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Abstract

Linear mixed models are widely used in ecological and biological applications, especially in

genetic studies. Reliable estimation of variance components is crucial for using linear mixed

models. However, standard methods, such as the restricted maximum likelihood (REML), are

computationally inefficient in large samples and may be unstable with small samples. Other

commonly used methods, such as the Haseman-Elston (HE) regression, may yield negative

estimates of variances. Utilizing regularized estimation strategies, we propose the restricted

Haseman-Elston (REHE) regression and REHE with resampling (reREHE) estimators, along with

an inference framework for REHE, as fast and robust alternatives that provide non-negative

estimates with comparable accuracy to REML. The merits of REHE are illustrated using real data

and benchmark simulation studies.
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1 Introduction

Linear mixed model are a convenient and powerful tool for analyzing correlated data, with a

wide range of applications in scientific research. It is especially useful for genetic studies of

complex traits, including heritability estimation (Sofer 2017), genome-wide association

studies (GWAS) (Aulchenko, De Koning, and Haley 2007), and network-based pathway

enrichment analysis (NetGSA) (Shojaie and Michailidis 2009). Variance components
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estimation is an essential step when applying linear mixed models and the restricted

maximum likelihood (REML) approach is considered to be the gold-standard for this task

(Patterson and Thompson 1971). REML works by iteratively maximizing the residual

likelihood with respect to the variance component parameters. During each iteration, REML

computes the inverse of two n × n matrices, where n is the sample size of the data set. As a

result, the computation for REML quickly becomes prohibitive for large sample sizes,

especially when the correlations among observations are non-sparse – such as between-

subject correlations due to genetic relatedness (Kang et al. 2010). Despite efforts to improve

the computational efficiency of REML, such as average information REML (Gilmour,

Thompson, and Cullis 1995), Monte Carlo REML (Matilainen et al. 2013), and REML

based on grid search (Jiang et al. 2019), the scalability of REML to very large data sets is

often limited in many applications. On the other hand, consistency and asymptotic normality

of REML estimates are large sample properties. In this paper we illustrate that REML can be

numerically unstable and can also provide unreliable estimates and/or confidence intervals

of variance components in some settings (Section 4, Supplementary Note 2.3 and Note 2.4).

Given these shortcomings, new approaches for fast and reliable estimators of variance

components for linear mixed model are needed.

When computational efficiency is a primary concern, moment estimators of variance

components have frequently been used as alternatives to REML. These include analysis of

variance (ANOVA), minimum norm quadratic unbiased estimation (MINQUE), and the

Haseman-Elston (HE) regression estimator (Rasch and Masata 2006; Rao 1970; Haseman

and Elston 1972; Sofer 2017). These methods bypass the most time-consuming step in

REML — the inversion of n × n matrices. An essential component of of these alternative

methods to REML is to set up estimating equations by equating the mean squared errors to

its expectation, the error variance. ANOVA, originated from ideas by R. A. Fisher in 1920s,

has been well established for estimating variance components. The resulting estimators are

minimum variance quadratic unbiased (Graybill and Hultquist 1961), and minimum variance

unbiased under normality assumptions on the random effects and the errors (Graybill 1954;

Graybill and Wortham 1956). MINQUE (Rao 1970), which can be viewed as an extension of

the ANOVA method, is equivalent to the first iteration of REML (Searle 1995). It relaxes the

assumption of normality using estimating equations that rely on initial values for the

variance components. The HE estimator, first introduced in (Haseman and Elston 1972), has

been recently used for linear mixed model variance component estimation in genetic studies

(Sofer 2017; Zhou 2017). Its simple implementation and fast computation make it favorable

when working with large and densely correlated data sets. A key limitation of these moment

estimators, however, is that they do not guarantee non-negative estimates for the variance

components. This leads to difficulties in both interpretation and downstream analyses.

To address the shortcomings of existing approaches in variance component estimation, we

propose a new estimation method based on restricted Haseman-Elston (REHE) regression.

REHE is computationally efficient, and ensures non-negative estimates of variance

components. We demonstrate that the REHE estimates are comparably accurate to the

REML estimates when REML performs well, and are robust in the settings where REML

does not provide good estimates. To accommodate the need for a strictly positive variance
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estimates in some applications, we also propose REHE with resampling (reREHE), which

provides positive variance components estimates with high probability. Furthermore, to

facilitate inference, we propose bootstrap confidence intervals for REHE estimates. We

demonstrate that the REHE boostrap confidence intervals are more robust than their REML

counterparts. Finally, we also show that REHE in combination with correlation matrix

sparsification (Gogarten et al. 2019), when applicable, can result in a substantial increase in

computational speed for variance component inference. REHE is both computationally

efficient and flexible, and can be used across a broad range of study designs. Here we

demonstrate the utility of REHE in three different contexts: heritability estimation, GWAS

and NetGSA. We benchmark the proposed methods’ performance with simulation studies,

and illustrate their advantages using data from the Hispanic Community Health Study/Study

of Latinos (HCHS/SOL) (Sorlie et al. 2010; Conomos et al. 2016), where there is extensive

non-zero genetic correlations among the 12,803 study subjects with GWAS data available,

and The Cancer Genome Atlas (TCGA) breast cancer data set (TCGA 2012).

The rest of the paper is organized as follows. In Section 2, we introduce the REHE

estimator, discuss its properties and propose a bootstrap inference framework. We also

introduce the reREHE estimator as an alternative to the REHE estimator. We demonstrate

the performance of the REHE and reREHE estimators with real data applications in Section

3. In Section 4, we benchmark their performance with extensive simulation studies. Section

5 concludes the paper with discussions on the results and potential improvements.

Additional results on REHE, reREHE and matrix sparsification are provided in the

Supplementary Notes.

2 Methods

Consider a generic linear mixed model for an outcome vector Y of length n:

Y = Xβ + ∑
k = 1

K
σkγk + σ0ϵ (1)

Here, X is an n × p design matrix for p covariates, and β is a p-dimensional fixed effect

coefficient vector. For k = 1, 2, …, K, γk is a length n vector of random effects following

Nn 0, Dk , where each n × n matrix Dk defines one source of correlation among the

observations, and is assumed to be known. The noise ϵ is a length n vector following

Nn 0, In . The parameters σk’s k = 0, 1, …, K  are the variance components. For k = 1, …, K,

hk = σk
2/∑l = 0

K σl
2 estimates the proportion of variation explained by Dk. In the context of

genetic studies, a genetic relatedness matrix (GRM) is often used for D1 and h1 is viewed as

a measure of heritability, i.e., the proportion of the total trait variation that is due to genetic

variation.

Our main objective is to estimate the variance components σk
2(k = 0, 1, …, K). For

expositional clarity, we assume the model has no fixed effect, and the outcome vector Y is
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centered. We also assume K = 1 such that the correlations among the observations can be

modeled by a single random effect γ1. However, our methods can be easily extended to

models with fixed effects (Section 2.2.2), or with more than one random effects. Denoting

D0 = In and γ0 = ϵ, the simplified form of model [1] becomes

Y = σ0γ0 + σ1γ1 . (2)

2.1 The Haseman-Elston Regression

The Haseman-Elston (HE) regression approach (Haseman and Elston 1972; Sofer 2017;

Zhou 2017) estimates the variance components via the method of moments. Specifically,

since model [2] implies that Var(Y) = σ0
2D0 + σ1

2D1, n2 estimating equations are

constructed:

E YiY j = σ0
2D0

i j + σ1
2D1

i j, i, j = 1, 2, …n,

where Dk
i j denotes the i, j  entry of matrix Dk k = 0,1 . Estimation of the variance

components can thus be recast as a linear regression problem. Let Y = vec YY⊤  denote the

vectorization of the n × n matrix YY⊤ by stacking its columns, X = vec D0 , vec D1  and

σ2 = σ0
2, σ1

2 ⊤
. We then have E Y = Xσ2. HE solves for variance components σ2 by linear

regression, specifically, by minimizing the residual sum of squares

Y − Xσ2 ⊤ Y − Xσ2 . (3)

The resulting estimator has a closed form expression σ2 = X⊤X −1X⊤Y. A nice property of

the HE estimator is unbiasedness, even if we only use a subset of the n2 estimating equations

to compute the estimates; see the Appendix A for details.

The computational complexity of HE is O Kn2  compared to O n3  for REML. When the

sample size n is large and the number of variance components K is small, as is typically the

case in practice, HE offers substantial improvement in computation over REML. However,

the ordinary least squares solution for variance components by HE is not guaranteed to be

non-negative, leading to difficulties in downstream analyses and interpretation. In practice,

negative estimates from HE are often truncated at zero; yet such naive truncation does not

minimize the residual sum of squares in [3] within the parameter space (σk
2 ≥ 0, k = 0,1). In

addition, as will be illustrated in simulation studies in Section 4 and the Supplementary Note

2.3, naive truncation-based HE estimates generally have larger mean square error than

estimates by both REML and our proposed REHE method, which we introduce in the next

subsection.
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2.2 The Restricted Haseman-Elston Regression

To prevent negative estimation of variance components by HE, while still preserving its

computational efficiency, we propose a new variance components estimation method, termed

the restricted Haseman-Elston (REHE) regression. Similar to HE, REHE is a moment

estimator which regresses the empirical covariance of the observations on pre-specified

correlation matrices that encode sample relatedness. However, instead of the ordinary least

squares estimate by HE, REHE finds the non-negative minimizer of the residual sum of

squares, ensuring sensible estimation of variance components (Supplementary Figure S10).

Following [3], the REHE estimates of the variance components are expressed as:

σ0
2, σ1

2 = arg min
σ0

2 ≥ 0, σ1
2 ≥ 0

∑
l = 1

n2

Y l − Xl1σ0
2 − Xl2σ1

2 2 . (4)

There is a closed form solution to [4] with only two variance components (Supplementary

Note 1.1). With more than two variance components, iterative algorithms for non-negative

least squares (NNLS) can easily solve [4] (Lawson and Hanson 1995; Goldfarb and Idnani

1983; Kim, Sra, and Dhillon 2006; Franc, Hlaváč, and Navara 2005). The convexity of [4]

guarantees the numerical solutions of different solvers converge to the same global

minimizer. Using the R package quadprog (v1.5–7, Berwin A. Turlach 2019), REHE

estimation has approximately the same computational cost as HE, and is thus substantially

faster than REML. In addition, the REHE estimator is consistent under mild conditions, and

asymptotically normal when the correlation matrix for the random effect is sparse and block-

diagonal, such as a sparse empirical kinship matrix; see the Appendix B for details.

2.2.1 REHE with resampling (reREHE)—Estimates obtained from REHE are non-

negative. However, in some applications, a zero estimate for the variance component may

still make the interpretation and/or subsequent analyses challenging. To address this issue,

we equip REHE with a resampling procedure that provides strictly positive variance

component estimates with high probability. The resampling procedure utilizes repeated

subsamples, which can further improve the computational efficiency of REHE. The resulting

approach is termed reREHE.

The idea of subsampling for REHE is simple: instead of estimating the variance components

based on all the observations at the same time, we only use a small subsample of the data.

The full-sample-based estimates and inference are usually well approximated by statistics

based on subsamples (Politis, Romano, and Wolf 1999). Similar subsampling techniques are

also extensively used in stochastic gradient descent methods (Metel 2017). Recently,

subsampling has also been used with HE-based estimating equations (Zhou 2017). Our

proposed reREHE procedure described in Algorithm [1] is unique in that it subsamples

repeatedly to obtain the estimates. Although at a cost of reduced computational efficiency

compared to using a single subsample, this resampling offers considerable advantages.

By averaging the estimates from repeated subsamples, the reREHE estimates have much

higher accuracy compared to estimates based on a single subsample. At the same time, we
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obtain strictly positive estimates, unless in extremely rare cases when all subsamples yield

zero estimates. Other summaries, such as median, can also be used to summarize estimates

from repeated subsamples. When the sampling rate rs and the number of subsamples B

satisfy rs
2B < 1, reREHE achieves higher computational efficiency than REHE. On the other

hand, choosing larger rs and B results in more stable results. In the simulation studies and

data applications, we chose B = 50 and varied rs within 0.05, 0.1  to achieve a balance

between accuracy and computational efficiency.

Algorithm 1

reREHE Approach Estimation.

for b = 1 to B do

 (a) Sample with replacement from Y  to obtain a length nrs  vector Y b
 with sampling rate rs, where x  is a

function to round x to the nearest integer; subset the correlation matrices accordingly as Dk
b

, for k = 0, 1 .

 (b) Compute the variance component estimates σ0, re
2 b , σ1, re

2 b
 based on Y b

 and Dk
b

’s using REHE [4].

end for

Estimate the variance components as σk, re
2 = 1

B ∑b = 1
B σk, re

2 b , k = 0, 1 .

2.2.2 REHE with Fixed Effects—The REHE estimation procedure can be easily

modified to accommodate fixed effects. Consider the full model [1] where X is the design

matrix with p covariates and β is the fixed effect coefficient vector. Let

PX
⊥ = In − X X⊤X

−1
X⊤ denote the projection matrix onto the orthogonal complement of the

column space of X. We project the outcome Y and the random effects γk’s (including the

noise term γ0) as

Y† = PX
⊥Y , γk

† = PX
⊥γk .

Recall that each random effect γk follows a normal distribution with zero mean and

covariance Dk. Writing Dk
† = PX

⊥DkPX
⊥, model [1] becomes

Y† = ∑
k = 0

K
σkγk

†, γk
† ∼ Nn 0, Dk

† , k = 0, …, K . (5)

With model [5], we can directly apply the REHE approach as introduced in Section 2.2 to

estimate the variance components. When the sample size n is large, computing the projected

correlation matrices Dk
† is time-consuming. In genetic and genomics applications, the

number of fixed effect covariates p is much smaller than the sample size n. We also have
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balanced design in many of these applications. In those settings we are able to obtain good

estimates of the fixed effects, and we can directly use the original correlation matrices Dk

instead of projected matrices Dk
†. In such cases, as in our data applications and simulation

studies, we expect results based on Dk
† to be very close to those based on Dk. We thus

suggest using Dk for computational efficiency when estimating model [5] via REHE or

reREHE.

If the fixed effect coefficients β are of interest, they can be estimated using ordinary least

squares as β = X⊤X
−1

X⊤Y, or weighted least squares as β = X⊤Σ−1X
−1

X⊤Σ−1Y, where

Σ = ∑k = 0
K σk

2Dk is based on previously estimated variance components σk
2’s. While the

resulting β is consistent for β, one can iteratively update σk
2’s and β as in (Sofer 2017).

2.2.3 Constructing Confidence Intervals with REHE—To obtain confidence

intervals for variance component estimates, we use a parametric bootstrap procedure as

summarized in Algorithm [2].

Algorithm 2

Parametric Bootstrap Confidence Interval Construction for REHE.

Compute REHE estimates σ0
2, σ1

2
 from [4], based on Y , D0, D1;

for b = 1 to B do

 (a) Generate outcome vector Y* b
 from Nn 0, σ0

2D0 + σ1
2D1 ;

 (b) Compute REHE estimates σ0
2 b , σ1

2 b
 from [4], based on Y* b , D0, D1;

end for

Using the bootstrap samples of REHE estimates, σk
2 b

b = 1
B

, for k = 0, 1, we can construct

Wald-type confidence intervals as

σk
2 − zα/2 × SD σk

2 b , σk
2 + zα/2 × SD σk

2 b , k = 0, 1,

where zα/2 is the 1 − α/2 × 100th percentile of the standard normal distribution, and SD ⋅

denotes the sample standard deviation over bootstrap samples. Wald-type confidence

intervals are valid, provided that the estimates are normally distributed. We can also

construct quantile bootstrap confidence intervals as

σk
2 − σk

2 b − σk
2

1 − α
, σk

2 − σk
2 b − σk

2
α

, k = 0, 1,

where σk
2 b − σk

2
α
 is the 1 − α × 100th empirical quantile of σk

2 b − σk
2

b = 1
B

.

Yue et al. Page 7

Genet Epidemiol. Author manuscript; available in PMC 2022 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For small sample sizes, the quantile confidence intervals are expected to be more robust than

their Wald-type counterparts. When the REHE estimator is close to be normally distributed

under large sample size, Wald-type confidence interval might have higher accuracy based on

the same number of bootstrap samples. In simulation studies and real data applications, we

chose the number of bootstrap samples B = 50 to balance computational time and confidence

interval accuracy. Confidence intervals for functions of variance components, such as

heritability, can be similarly obtained by transforming the bootstrap samples accordingly.

When the correlation matrix D1 is dense and the sample size n is large, it can be

computationally prohibitive to compute a matrix decomposition (through Cholesky or

singular value decomposition) of D1, which is required for the sampling step (a) in the

Algorithm [2]. To speed up the inference procedure in this case, we propose using

correlation matrix sparsification (Gogarten et al. 2019). The sparsification approximates the

dense correlation matrix D1 by a sparse block-diagonal matrix D1*, and largely accelerates

matrix decomposition. Such a sparse block-diagonal structure is often approximately

satisfied in genetic studies: for example, subjects are highly genetically correlated within the

same family, and are remotely correlated across families (see Supplementary Figure S12 for

an example of the kinship matrix). Note that a standard GRM calculated from genome-

screen data may not be sparse. However, an empirical kinship matrix that reflects close

familial relationship (and that can be sparsified) along with principal components for

population structure has been proposed as an alternative to using a single GRM in linear

mixed models (Gogarten et al. 2019; Hu et al. 2021). This approach has been used in various

genetic studies with relatedness and population structure, including the HCHS/SOL

(Conomos et al. 2016), the Population Architecture using Genomics and Epidemiology

(PAGE) study (Wojcik et al. 2019), and a recent analysis for the Trans-Omics for Precision

Medicine (TOPMed) program (Hu et al. 2021). (Gogarten et al. 2019) provides a detailed

comparison of using a linear mixed model with a GRM, a dense kinship matrix (with PCs),

and a sparse kinship matrix (with PCs). The genetic association testing results were shown

to be very similar for all three approaches, but with a substantial increase in computational

efficiency by using a sparse empirical kinship matrix. In the examples presented in Section

3, we use a dense empirical kinship matrix and PCs to model the correlation structure in the

sample. We investigate the performance of sparsification in the additional simulation studies

in Supplementary Note 2.1 and Note 2.3. Our application of matrix sparsification for

inference of variance components in genetic studies is novel, and is discussed in detail in

Supplementary Note 1.2.

3 Applications

3.1 GWAS and Heritability Studies with HCHS/SOL Data

To evaluate the performance of REHE and reREHE in genetics applications, we conducted a

genome-wide association analysis as well as a heritability analysis using a publicly available

data set from the HCHS/SOL (Sorlie et al. 2010; Conomos et al. 2016). The HCHS/SOL

sample survey design consisted of a two-stage probability sample of households at four

recruitment centers. For each center, census block groups were selected in defined
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communities, and households were sampled within census block groups (LaVange et al.

2010; Conomos et al. 2016). Among a total of 16,415 subjects enrolled in the study at

baseline, 12,803 subjects were genotyped on a genome-wide single nucleotide

polymorphisms (SNP) array containing 4,100,028 SNPs.

To perform a genome-wide association analysis, we tested the association between each

SNP and the red blood cell count using a linear mixed model (Conomos et al. 2016). We first

fit a null model, which was a linear mixed model without any genotype effect (Aulchenko,

De Koning, and Haley 2007). We included fixed effects covariates age, gender, cigarette use,

field center indicator, genetic subgroup indicator, the first five principal components for

population stratification effect, and individual sampling weights (Conomos et al. 2016). We

removed subjects that have missing values for the above covariates, and included 12,502

subjects in the analysis. Correlations among subjects was modelled by three random effects:

genetic relatedness represented by estimated kinship, membership of household, and

membership of community group (Conomos et al. 2016).

We separately applied REHE, reREHE and REML to estimate the null model with

household membership matrix, community membership matrix, and estimated dense kinship

matrix. For reREHE, we chose sampling rate rs = 0.1 and used mean summary function

based on 50 repeated subsamples. With n = 12,502 subjects to be analyzed, REML took 23.9

minutes to estimate the null model, while REHE took only 2.4 minutes, a 10-fold

improvement compared to REML. reREHE was similarly fast as REHE. Based on each

estimated null model, we applied score tests for the association between each SNP and the

red blood cell count (Conomos et al. 2016), and compared the resulting p-values. We focus

here on the 164 SNPs with p-values no larger than the family-wise error rate (FWER)

threshold of 5 × 10−8 by at least one approach (Dudbridge and Gusnanto 2008), and

presented p-values for all SNPs in the Supplementary Figure S11. As shown in Figure 1a

and 1b, results based on REHE and reREHE have negligible differences from those based on

REML. The correlations are all higher than 0.99 for the p-values on the −log10 scale

between REHE and REML, as well as between reREHE and REML. This concordance

among REML, reREHE and REHE is not surprising as the estimated variance components

are similar (Figure 1c).

For the heritability analysis, we used the same data set and fit the same linear mixed null

model as in the above genome-wide association analysis. The model was estimated based on

REML and REHE separately. We obtained point estimates and confidence intervals for

heritability (corresponding to the estimated dense kinship correlation matrix), proportions of

variance explained by household membership, community block membership, and noise.

REHE took 18.2 minutes to conduct the inference, compared to 23.9 minutes by REML.

Heritability and variance proportions estimates, as well as the confidence intervals obtained

by the REHE approach are all very similar compared to those obtained by REML (Figure

1c).
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We used the R package GENESIS (v2.14.3, Conomos et al. 2019) for REML estimation and

for conducting the genome-wide association analysis. All analyses were conducted on a

computer with 2 × 6-core Intel Xeon CPU E5–2620 @ 2.00GHz 128GB RAM.

3.2 Network-based Pathway Enrichment Analysis with Breast Cancer Data

To further demonstrate that REHE and reREHE facilitate downstream analysis with fast

variance component estimation, we performed a network-based pathway enrichment

analysis, with a breast cancer data set from The Cancer Genome Atlas (TCGA) (TCGA

2012), preprocessed by Ma, Shojaie, and Michailidis (2019). The data set contains RNA-seq

measurements for 2,598 genes from 100 genetic pathways, with 403 subjects from the ER

positive subtype and 117 from the ER negative subtype.

Network-based pathway enrichment analysis tests for differential gene pathways associated

with particular phenotypes under different conditions (Ma, Shojaie, and Michailidis 2016). It

assumes a linear mixed model for the relationship between gene expressions and the

phenotype (see Supplementary Note 1.3 and Ma, Shojaie, and Michailidis (2016) for

details). Here, we compared the activities of 100 genetic pathways between the two ER

groups. The ER group-specific gene networks — more specifically, the adjacency and

influence matrices supplied to the linear mixed model — were estimated according to Ma,

Shojaie, and Michailidis (2016). We estimated the variance components using REML,

REHE and reREHE. For reREHE, we chose the sampling rate rs = 0.1 for sampling the

subjects, and additionally sampled gene entries within each subject with sampling rate 0.5
(see Supplementary Note 1.3 for details). The reREHE estimate was based on the mean of

50 repeated subsamples. After obtaining the variance components estimates, we tested for

differences in the activity of each of the 100 genetic pathways (Shojaie and Michailidis

2009).

We observed substantial improvement in computational efficiency of reREHE and REHE

compared to REML: reREHE- and REHE-based analyses both took less than 2 minutes,

whereas analysis with REML took over 1 hour. Comparing the resulting p-values, REHE

and reREHE produce slightly more conservative p-values than REML (Figure 2). Moreover,

REHE yields a zero estimate for the noise variance component, the reREHE estimate is

0.0120, while the REML estimate is 0.266. The corresponding network variance estimates

are also quite different: 0.273 by REML, 0.534 by reREHE and 0.610 by REHE. This may

be an evidence that the variation explained by the network is much larger than the variation

from noise in the true model. As illustrated in our additional simulation studies in

Supplementary Note 2.4, REML may yield unreliable estimates under similar settings. We

should thus take extra caution when interpreting REML-based estimates and test results in

this application.

We conducted analyses for NetGSA using the R package netgsa (v3.1.0, Ma, Shojaie, and

Michailidis 2016) on a computer with 2 × 6-core Intel Xeon X5650 @ 2.67 GHz, 96GB

RAM.
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4 Simulation Studies

4.1 Simulation Settings

To benchmark the improvement of REHE and reREHE over HE and REML for variance

components and heritability estimation, we generated synthetic data based on the

HCHS/SOL design (Sorlie et al. 2010; Conomos et al. 2016). HE and reREHE approaches

were implemented only for point estimation comparison. We truncated negative HE

estimates at zero. For reREHE, we used B = 50 repeated subsamples, and chose sampling

rates rs = 0.05 (reREHE 0.05) and rs = 0.1 (reREHE 0.1). Point estimates were evaluated in

terms of the root mean squared error (RMSE). We constructed Wald-type (REHE-Wald) and

quantile-type (REHE-quantile) confidence intervals at 95% level for REHE estimates, and

compared their performances with REML-based confidence intervals in terms of coverage

and interval width.

We simulated data based on the linear mixed model [2]. We used sample size n ∈ {3,000,

6,000, 9,000, 12,000}. For each sample size, we set the true values of the variance

components to σ0
2, σ1

2 ∈ { 0.1, 0.1 , 0.04, 0.1 , 0.1,0.04 , 0.01, 0.1 , 0.1, 0.01 }. These

values were chosen based on previous simulation study settings (Sofer 2017) and estimates

from real data applications (Fenger 2007). For each sample size n selected, we generated the

correlation matrix D1 as a random sub-matrix of the kinship correlation matrix from the

HCHS/SOL data set. For example, for n = 3,000, we subsampled 3,000 out of 12,803

subjects without replacement, and used the corresponding (subsample) kinship correlation

matrix as D1. Under each scenario, we ran 200 replicates. Computation was performed on a

computer with 2 × 6-core Intel Xeon CPU E5–2620 @ 2.00GHz 128GB RAM.

We also conducted additional simulation studies to compare the approaches under different

correlation structures; details of these experiments can be found in Supplementary Note 2.3.

4.2 Simulation Results

Simulation results clearly demonstrate the improvement in computational efficiency by

REHE compared to REML. For point estimation, REHE was over 50 times faster than

REML (Figure 3a). At the same time, REHE does not compromise estimation accuracy.

Figure 3b and 3c show that REHE estimates of both the variance components and

heritability are very close to those obtained by REML. Another advantage of REHE is that it

corrects negative variance estimates from HE. To quantify this difference, We calculated the

proportion of simulation replicates resulting in negative HE estimates (before zero-

thresholding). This proportion reaches 23% with n = 3,000, σ0
2 = 0.01, σ1

2 = 0.1 , but reduces

to 1.5% at n = 12,000. As pointed out before, REHE automatically corrects the issue of

negative estimates without hard-thresholding. Besides, REHE has lower RMSE for point

estimates when HE estimates are likely being negative (Figure 3c).

The simulation results confirm that reREHE can provide strictly positive estimates with high

probability. By providing a positive variance estimate where REHE gives a zero estimate (up

to 23% of the simulation repetitions), reREHE is helpful for interpretation and downstream
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analysis, especially under small sample sizes. As shown in Figure 3b, reREHE based

estimates have smaller RMSE than all other methods at sample size n = 3,000. With larger

samples, the RMSE of reREHE is comparable to other methods under some settings (Figure

3b), but is much larger in other settings (Figure 3c, Supplementary Note 2.1 and Note 2.3).

Setting a higher subsampling rate (0.1 compared with 0.05) reduces RMSE (Figure 3b and

3c), but comes at the cost of reduced computational efficiency — reduction in computation

time compared to REHE diminishes from 67% to 10% (Figure 3a).

Turning to inference of variance components and heritability, both REHE based quantile-

type and Wald-type confidence intervals provide reasonably good coverage with comparable

interval width to REML confidence intervals (Figure 4). The empirical coverage is close to

nominal level under most cases (Figure 4a and 4b), considering a Monte Carlo error of 0.03

based on 200 simulation replicates. REHE quantile-type intervals generally have better

coverage than Wald-type intervals when the true variance components are very different

(Figure 4b). In terms of confidence interval width, quantile-type REHE confidence intervals

are generally narrower than Wald-type, and both are comparable to REML-based intervals

(Figure 4c and 4d). Inference based on REHE is more time-consuming than REHE-based

point estimation; however, it still achieves 50% reduction of computation time compared to

REML (Figure 3a).

Finally, in some simulation settings, we noticed that REML confidence intervals may suffer

from under-coverage. For instance, with n = 3,000 samples, when one variance component is

substantially smaller, the coverage of REML confidence intervals drop below 87% (Figure

4b). In other settings, REML confidence intervals even have coverage below 60%, and have

little improvement with increasing sample size (Supplementary Note 2.3). Another concern

is the numerical stability of REML, which fails to provide a confidence interval if the

estimate of any variance component becomes zero during the iterative updates. We noticed

frequent occurrence of this issue when the true variance components are unbalanced and the

sample size is small — for n = 3,000 and σ0
2, σ1

2 = 0.1,0.01 , REML is unable to provide a

confidence interval in 17.5% of the replicates. This proportion increases to 30.5% in other

settings (Supplementary Note 2.3). We view these two issues as a warning sign for REML-

based inference in real applications, especially when the underlying variance components

are very different and the sample size is small. In contrast, REHE-based inference is robust

across different settings with valid confidence intervals and acceptable empirical coverage.

The above simulation results are supported by evidence from additional simulation studies in

Supplementary Note 2.3.

5 Discussion

We proposed REHE for fast estimation of variance components in linear mixed models. This

new approach is motivated by large-scale genetic studies, including HCHS/SOL, but is

applicable more broadly to a wide range of study designs. Through simulation studies and

data applications, we demonstrated its substantial gain in computational efficiency over

REML, with little compromise in point estimation accuracy. We also showed in several

simulation settings that REHE can be more robust than REML for estimating the variance
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components (Supplementary Note 2.4). Compared to HE, REHE corrects the issue of

negative estimates, and offers potentially large gains in estimation accuracy. Therefore,

REHE can be superior compared to HE and be a good alternative to REML for point

estimation of variance components in linear mixed models.

We also proposed reREHE based on the resampling technique to produce strictly positive

variance component estimates with high probability. Strictly positive estimates are more

interpretable and may be more appealing for downstream analyses. Though reREHE

estimates may have lower accuracy than REHE, the magnitude of the increase in RMSE was

small in our experiments. We have also seen in the real data application that based on a

subsampling rate of 0.1 and 50 subsamples, reREHE-based downstream analysis results are

close to REML-based results. With suitably chosen subsampling rate and number of

subsampling replicates, reREHE can achieve higher computational efficiency than REHE.

As mentioned previously, one can also use the median of the subsample results as the

reREHE estimate. We explored this choice in the Supplementary Note 2.2 and Note 2.3.

When the underlying variance components are very different, median-based reREHE

estimates generally have smaller RMSE; otherwise mean-based reREHE performs better.

However, median-based reREHE is more likely to yield zero estimates. A post hoc selection

of the summary function can be made after observing the distribution of the subsample

estimates based on reREHE.

As illustrated in the genome-wide association and pathway enrichment analysis examples in

Section 3, in many applications, only variance component estimates are needed for

downstream analyses. The computational burden of REML-based estimation prohibits these

analyses on large data sets. Restricting the analysis to subsets of data reduces reliability and

may yield contradictory conclusions. Given the fast and reliable estimates by REHE and

reREHE in large data sets, we see great potential for their application in areas that only

require point estimation of variance components.

When confidence intervals are also of interest, REHE remains a competitive alternative to

REML for its robustness and numerical stability. As illustrated in our simulation studies,

when the sample size is small and the true variance components are unbalanced, REML

based inference may suffer from numerical instability and/or poor coverage. REHE

consistently provides valid inference across all settings. Therefore, when the true variance

components are expected to be very different and the sample size is not large, we

recommend REHE over REML if inference on variance components is needed, as REML-

based inference results may be unreliable.

Constructing confidence intervals for variance components when sample size is large (e.g.

n > 10,000) is inherently computationally challenging. REHE only offers marginal

improvements in computational efficiency over REML when it comes to inference.

However, we can improve the computational efficiency for REHE confidence interval by

parallelizing the bootstrap procedure. An alternative acceleration approach is to use

correlation matrix sparsification (Gogarten et al. 2019, Supplementary Note 1.2). In the

Supplementary Note 2.1 and Note 2.3, we explored the application of sparsification for
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constructing confidence intervals. Our conclusion is that sparsification improves

computational efficiency in large sample settings (n > 12,000); however, it may result in less

robust confidence intervals for both REHE and REML. We did not explore application of

sparsification to linear mixed models with more than one random effect. We expect a much

larger sample size beyond which sparsification would show improvement in computational

efficiency.

We did not explore confidence interval construction for reREHE estimates in this paper. Due

to the repeated subsampling procedure of reREHE, an analytical expression for the

confidence intervals is not trivial. The parametric bootstrap procedure for REHE confidence

interval construction is readily extendable to reREHE, which we expect to have similar

performance as REHE confidence intervals. However, the computational burden will also be

similar to those of REHE confidence intervals. Future research should explore fast inference

procedure for REHE and reREHE estimates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgement

This work was partially funded by grants R01-GM114029, R01-HL141989 and R01-GM133848 from the National
Institutes of Health.

Appendix

A. HE Unbiasedness

The HE estimator is unbiased. The unbiasedness holds even if we use only a subset of the n2

estimating equations, i.e., ignoring some entries of the relatedness matrices Dk’s.

Recall n2 estimating equations are constructed:

E YiY j = σ0
2D0

i j + σ1
2D1

i j, i, j = 1, 2, … n .

Suppose we use S out of the n2 estimating equations without duplicates to compute the HE

estimates, S ≤ n2. Let i1, j1 , …, iS, jS  denote the selected indices. Similar to Section 2.1, we

recast the problem of solving the S estimating equations as the following linear regression

problem. Let YS = Y i1
Y j1

, …, Y iS
Y jS

 denote the linear regression outcome vector, and let XS

denote the design matrix by stacking the tuples D0
is js, D1

is, js , s = 1, …, S. Note that we have

E YS = XSσ2,
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where the equality holds regardless of the higher moments of Y or the positions of the S

indices. The closed form expression of the HE estimates in this case is σ2 = XS
⊤XS

−1XS
⊤YS.

We thus have:

E σ2 = XS
⊤XS

−1
XS

⊤E YS = XS
⊤XS

−1
XS

⊤XSσ2 = σ2 .

Therefore, the HE estimates is unbiased, even if a subset of the n2 estimating equations is

used.

B. REHE Consistency and Asymptotic Normality

The REHE estimator is consistent under mild conditions, and is asymptotically normal when

the random effect correlation matrix is sparse and block-diagonal.

For expositional clarity, we assume the diagonal entries of the kinship matrix D1 are scaled

to 1. We proceed with first establishing consistency of the HE estimator. By [3], the HE

estimate is the ordinary least squares solution to a linear regression problem. We write out

the model for this linear regression as

Y = Xσ2 + ϵ,

for the length n2 outcome vector Y = vec YY⊤ , the n2 × 2 fixed effect design matrix

X = vec D0 , vec D1  and the length n2 error vector ϵ with covariance matrix R. Note that

Ri j = Cov Y i, Y j , which is related to the forth moment of Y. Thus R is not a diagonal matrix.

Under this framework, the HE estimator is a special case of the generalized estimating

equations estimator, with In as the working correlation matrix, the total number of clusters

bounded (equals to 1 in this case), and the cluster size n2 going to infinity. Such as estimator

has been studied in Xie and Yang (2003), see Example 2.1 and Example 5.1. The

consistency of HE estimates holds under the condition (Iω) or (Iω*) in Xie and Yang (2003),

which in our case corresponds to

Iω :λmin HnMn
−1Hn

n ∞ ∞

Iω* :λmin H_n /λmax R n ∞ ∞

where

Hn = X⊤X

Mn = X⊤RX,
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and λmin X  (λmax X ) denotes the smallest (largest) eigenvalue of the symmetric matrix X.

As discussed in Xie and Yang (2003), for (Iω) or (Iω*) to hold it suffices to bound the

correlation of ϵ by Ri j/ RiiR j j ≤ ρh, where h = i − j  and ρh h = 1
∞  is a sequence of values

with lim
h ∞

ρh = 0. One can then verify that Assumption [1] is sufficient to guarantee that the

correlations of ϵ are properly bounded, based on Cov Y iY j, Y i′Y j′ = VY
ii′VY

j j′ + VY
i j′VY

ji′, for

VY = E YY⊤ = σ0
2D0 + σ1

2D1.

Assumption 1 (Weak Condition).

The covariance matrix D1 satisfies D1
i j ≤ ρh*, h = i − j , for some sequence of values

ρh* h = 1
∞  with lim

h ∞
ρh* = 0.

Assumption [1] is natural in many genetic studies as it is expected that off-diagonal

correlation entries would decrease to zero after properly rearranging the rows and columns

of the correlation matrix.

The asymptotic normality of the HE estimator requires an stronger assumption on the

structure of D1. Note that we do not need this strong assumption to show the consistency of

REHE or to construct bootstrap confidence intervals for the REHE estimator. Suppose

Assumption [2] holds for a sparse and block-diagonal kinship matrix D1.

Assumption 2 (Strong Condition).

D1 is sparse and block-diagonal such that

D1 =

D1
1 0 0 …

0 D1
2 0 …

⋮ ⋱

0 0 0 D1
M

,

where D1
m m = 1, …, M  are square blocks along the diagonal of D1, and M is the total

number of blocks.

Such correlation structures are often approximately satisfied in genetic studies: for example,

subjects are highly genetically correlated within the same family, and are remotely

correlated across families. Let sm denote the number of rows/columns in D1
m , and Y m

denote the sm × 1 subvector of Y corresponding to the mth block. For example, Y 1  is the

subvector corresponding to the first s1 elements of Y. By construction, Y m ’s are

independent and normally distributed with zero mean and covariance σ0
2Ism

+ σ1
2D1

m , for
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m = 1, …, M. For sparse block-diagonal D1, we simplify Y and X in [3] by discarding

elements corresponding to zero entries of D1:

Y =

Y 1

Y 2

⋮

Y M

, X =

X 1

X 2

⋮

X M

,

where we denote Y m = vec Y m Y m ⊤  and X m = vec In
m , vec D1

m , for m = 1, …, M. The

independence of Y m ’s implies independence of Y m ’s. As the number of blocks M ∞, the

HE estimates σM
2 = σ0, M

2 , σ1, M
2  converge in probability to the true variance components

σ2 = σ0
2, σ1

2  at a rate of M or faster (Xie and Yang 2003). Moreover, when the maximum

block size s = max
1 ≤ m ≤ M

sm  does not go to infinity too fast as M ∞, the HE estimates are

asymptotically normal, with a rate of M (Xie and Yang 2003):

WM
−1/2HM σM

2 − σ2 d N2 0, I2 , (6)

where

WM = ∑
m = 1

M
X m ⊤

R m X m , R m = Cor Y m , HM = ∑
m = 1

M
X m ⊤

X m .

In genetic studies, it is typical that subjects belong to small unrelated groups so that s is
bounded, and the number of groups M increases with increasing sample sizes. These settings

satisfy the conditions for the HE estimator’s consistency and asymptotic normality.

We are now ready to establish the asymptotic properties of the REHE estimator. As implied

by [4], the REHE estimates σ2 are different from the HE estimates σ2 only when HE yields

negative estimates for some variance components. Let ℙ σ0
2 ≥ 0, σ1

2 ≥ 0  denote the

probability of the HE estimates being non-negative, which equals ℙ σ2 = σ2 . Based on the

consistency of the HE estimator, we have:

ℙ σ2 = σ2 = ℙ σ0
2 ≥ 0, σ1

2 ≥ 0 n ∞ 1,

indicating asymptotic equivalence of the HE and REHE estimators. This implies the

consistency of the REHE estimator, which only requires Assumption [1] on D1. Note that

despite their asymptotic equivalence, our simulation results in Section 4 clearly show the

advantages of REHE over HE in finite samples.
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Next, we show that under the stronger Assumption [2], WM
−1/2HM σ2 − σ2  is op 1 :

ℙ WM
−1/2HM σ2 − σ2 = 0 ≥ ℙ σ2 − σ2 = 0 M ∞ 1 .

We then have

WM
−1/2HM σ2 − σ2 = WM

−1/2HM σ2 − σ2 + WM
−1/2HM σ2 − σ2

= op 1 + WM
−1/2HM σ2 − σ2 .

Therefore, we have established that under Assumption [2], the REHE estimator σ2 satisfies:

WM
−1/2HM σ2 − σ2 d N2 0, I2 . (7)

Here we note that the REHE estimator is slightly biased in finite samples due to the

correction of negative estimates. However, as we have observed in the simulation studies, the

variance and mean squared error of the REHE estimator were smaller than those of the HE

estimator, indicating the REHE a better estimator.
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Figure 1:
Results of genome-wide association testing analysis and heritability analysis with a

HCHS/SOL data set. Association score test p-values (−log10 scale) based on: a - REML

against REHE estimated null models; b - REML against reREHE estimated null models.

Only 164 SNPs with resulted p-values no larger than 5 × 10−8 by at least one approach were

presented. c - Dots represent point estimates of proportion of variance attributed to noise,

kinship (heritability), community membership and household membership; bars represent

corresponding confidence intervals. Results by REHE and REML are displayed. Two types
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of REHE-based confidence intervals are presented: Wald-type confidence intervals (REHE

Wald), and quantile-type confidence intervals (REHE Quantile).
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Figure 2:
Results of network-based pathway enrichment analysis based on a breast cancer data set. p-

values (−log10 scale) of t-tests for group difference of each gene pathway: a - compare

REHE results against REML results; b - compare reREHE results against REML results.

Two out-of-range data points are omitted from the plots, which correspond to:

Glycosphingolipid biosynthesis - lacto and neolacto series pathway, with p-value

1.09 × 10−307 by REML, 5.67 × 10−276 by REHE, 3.74 × 10−304 by reREHE; and Caffeine

metabolism pathway with p-value 3.97 × 10−201 by REML, 2.60 × 10−179 by REHE, and

2.13 × 10−198 by reREHE.
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Figure 3:
Simulation results for REHE and reREHE compared to REML. a - CPU time in seconds

(log10 scale): time is presented separately for fitting the model using REML (REML), for

only computing point estimates by REHE (REHE est), for constructing confidence interval

for variance components with REHE (REHE CI), for only computing point estimates by

reREHE with subsampling rate rs = 0.05 (reREHE 0.05) and reREHE with subsampling rate

rs = 0.1 (reREHE 0.1). b - Root mean squared error (RMSE) for heritability estimation;

simulation was based on true values σ0
2 = 0.1, σ1

2 = 0.1, where σ0
2 is the variance for noise,
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and σ1
2 is the variance for the random effect. c - RMSE for σ1

2 estimation; simulation was

based on true values σ0
2 = 0.01, σ1

2 = 0.1.
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Figure 4:

Simulation results for confidence interval performance in terms of coverage and width. σ0
2 is

the variance for noise, and σ1
2 is the variance for the random effect. a - Coverage for

heritability confidence interval (CI); simulation was based on true values σ0
2 = 0.1, σ1

2 = 0.1.

Monte Carlo error of 0.03 is expected for 200 simulation replications. b - Coverage for σ1
2

CI; simulation was based on true values σ0
2 = 0.01, σ1

2 = 0.1. Monte Carlo error of 0.03 is

expected for 200 simulation replicates. c - Line charts of median half width of heritability CI
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with increasing sample sizes; simulation was based on true values σ0
2 = 0.1, σ1

2 = 0.1. d - Line

charts of median half width of σ1
2 CI with increasing sample sizes; simulation was based on

true values σ0
2 = 0.01, σ1

2 = 0.1.
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