael BD, Ledger E, Hart IJ, Absoud M, Chow G, et al. Neurological manifestations of influenza infection in children and adults: results of a National British Surveillance Study. Clin Infect Dis 2014;58:775–84. [PubMed: 24352349]
- 22. Leeflang MM, Rutjes AW, Reitsma JB, Hooft L, Bossuyt PM. Variation of a test's sensitivity and specificity with disease prevalence. CMAJ 2013;185:E537–44. [PubMed: 23798453]
- 23. Green DA, StGeorge K. Rapid antigen tests for influenza: rationale and significance of the FDA reclassification. J Clin Microbiol 2018;56: e00711–8. [PubMed: 29899007]
- Feudtner C, Feinstein JA, Zhong W, Hall M, Dai D. Pediatric complex chronic conditions classification system version 2: updated for ICD-10 and complex medical technology dependence and transplantation. BMC Pediatr 2014;14:199. [PubMed: 25102958]
- 25. Chung S Febrile seizures. Korean J Pediatr 2014;57:384-95. [PubMed: 25324864]
- Chiu SS, Tse CY, Lau YL, Peiris M. Influenza A infection is an important cause of febrile seizures. Pediatrics 2001;108:E63. [PubMed: 11581471]
- Hadler JL, Yousey-Hindes K, Perez A, Anderson EJ, Bargsten M, Bohm SR, et al. Influenzarelated hospitalizations and poverty levels—United States, 2010–2012. MMWR Morb Mortal Wkly Rep 2016;65: 101–5. [PubMed: 26866729]

Antoon et al.

- Chandrasekhar R, Sloan C, Mitchel E, Ndi D, Alden N, Thomas A, et al. Social determinants of influenza hospitalization in the United States. Influenza Other Respir Viruses 2017;11:479–88. [PubMed: 28872776]
- Quinn SC, Kumar S, Freimuth VS, Musa D, Casteneda-Angarita N, Kidwell K. Racial disparities in exposure, susceptibility, and access to health care in the US H1N1 influenza pandemic. Am J Public Health 2011;101:285–93. [PubMed: 21164098]
- Togashi T, Matsuzono Y, Narita M. Epidemiology of influenza-associated encephalitisencephalopathy in Hokkaido, the northernmost island of Japan. Pediatr Int 2000;42:192–6. [PubMed: 10804741]
- 31. Thomson JE, Feinstein JA, Hall M, Gay JC, Butts B, Berry JG. Identification of children with high-intensity neurological impairment. JAMA Pediatr 2019;173:989–91. [PubMed: 31424541]
- Cohen E, Kuo DZ, Agrawal R, Berry JG, Bhagat SK, Simon TD, et al. Children with medical complexity: an emerging population for clinical and research initiatives. Pediatrics 2011;127:529– 38. [PubMed: 21339266]
- 33. Berry JG, Poduri A, Bonkowsky JL, Zhou J, Graham DA, Welch C, et al. Trends in resource utilization by children with neurological impairment in the United States inpatient health care system: a repeat cross-sectional study. PLoS Med 2012;9:e1001158. [PubMed: 22272190]
- 34. Eriksson CO, Graham DA, Uyeki TM, Randolph AG. Risk factors for mechanical ventilation in U.S. children hospitalized with seasonal influenza and 2009 pandemic influenza A. Pediatr Crit Care Med 2012;13: 625–31. [PubMed: 22895006]
- 35. Keren R, Zaoutis TE, Bridges CB, Herrera G, Watson BM, Wheeler AB, et al. Neurological and neuromuscular disease as a risk factor for respiratory failure in children hospitalized with influenza infection. JAMA 2005;294:2188–94. [PubMed: 16264160]
- 36. Bohmwald K, Galvez NMS, Rios M, Kalergis AM. Neurologic alterations due to respiratory virus infections. Front Cell Neurosci 2018;12:386. [PubMed: 30416428]
- Tang J, Yan W, Li Y, Zhang B, Gu Q. Relationship between common viral upper respiratory tract infections and febrile seizures in children from Suzhou, China. J Child Neurol 2014;29:1327–32. [PubMed: 24453149]
- 38. Vezzani A, Fujinami RS, White HS, Preux PM, Blumcke I, Sander JW, et al. Infections, inflammation and epilepsy. Acta Neuropathol 2016;131:211–34. [PubMed: 26423537]
- 39. Cha T, Choi YJ, Oh JW, Kim CR, Park DW, Seol IJ, et al. Respiratory syncytial virus-associated seizures in Korean children, 2011–2016. Korean J Pediatr 2019;62:131–7. [PubMed: 30360041]
- 40. Smith M, Peacock G, Uyeki TM, Moore C. Influenza vaccination in children with neurologic or neurodevelopmental disorders. Vaccine 2015;33:2322–7. [PubMed: 25835574]

Antoon et al.

Figure.

Forest plot of risk factors for influenza-associated neurologic complications in hospitalized children. aORs were derived using multivariable logistic following covariates: age, sex, race/ ethnicity, payer, non-neurologic complex chronic condition, neurologic complex chronic condition, and predominant circulating influenza strain. *CCC*, complex chronic condition.

Table I.

Influenza diagnosis codes

B9789, H669, H6691, H6692, H6692, H6693, J00, J019, J0190, J069, J10, J09, J09X1, J09X2, J09X3, J09X3, J09X9, J100, J1000, J1001, J1028, J102, J108, J1081, J1082, J1082, J1083, J1183, J1183, J1183, J1183, J1183, J1083, J1183, J1183, J1183, J1183, J1183, J1183, J1183, J1183, J1183, J1083, J ICD-10-CM code

Autho

Author Manuscript

<u> </u>
=
Ð
÷.
¥
<u> </u>
—

*		
•	region	0
	2	2
	season	
	ntluenza	
¢	b	
	Thitton of 1	
٤	E	
-	đ	
č	Study	

Years	East North Central	East South Central	Middle Atlantic	Mountain	New England	Pacific	South Atlantic	West North Central	West South Central
2015–	January 23 to	February 6 to	February 6 to	January 16 to	February 6 to	January 23 to	February 6 to	January 30 to	February 6 to
2016	April 16	April 30	April 30	April 9	April 30	April 16	April 30	April 23	April 30
2016–	January 7 to April	January 14 to	December 17 to	December 24 to	January 14 to	December 17 to	January 7 to	January 14 to	December 31 to
2017	1	April 8	March 18	March 18	April 8	March 18	April 1	April 8	March 25
2017–	December 10 to	December 16 to	December 16 to	December 10 to	December 23 to	December 16 to	December 23 to	December 16 to	December 2 to
2018	March 3	March 10	March 10	March 3	March 17	March 10	March 17	March 10	February 24
2018–	January 12 to	December 29 to	January 5 to	December 22 to	December 29 to	January 5 to	January 19 to	January 12 to	January 12 to
2019	April 6	March 23	March 30	March 16	March 23	March 30	April 13	April 6	April 6
2019–	December 21 to	December 14 to	December 14 to	December 14 to	December 14 to	Nov 30 to	December 14 to	December 21 to	December 14 to
2020	March 13	March 7	March 7	March 7	March 7	February 22	March 7	March 13	March 7
5 *			-			: -			

Influenza season defined as the 13 consecutive weeks that contained the maximum number of influenza cases for each geographic census division per the CDC Flu Activity & Surveillance program.

Neurologic complication diagnosis codes

Outcomes	ICD-10-CM codes
Encephalopathy	G043, G0430, G934, G9340, G9349, J1081, J1181
Other *	R4182, F05, R404
Encephalitis	A85, A858, A86, B941, G04, G040, G048, G049, G05, G053
Aseptic meningitis	A87, A878, A879, G038, G039, G030, G039, G03
Cerebral infarctions	163, 1630, 1631, 1632, 1633, 1634, 1635, 1636, 1638, 1639
Febrile seizures	R560, R5600, R5601, R569
Nonfebrile seizures	G401, G4020, G4021, G4030, G4031, G404, G405, G406, G407, G408, G409, R568, R569
Brain abscess and bacterial meningitis	Brain abscess and bacterial meningitis G060, G060, G060, EG060, FA5482, A0221, A3211, A390, A5481, G000, G001, G002, G003, G009, G01
Reye syndrome	G937

Other diagnoses included altered mental status, delirium, and transient alteration of awareness.

$\mathbf{\Sigma}$
Ē
5
Q
>
5
S
õ
Ę.
¥

Table IV.

$\mathbf{\Sigma}$
2
Ŧ
<u>≍</u>
0
\geq
<u>م</u>
5
7
<u></u>
S
0
Ξ.
σ
Ă.

Patient demographics

Demographics	All patients $(n = 29676)$	No neurologic complications $(n = 27 430, 92.4\%)$	Neurologic complications (n = 2246, 7.6%)
Age, y, median [IQR]	4 [1, 8]	4 [1, 8]	3 [1, 7]
Flu diagnosis position			
Primary	15 406 (51.9)	14 547 (53)	859 (38.2)
Secondary	14 270 (48.1)	12 883 (47)	1387 (61.8)
Age, y			
~	8960 (30.2)	8159 (29.7)	801 (35.7)
1–6	10 684 (36)	9862 (36)	822 (36.6)
7–11	5653 (19)	5307 (19.3)	346 (15.4)
12-17	4379 (14.8)	4102 (15)	277 (12.3)
Sex			
Male	16 627 (56)	15 307 (55.8)	1320 (58.8)
Female	13 041 (43.9)	12 117 (44.2)	924 (41.1)
Race			
Non-Hispanic White	12 211 (41.1)	11 332 (41.3)	879 (39.1)
Non-Hispanic Black	7356 (24.8)	6790 (24.8)	566 (25.2)
Hispanic	6453 (21.7)	5992 (21.8)	461 (20.5)
Asian	842 (2.8)	744 (2.7)	98 (4.4)
Other	2814 (9.5)	2572 (9.4)	242 (10.8)
Payor			
Government	18 336 (61.8)	16 918 (61.7)	1418 (63.1)
Private	9648 (32.5)	8965 (32.7)	683 (30.4)
Other	1692 (5.7)	1547 (5.6)	145 (6.5)
Census division			
East North Central	5495 (18.5)	5103 (18.6)	392 (17.5)
East South Central	2500 (8.4)	2288 (8.3)	212 (9.4)
Middle Atlantic	2633 (8.9)	2438 (8.9)	195 (8.7)
Mountain	2407 (8.1)	2244 (8.2)	163 (7.3)

<.001

.004

J Pediatr. Author manuscript; available in PMC 2022 December 01.

P value <.001

<.001

<.001

57 (2.5)

987 (3.6)

1044 (3.5)

New England

<.001

.040

$\mathbf{\Sigma}$
Ē
4
ส
¥
2
R.
ž
เง
Ω
<u>-</u>
9

Pacific40South Atlantic4West North Central2West South Central49Any complex chronic condition40	4013 (13.5)	3692 (13.5)		
			321 (14.3)	
	4152 (14)	3861 (14.1)	291 (13)	
	2515 (8.5)	2273 (8.3)	242 (10.8)	
	4917 (16.6)	4544 (16.6)	373 (16.6)	
No 18.	18 662 (62.9)	17 153 (62.5)	1509 (67.2)	<.001
Yes 11	11 014 (37.1)	10 277 (37.5)	737 (32.8)	
Number of non-neurologic complex chronic conditions				
0 18	18 668 (62.9)	17 158 (62.6)	1510 (67.2)	<.001
1 65	6546 (22.1)	6196 (22.6)	350 (15.6)	
38	3894 (13.1)	3588 (13.1)	306 (13.6)	
>3 5	568 (1.9)	488 (1.8)	80 (3.6)	
Neurologic complex chronic condition				
27 No	27 258 (91.9)	25 405 (92.6)	1853 (82.5)	<.001
Yes 24	2418 (8.1)	2025 (7.4)	393 (17.5)	
ICU				
No 24	24 932 (84)	23 237 (84.7)	1695 (75.5)	<.001
Yes 4	4744 (16)	4193 (15.3)	551 (24.5)	
Predominant circulating influenza strain during season *				
	7297 (24.6)	6725 (24.5)	572 (25.5)	.602
Influenza A H3N2 17	17 299 (58.3)	16 004 (58.3)	1295 (57.7)	
Influenza B 50	5080 (17.1)	4701 (17.1)	379 (16.9)	
In-hospital antiviral medication				
75 75	7509 (25.3)	7029 (25.6)	480 (21.4)	<.001
Yes 22	22 167 (74.7)	20 401 (74.4)	1766 (78.6)	

J Pediatr. Author manuscript; available in PMC 2022 December 01.

Column percentages listed in parentheses after each value except where otherwise noted.

* Influenza strain was extrapolated from each patient's census division during the week of admission for each encounter, identified by CDC Flu Activity & Surveillance on week of admission.

Table V.

Influenza-associated neurologic complications in hospitalized children with influenza

Neurologic complications	No. (%)	Percent of encounters with neurologic complications (95% CI)
Febrile seizure	1477 (53.7)	4.98 (4.73–5.22)
Encephalopathy	514 (18.7)	1.73 (1.58–1.88)
Nonfebrile seizure	364 (13.2)	1.23 (1.1–1.35)
Other	283 (10.3)	0.95 (0.84–1.06)
Encephalitis	35 (1.3)	0.12 (0.08–0.16)
Aseptic meningitis	29 (1.1)	0.1 (0.06–0.13)
Brain abscess and bacterial meningitis	29 (1.1)	0.1 (0.06–0.13)
Cerebral infarction	16 (0.6)	0.05 (0.03–0.08)
Reye syndrome	2 (0.1)	0.01 (0–0.02)

Table VI.

Antiviral prescribing in hospitalized children with and without neurologic complications

Antivirals	All patients	No neurologic complications	Neurologic complications	P value
Any	22 167 (74.7)	20 401 (74.4)	1766 (78.6)	<.001
Oseltamivir	22 145 (74.6)	20 381 (74.3)	1764 (78.5)	<.001
Zanamavir	3 (0)	3 (0)	0 (0.0)	.620
Peramivir	70 (0.2)	53 (0.2)	17 (0.8)	<.001
Baloxavir	6 (0)	6 (0)	0 (0.0)	.483

Author Manuscript

Table VII.

Hospital outcomes associated with neurologic complications in children hospitalized with influenza

		All ages			6 years			>6 years	
Hospital outcomes	All patients	No neurologic complication	Neurologic complication	All patients	No neurologic complication	Neurologic complication	All patients	No neurologic complication	Neurologic complication
LOS, d *	2.2 (2.2)	2.2 (2.2)	2.2 (2.5)	2.1 (2.1)	2.1 (2.1)	1.9 (2.3)	2.3 (2.3)	2.3 (2.3)	3.2 (2.8)
ICU	4744 (16)	4193 (15.3)	551 (24.5)	2974 (15.1)	2661 (14.8)	313 (19.3)	1770 (17.6)	1532 (16.3)	238 (38.2)
ICU LOS, d [*]	2.5 (2.4)	2.4 (2.4)	2.8 (2.7)	2.4 (2.4)	2.4 (2.3)	2.3 (2.5)	2.6 (2.5)	2.5 (2.5)	3.4 (2.8)
Death, No. (%)	63 (0.2)	48 (0.2)	15 (0.7)	33 (0.2)	24 (0.1)	9 (0.6)	30 (0.3)	24 (0.3)	6(1)
Hospital costs *	5333.6 (2.8)	5281.5 (2.7)	6012.9 (3.4)	4827.2 (2.7)	4832.7 (2.6)	4766.4 (3.1)	6484.2 (2.8)	6260.7 (2.8)	11 013.8 (3.5)
30-day readmission, No. (%)	2265 (7.6)	2105 (7.7)	160 (7.1)	1451 (7.4)	1340 (7.4)	814 (8.1)	765 (8.1)	49 (7.9)	814 (8.1)

* Geometric mean (SD).

Risk factors associated with neurologic complications in children hospitalized with influenza

		aOR (95% CI)	
Risk factors	IIA	6 years	>6 years
	0.97 (0.96–0.98)	0.96 (0.93–0.98)	1 (0.98–1.03)
Sex			
Male	1.11 (1.02–1.21)	1.05 (0.94–1.16)	1.31 (1.11–1.55)
Female	Reference	Reference	Reference
Race			
Non-Hispanic White	Reference	Reference	Reference
Non-Hispanic Black	1.11 (0.98–1.24)	1.11 (0.97–1.28)	1.11 (0.89–1.39)
Hispanic	0.96 (0.85–1.1)	0.91 (0.78–1.06)	1.09 (0.86–1.39)
Asian	1.69 (1.35–2.12)	1.93 (1.5–2.49)	1.09 (0.65–1.83)
Other	1.2 (1.03–1.4)	1.13 (0.95–1.36)	1.42 (1.05–1.93)
Payor			
Government	Reference	Reference	Reference
Private	0.95 (0.85–1.05)	0.93 (0.83–1.06)	1.01 (0.84–1.22)
Other	1.17 (0.97–1.4)	1.15 (0.93–1.42)	1.24 (0.87–1.78)
Non-neurologic complex chronic condition			
0	Reference	Reference	Reference
1	$0.54\ (0.48-0.61)$	0.49 (0.42–0.57)	0.68 (0.55–0.84)
2–3	0.63 (0.54–0.73)	0.5 (0.41–0.62)	$0.86\ (0.68{-}1.08)$
>3	0.75 (0.5–1.14)	0.47 (0.24–0.9)	1.27 (0.74–2.18)
Chronic neurologic condition			
No	Reference	Reference	Reference
Yes	3.65 (3.2–4.16)	3.42 (2.86-4.08)	3.95 (3.24-4.82)
Predominant influenza strain			
HI	1.04(0.91 - 1.2)	0.99 (0.84–1.17)	1.18 (0.91–1.53)
H3	1.01(0.89 - 1.14)	1 (0.87–1.16)	0.98 (0.78–1.22)
B	Reference	Reference	Reference

Table IX.

Hospital outcomes associated with neurologic complications in children hospitalized with influenza in sensitivity analysis population *

		All ages			o years			>6 years	
Hospital outcomes	All patients	No neurologic complication	Neurologic complication	All patients	No neurologic complication	Neurologic complication	All patients	No neurologic complication	Neurologic complication
LOS, d	2.2 (2.2)	2.1 (2.2)	3.2 (2.8)	2.1 (2.1)	2.1 (2.1)	3.1 (2.7)	2.3 (2.3)	2.3 (2.3)	3.3 (2.9)
ICU	4744 (16)	4288 (15)	456 (38.6)	2974 (15.1)	2755 (14.5)	219 (37)	1770 (17.6)	1533 (16.2)	237 (40.2)
ICU LOS, d	2.5 (2.4)	2.4 (2.4)	3.2 (2.7)	2.4 (2.4)	2.4 (2.3)	2.9 (2.6)	2.6 (2.5)	2.5 (2.5)	3.5 (2.8)
Death	63 (0.2)	48 (0.2)	15 (1.3)	33 (0.2)	24 (0.1)	9 (1.5)	30 (0.3)	24 (0.3)	6 (1)
30-day readmission	2265 (7.6)	2141 (7.5)	124 (10.5)	1451 (7.4)	1375 (7.2)	76 (12.8)	814 (8.1)	766 (8.1)	48 (8.1)
Hospital costs	5333.6 (2.8)	5184.8 (2.7)	10 559.2 (3.5)	4827.2 (2.7)	4725.6 (2.6)	9574.3 (3.5)	6484.2 (2.8)	6251.5 (2.8)	11 651.2 (3.5)

5

* Excluded febrile seizures from the outcome definition.

Table X.

Risk factors associated with neurological complications in children hospitalized with influenza in sensitivity analysis population^{*}

Risk factors	aOR (95% CI)
Age	1.05 (1.04–1.06)
Sex	
Male	1.16 (1.03–1.3)
Female	Reference
Race	
Non-Hispanic White	Reference
Non-Hispanic Black	1.02 (0.87–1.2)
Hispanic	0.9 (0.76–1.08)
Asian	0.98 (0.68–1.41)
Other	1.18 (0.95–1.46)
Payor	
Government	Reference
Private	0.98 (0.86–1.13)
Other	1.01 (0.77–1.33)
Non-neurologic complex chronic condition	
0	Reference
1	0.88 (0.76-1.02)
2–3	1.04 (0.87–1.24)
>3	1.26 (0.82–1.96)
Chronic neurologic condition	
No	Reference
Yes	4.91 (4.24–5.68)
Predominant influenza strain	
H1	1.09 (0.9–1.31)
H3	0.92 (0.78–1.09)
В	Reference

* Excludes febrile seizures from the outcome definition.