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Abstract
There are several antibody therapeutics in preclinical and clinical development, industry-wide, for the treatment of central

nervous system (CNS) disorders. Due to the limited permeability of antibodies across brain barriers, the quantitative

understanding of antibody exposure in the CNS is important for the design of antibody drug characteristics and determining

appropriate dosing regimens. We have developed a minimal physiologically-based pharmacokinetic (mPBPK) model of

the brain for antibody therapeutics, which was reduced from an existing multi-species platform brain PBPK model. All

non-brain compartments were combined into a single tissue compartment and cerebral spinal fluid (CSF) compartments

were combined into a single CSF compartment. The mPBPK model contains 16 differential equations, compared to 100 in

the original PBPK model, and improved simulation speed approximately 11-fold. Area under the curve ratios for minimal

versus full PBPK models were close to 1 across species for both brain and plasma compartments, which indicates the

reduced model simulations are similar to those of the original model. The minimal model retained detailed physiological

processes of the brain while not significantly affecting model predictability, which supports the law of parsimony in the

context of balancing model complexity with added predictive power. The minimal model has a variety of applications for

supporting the preclinical development of antibody therapeutics and can be expanded to include target information for

evaluating target engagement to inform clinical dose selection.
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Introduction

Over the past few decades, there has been a surge of

antibody therapeutics that have made their way into clinical

practice [1]. The first FDA approved antibody therapeutic,

approved in 1986, was muromonab, which is an anti-CD3

antibody used for organ transplantation to prevent graft-

versus-host disease. As of December 2019, there were at

least 570 antibody therapeutics clinically investigated and

79 that have been approved by the FDA [2]. The majority

of therapeutic antibodies have been developed for the

treatment of cancer and immune-related diseases. A few

antibodies have been FDA approved for the treatment of

neurological and CNS disorders, such as multiple sclerosis,

migraine, and neuromyelitis optica [3–5]. However, the site

of action for most of these therapeutic antibodies is

peripheral and they do not need to cross brain barrier for

pharmacological effects.

There has been increased interest and significant

investments made to develop therapeutic antibodies as a

passive immunotherapy strategy for the treatment of neu-

rodegenerative diseases [6]. However, to date, there has not

been any clinical success and no antibody therapeutic has

been fully approved for the treatment of a neurodegener-

ative disease. On June 7th of 2021, the FDA granted

accelerated approval of aducanumab, a beta-amyloid (Ab)
antibody for the treatment of Alzheimer’s disease. Dis-

rupted proteostasis is a hallmark of neurodegeneration as
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there exists an underlying protein aggregation and clear-

ance problem associated with neurodegenerative disease.

Alzheimer’s disease (AD) is the most prevalent neurode-

generative diseases affecting over 46 million people

worldwide [7]. There are several antibody therapeutics

under clinical development targeting Ab and tau for the

treatment of AD [8]. The hypothesis behind this proposed

treatment strategy is that antibodies will bind to extracel-

lular forms of the pathological proteins, which could

facilitate clearance and prevent protein aggregation, neu-

ron-to-neuron transmission, and neuronal damage.

Numerous phase 2/3 clinical trials investigating anti-Ab
antibodies for the treatment of AD were negative, as

clinical endpoints of cognition (e.g. ADAS-Cog and CDR-

SB) were not improved [9]. Tau-targeting antibodies are in

early clinical development (phase 1/2). In addition to AD,

there are several other neurodegenerative diseases where

therapeutic antibodies are being investigated, such as

Parkinson’s disease, tauopathies, amyotrophic lateral scle-

rosis, and Huntington’s disease.

One of the main challenges facing the potential utility of

biologics for the treatment of CNS diseases is achieving

brain exposures that is above a therapeutic threshold [10].

The physicochemical properties of biologics, primarily

their molecular size, limits their ability to cross brain

barriers, which results in low CNS exposure. Physical

barriers, such as the blood–brain-barrier (BBB) and blood–

cerebral-spinal-fluid-barrier (BCSFB), are designed by

nature to be highly regulated gateways in the body in order

to protect the brain from toxins and pathogens. The BBB is

the barrier interfacing systemic circulation and brain par-

enchyma. The components that make up the BBB, known

as the neurovascular unit, are vascular endothelial cells

forming tight junctions, basal lamina, pericytes, astrocytes,

microglia, and neurons [11]. The BCSFB is the barrier that

interfaces systemic circulation with ventricular CSF. The

components that make up the BCSFB are vascular

endothelial cells, basement membrane, and epithelial cells

forming tight junctions [12]. Once in the ventricular sys-

tem, antibodies need to cross the ventricular barrier, con-

sisting of an ependymal cell layer, to reach the brain

parenchyma. The relative leakiness of the BCSFB com-

pared to the BBB is an attractive hypothesis how antibodies

enter the brain. However, the routes of antibody disposition

into the brain and their relative contributions remains

unclear.

Ability to predict the level of antibody exposure in the

human brain required for adequate target engagement is

critical to clinical drug development programs. This was

recently exemplified when aducanumab was discontinued

following a phase III futility analysis, but subsequent data

from patients exposed to a higher dose for a longer period

of time suggested potential efficacy [13]. The failure to

demonstrate the efficacy of aducanumab from prior trials

has sparked interest in the AD community for conducting

another clinical trial using a high dose [14].

Pharmacokinetic modeling is used for understanding the

time course of drug exposure through mathematically

describing kinetic processes that govern drug absorption,

distribution, and elimination. Over the past couple of

decades there has been a shift from classical compart-

mental pharmacokinetic models towards more mechanistic

models that include detailed physiological processes,

compartments that represent specific organs, and realistic

parameter values that are constrained by known physiol-

ogy. These types of models are known as physiologically-

based pharmacokinetic (PBPK) models. PBPK models date

back to the 1930s, but have become popularized due to the

applications in drug discovery and development [15].

There has been an increased interest in reducing PBPK

models to less complex structures, known as minimal

PBPK (mPBPK) models, in order to increases transparency

and enhance the ease of application, whilst retaining the

key mechanistic features and behaviors [16].

As far as we are aware, a mPBPK approach has not been

reported yet for antibodies targeting the CNS. Therefore,

we have developed a mPBPK model of the brain for

antibody therapeutics, based on an existing multi-species

platform brain PBPK model [17].

Methods

Structural model reduction
and reparameterization

A mPBPK model of the brain was constructed through the

stepwise reduction of a previously developed PBPK model,

further referred to as the ‘‘full’’ model [17]. The reduction

approach was implemented to reduce model complexity,

while conserving physiological details and model pre-

dictability. Fourteen compartments representing all non-

brain organs were combined into a single tissue compart-

ment, which is divided into three subcompartments (vas-

cular, endosomal, and interstitium). The four CSF

compartments (lateral ventricle, third-fourth ventricle,

cisterna magna, and subarachnoid space) were combined

into a single CSF compartment. Brain vascular, endosomal,

and interstitial spaces remained the same. Model parame-

ters are provided in Table 1.

Due to the structural reduction, a reparameterization of

certain volumes, flow rates, endosomal uptake rates, and

tissue reflection coefficients was required. Parameter val-

ues of the minimal model were either conserved or com-

bined from the full model. Three parameters for tissue

volumes, tissue vascular volume ðVTV
Þ, tissue endosomal
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Table 1 Minimal brain PBPK

model parameters
Parameter Units Mouse Rat Monkey Human

FcRn M 4.98E-05 4.98E-05 4.98E-05 4.98E-05

kdeg 1/h 26.6 26.6 26.6 26.6

FR – 0.715 0.715 0.715 0.715

FRB – 0.715 0.715 0.715 0.715

konFcRn 1/M/h 8.06E?07 8.00E?08 7.92E?08 5.59E?08

koffFcRn 1/h 6.55 144 46.8 23.9

VP L 9.44E-04 0.00906 0.187 3.13

VTv L 8.06E-04 0.00789 0.151 1.68

VTe L 1.28E-04 0.00132 0.0286 0.335

VTi L 0.00482 0.0483 0.976 11.1

VBv L 1.07E-05 5.02E-05 0.00207 0.0319

VBE_BBB L 2.09E-06 9.82E-06 4.27E-04 0.00659

VBE_BCSFB L 3.37E-07 1.58E-06 4.27E-05 6.59E-04

VBi L 8.73E-05 4.10E-04 0.0169 0.261

VCSF L 1.93E-05 2.97E-04 0.00926 0.143

VL L 1.13E-04 0.00115 0.0251 0.274

QT L/h 0.361 2.88 20.9 160.5

QB L/h 0.0118 0.0653 1.51 21.5

LT L/h 7.23E-04 0.00577 0.0419 0.321

LB L/h 2.16E-05 1.62E-04 0.00369 0.0345

QB_ECF L/h 1.80E-06 3.00E-05 0.00123 0.0105

QB_CSF L/h 1.98E-05 1.32E-04 0.00246 0.0240

kCLUPT 1/h 0.550 0.550 0.550 0.550

kCLUPB 1/h 0.0195 0.0195 0.0195 0.0195

CLUPT L/h 7.06E-05 7.26E-04 0.0157 0.184

CLUPB L/h 4.74E-08 2.23E-07 9.19E-06 1.42E-04

CLUPBBB L/h 4.08E-08 1.92E-07 8.35E-06 1.29E-04

CLUPBCSFB L/h 6.58E-09 3.09E-08 8.35E-07 1.29E-05

rBBB – 1 1 1 1

rBCSFB – 0.9973 0.9973 0.9973 0.9973

rTv – 0.9172 0.9212 0.9239 0.9233

rTL – 0.2 0.2 0.2 0.2

rISF – 0.2 0.2 0.2 0.2

rCSF – 0.2 0.2 0.2 0.2

SABBB m2 0.0155 0.0155 17 17

SABCSFB m2 0.0025 0.0025 1.7 1.7

fBBB – 0.861 0.861 0.909 0.909

All model parameter values were obtained from the original brain PBPK model described in Chang et al.

[17]. Neonatal Fc receptor (FcRn), antibody endosomal degradation rate (kdeg), fraction of antibody

recycled (FRB), fraction of antibody recycled in brain (FRB), antibody-FcRn association rate (konFcRn),

antibody-FcRn complex dissociation rate (koffFcRn), plasma volume (VP), tissue vascular volume (VTv),

tissue endosomal volume (VTe), tissue interstitial volume (VTi), brain vascular volume (VBv), blood–brain-

barrier endosomal volume (VBE_BBB), blood–CSF-barrier endosomal volume (VBE_BCSFB), brain interstitial

volume (VBi), brain CSF volume (VCSF), tissue blood flow (QT), brain blood flow (QB), tissue lymphatic

flow (LT), brain lymphatic flow (LB), brain ECF flow (QB_ECF), brain CSF flow (QB_CSF), tissue uptake

clearance rate (kCLUPT), brain uptake clearance rate (kCLUPB), tissue uptake clearance (CLUPT), brain

uptake clearance (CLUPB), blood–brain barrier uptake clearance (CLUPBBB), blood–CSF-barrier uptake

clearance (CLUPBCSFB), blood–brain-barrier reflection coefficient (rBBB), blood–CSF-barrier reflection

coefficient (rBCSFB), tissue vascular reflection coefficient (rTv), tissue lymph reflection coefficient (rTL),

brain ISF reflection coefficient (rISF), brain CSF reflection coefficient (rCSF), blood–brain-barrier surface

area (SABBB), blood–CSF-barrier surface area (SABCSFB)
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volume ðVTE
Þ; and tissue interstitial volume ðVTI

Þ; were
calculated based upon the sum of the respective individual

tissue compartments of the full model. For example, the

calculation for VTV
is:

VTV
¼ VLungV þ VHeartV þ VKidneyV þ VMuscleV þ VSkinV

þ VAdiposeV þ VThymusV þ VSIntestineV þ VLIntestineV

þ VSpleenV þ VPancreasV þ VLiverV þ VBoneV þ VOtherV

ð1Þ

The same calculation was performed for VTE
and VTI

.

Brain vascular ðVBV
Þ, endosomal ðVBE

Þ, and interstitial

ðVBI
Þ volumes were unchanged. Four brain CSF volumes,

lateral ventricle ðVLVÞ, third-fourth ventricle ðVTFVÞ, cis-
terna magna ðVCMÞ, and subarachnoid space ðVSASÞ, were
combined into a single CSF volume:

VCSF ¼ VLV þ VTFV þ VCM þ VSAS ð2Þ

The plasma flow rate to tissue ðQTÞ was calculated

based on the difference between lung ðQLÞ and brain ðQBÞ
plasma flow:

QT ¼ QL � QB ð3Þ

Note that the total plasma flow is equivalent to the lung

plasma flow. Tissue lymph flow ðLTÞ was calculated as

0.2% of tissue plasma flow, equivalent to the original

model:

LT ¼ 0:002� QT ð4Þ

The original model used three different values for tissue

reflection coefficients based upon the leakiness of the organ

vasculature, categorized as loose ðrLoose ¼ 0:85Þ, medium

ðrMedium ¼ 0:90Þ, and tight ðrTight ¼ 0:95Þ. In order to

conserve this feature, we obtained a single tissue reflection

coefficient ðrTV
Þ based upon the weighted average reflec-

tion coefficient for each organ:

rTV
¼

�
rLung � VLungV þ rHeart � VHeartV þ rKidney � VKidneyV

þ rMuscle � VMuscleV þ rSkin � VSkinV þ rAdipose � VAdiposeV

þ rThymus � VThymusV þ rSIntestine � VSIntestineV þ rLIntestine
� VLIntestineV þ rSpleen � VSpleenV þ rPancreas � VPancreasV

þ rLiver � VLiverV þ rBone � VBoneV þ rOther
� VOtherV

�
=VTissueV

ð5Þ

A single value was used for the lymph reflection coef-

ficients in all tissues in the full model, which was the same

value used in the minimal model ðrTL
¼ 0:2Þ.

All clearances and rates were conserved between the full

and minimal models. However, in an attempt to avoid

confusing nomenclature going forward, we have redefined

the symbol for uptake clearance rates from CLUP to kCLUP ,

since this value is a rate constant with units of inverse time

and not units of flow, volume per time. Tissue uptake

clearance (CLUPT
Þ was calculated as the product of tissue

uptake clearance rate ðkCLUPT Þ and total tissue endosomal

volume ðVTE
Þ:

CLUPT
¼ kCLUPT � VTE

ð6Þ

The same calculation was used for brain uptake clear-

ance ðCLUPB
Þ, the product of brain uptake clearance rate

ðkCLUPB Þ and brain endosomal volume ðVBE
Þ.

CLUPB
¼ kCLUPB � VBE

ð7Þ

Brain uptake clearance is split between antibody dis-

position across the BBB ðCLUPBBB
Þ and BCSFB

ðCLUPBCSFB
Þ, which is scaled based upon their relative sur-

face areas (SA).

CLUPB
¼ CLUPBBB

þ CLUPBCSFB
ð8Þ

f BBB ¼ SABBB

SABBB þ SABCSFB
ð9Þ

CLUPBBB
¼ kCLUPB � VBE

� f BBB ð10Þ

CLUPBCSFB
¼ kCLUPB � VBE

� 1� f BBBð Þ ð11Þ

where f BBB is the fraction of drug disposition across the

BBB, SABBB is the surface area of the BBB, and SABCSFB is

the surface area of the BCSFB. The endosomal volume for

the blood–brain-barrier (VBEBBB
Þ is equal to the product of

VBE
and f BBB. The endosomal volume for the blood-CSF-

barrier (VBEBCSFB
Þ is equal to the product of VBE

and

1� f BBBð Þ.
The proportionality constant called LNLF, originally

described by Shah and Betts in 2012 [18], was used in the

full model to calculate lymph flow. This parameter was

removed from the model because it was found to be

insensitive, as there were no changes in pharmacokinetic

profiles upon changing this value. Total lymph flow was

recalculated as the sum of tissue lymph flow ðLTÞ and brain

lymph flow ðLBÞ. Brain lymph flow was calculated as the

sum of brain ISF and CSF flow:

LB ¼ QBECF
þ QBCF

ð12Þ

Hence, physiological lymph flow rates were used instead

of an empirical proportionality constant.

Comparison of minimal and full PBPK model
simulations

Simulations were performed to assess the accuracy of the

minimal model for capturing the behavior of the full

model. Single ascending dose (1, 3, 10, 30, 100 mg/kg)

simulations were performed for each species (mouse, rat,

monkey, and human) up to 1000 h, using an output step

size of 0.01 h. Doses were administered directly into the
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plasma compartment to emulate intravenous (IV) dosing.

Predictions using the full and minimal models were over-

laid for a direct comparison. Additionally, area under the

concentration time curve (AUC) for plasma and CNS

compartments were calculated for each simulated profile

using the trapz function in MATLAB. The AUC ratio

between the minimal and full model simulations were

calculated:

AUCRatio ¼
AUCMinimal

AUCFull
ð13Þ

An AUC ratio of 1 would indicate that predicted anti-

body exposure by the minimal model is identical to the full

model. An AUC ratio of[ 1 or\ 1 indicates that predicted

antibody exposure by the minimal model is greater than or

less than the full model, respectively.

To determine the computational speed for executing the

minimal and full PBPK models, the tic–toc function in

MATLAB was implemented before (tic) and after (toc)

calling the model function.

Sensitivity analysis

A one-at-a-time sensitivity analysis method was utilized to

assess the sensitivity of antibody exposure when modu-

lating parameter values. Parameters were sampled from a

log normal distribution (l = 0, r = 0.25), using the logn-

rnd function in MATLAB. 1000 and 100 parameter sets

were generated for 27 and 25 parameters in the minimal

and full model, respectively. Simulations were performed

for each parameter set for a 70 kg human administered

10 mg/kg over 1000 h, using a step size of 1 h.

AUC was determined, using the trapz function in

MATLAB, for three compartments: (1) plasma, (2) CSF,

and (3) ISF. A metric of sensitivity (S), representing the

percentage change in antibody exposure, was calculated as

follows:

Sx %ð Þ ¼ AUCPerturb

AUCBase
� 1

� �
� 100% ð14Þ

where Sx represents the percentage change in antibody

exposure by modulation of parameter x. AUCBase and

AUCPertrub represent the area under the concentration–time

curve before and after perturbation of parameter x,

respectively. Figures were created in R, using ggplot2.

Total and tissue blood flow were excluded from the

analysis for the full model, due to issues where simulations

would take a long time and not complete. The lung was

selected as the tissue to represent the sensitivity of the

tissue vascular ðVTV
Þ, tissue endosomal volume ðVTE

Þ, and
tissue interstitial volume ðVTI

Þ for the full PBPK model.

Results

Brain minimal PBPK model

The brain mPBPK model contains 16 differential equations

as compared to 100 in the original model. Brain mPBPK

model diagram and equations are shown in Figs. 1 and 2,

respectively. Antibody concentrations in plasma go to the

brain and non-brain tissues at flow rates of QB and QT,

while returning flow rates are lower by a difference of

lymph flow (QB–LB and QT–LT). In the tissue vascular

space, antibody can traverse blood vessel endothelium

through paracellular and transcellular routes. Mathemati-

cally, paracellular transport is described as a function of the

tissue lymph flow and tissue vascular reflection coefficient,

LT � 1� rTV
ð Þ. Transcellular transport via pinocytosis is

described as the tissue uptake clearance (CLUPT
Þ from the

tissue vasculature into the endosomal space. In the endo-

somal space, antibody is able to bind to FcRn to form an

antibody-FcRn complex and is either taken up into the

tissue interstitial space or recycled back to the tissue vas-

culature, where FR is the fraction of FcRn-bound antibody

recycled to the tissue vascular space. Unbound antibody in

the endosome is subject to lysosomal degradation at a rate

of kdeg. Antibody then leaves the tissue interstitial space by

the lymphatic system, which is a function of tissue lymph

flow and tissue lymph reflection coefficient: LT � 1� rTL
ð Þ

or by uptake clearance (CLUPT
Þ back into endosomal

compartment.

Antibody in the brain vasculature space can cross the

two brain barriers, BBB and BCSFB. Antibodies trans-

ported across the BBB enter the brain ISF, whereas anti-

bodies that move across the BCSFB enter the CSF. The

paracellular transport across the BBB and BCSFB is gov-

erned by brain vascular reflection coefficients rBBB and

rBCSFB. Mathematically, antibody flow across the BBB and

BCSFB via paracellular transport is defined by the func-

tions: QBECF
� 1� rBBBð Þ and QBCSF

� 1� rBCSFBð Þ. Where,

QBECF
and QBCSF

are the brain extracellular fluid and cere-

bral spinal fluid (CSF) flow rates. Due to the tight nature of

the neurovascular unit, rBBB was fixed to one, as originally

described, to represent the absence of paracellular transport

across the BBB under normal conditions. The paracellular

transport of antibodies across the BCSFB is thought to be

possible, although quite limited, which is supported by an

estimated value of 0.9974 for rBCSFB [17]. Transcellular

transport across the brain via pinocytosis is described by

two uptake clearances, CLUPBBB
and CLUPBCSFB

, and the

fraction of antibody recycled to the brain vascular space

(FRB). Antibodies in the brain endosomal spaces that are

not bound to FcRn are degraded at a rate of kdeg. As

described by the model, antibodies in the brain ISF and
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CSF undergo three kinetic processes: (1) uptake into brain

endosomal space, (2) flow between brain ISF and CSF

compartments, and (3) glymphatic clearance. The flow rate

between the ISF and CSF compartments was set to the

brain ECF flow rate QBECF
. Glymphatic clearance from

brain ISF and CSF compartments are described by the

following functions:QBECF
� 1� rBISF
ð Þ and

QBCSF
� 1� rBCSF
ð Þ. Lastly, flow from the lymph compart-

ment circulates back into systemic circulation ðLB þ LTÞ.

Minimal PBPK model performance

Model performance was assessed by comparing mPBPK

model predictions against simulated data from the full

PBPK model. A single ascending dose simulation was

performed (1, 3, 10, 30, 100 mg/kg) for human (Fig. 3).

Minimal (dotted lines) and full (solid lines) PBPK models

predictions nicely overlay across all doses for plasma, ISF,

and CSF compartments. CSF PK predictions from the

mPBPK model were compared against the full PBPK

model for two different CSF compartments, lateral ven-

tricle (Fig. 3c) and subarachnoid space (Fig. 3d). Minimal

and full PBPK model predictions also overlay precisely

across different preclinical species, mouse (Fig. S1), rat

(Fig. S2), and non-human primates (NHP) (Fig. S3).

AUCs were determined for minimal and full PBPK

model simulations across all doses and species for plasma,

ISF, and CSF compartments. AUC ratios, minimal divided

by full, were calculated and are reported in Table 2. AUC

ratios range between 0.94 and 1.22, but generally are close

Fig. 1 Brain mPBPK model structure. The model contains 16

compartments and three regions: plasma (red), brain (blue) and

non-brain tissues (green). Antibodies in plasma flow between brain

and non-brain tissues. In tissue vascular, antibody travels transcellu-

larly through the endosomal space or paracellularly by directly

entering tissue interstitium. In the endosome, antibody binds FcRn to

form an antibody-FcRn complex, which either is taken up into the

tissue interstitial space or recycled back to the tissue vasculature.

Unbound antibody in the endosome is cleared through lysosomal

degradation. Antibody in tissue interstitial space leaves via lymphatic

flow as well as via endosomal uptake. Antibody in brain vasculature

crosses two brain barriers, BBB and BCSFB. Antibodies that cross the

BBB and BCSFB enter the brain ISF and CSF, respectively.

Paracellular transport across the BBB and BCSFB is governed by

brain vascular reflection coefficients that represent the leakiness of the

vasculature space. Transcellular transport across the brain via

pinocytosis is described by uptake clearance processes. Antibody in

brain endosomal spaces is either recycled via FcRn or eliminated via

lysosomal degradation. Antibody in brain ISF and CSF can be cleared

back to systemic circulation via the glymphatic system. Diagram was

drawn using Inkscape (Color figure online)
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to 1, which indicates that PK predictions are comparable

between models and the reduction methodology did not

significantly impact model predictability. The reduced

model seemed to better retain model predictability for rats

relative to other species as evidenced by the AUC ratios for

three of four compartments being equal to 1. The minimal

model slightly overpredicts exposure in the ventricular

CSF compartment (AUC ratio = 1.2).

The model reduction method enabled a significant

improvement in computational speed. A single simulation

on average took 37.5 s for the full model, whereas the

minimal model took 3.4 s (Fig. 4). Hence, simulations of

the reduced model were approximately 11 times faster.

Although this seems like a modest improvement for a

single simulation, the computational burden for parameter

estimation, Monte Carlo simulations, and other sampling

methodologies could significantly improve from the order

of days to hours.

Sensitivity analysis

The sensitivity of minimal PBPK model parameters for

altering plasma (Fig. 5a), brain ISF (Fig. 5b), and brain

CSF (Fig. 5c) exposures are displayed in Fig. 5. For anti-

body exposure in plasma, the most sensitive parameter was

the tissue endosomal volume (VTE) followed by the

reflection coefficient for the tissue vasculature (rTv). The

next sensitive parameters relate to FcRn binding (konFcRn/

koffFcRn), the fraction of the antibody FcRn complex that

recycles (FR), and the endosomal degradation rate (kdeg).

Antibody exposure in brain is governed primarily by two

parameters, the BBB and BCSFB reflection coefficients.

The BBB reflection coefficient (rBBB) is most sensitive

towards brain ISF exposures, whereas the BCSFB reflec-

tion coefficient (rBCSFB) is most sensitive towards brain

CSF exposures. Other notable sensitive parameters include

processes related to FcRn mediated binding and recycling,

endosomal volume and degradation rate, and the rate of

pinocytosis at brain barriers. Several parameters were

Fig. 2 Brain mPBPK model

equations. Antibody

concentration in (1) plasma, (2)

tissue vascular, (3) tissue

endosome (unbound), (4) tissue

endosome (FcRn-bound), (6)

tissue interstitium, (7) brain

vascular, (8) BBB endosome

(unbound), (9) BBB endosome

(FcRn-bound), (11) brain

interstitium, (12) BCSFB

endosome (unbound), (13)

BCSFB endosome (FcRn-

bound), (15) brain CSF, (16)

lymph. FcRn concentration in

(5) tissue endosome, (10) BBB

endosome, and (14) BCSFB

endosome. Equations written

using Mathcha
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insensitive and result in less than a 1% change in AUC (left

of the line in Fig. 5). The sensitivity of model parameters

in the full PBPK model for altering plasma, brain ISF, and

brain CSF exposures are displayed in Supplementary

Fig. S4. The rank order and magnitude for the sensitivity of

parameters between the minimal and full PBPK models

were similar. However, parameters related to the tissue

compartment (VTe, rT, VTi, VTv) were more sensitive in

the minimal model compared to the full model. This could

be due to the fact that the tissue compartment in the min-

imal model represents all combined tissues and the tissue

compartment used in the sensitivity analysis of the full

model only represents a single tissue.

Discussion

We have constructed a mPBPK model with detailed brain

physiology. We have shown that the model reduction

methodology did not lead to any appreciable change in

model predictability, since the predicted plasma and brain

concentration–time profiles from the minimal model are

comparable to the full model. The minimal model also

displayed significant improvements in computational

speed, which could save time when conducting parameter

estimation, sensitivity analyses, Monte Carlo simulations,

population analyses, and other methodologies. The sim-

plicity of the mPBPK model could improve upon model

transparency, ease of understanding, and future utilization.

A minimalistic pharmacokinetic model could enable an

Fig. 3 Minimal versus full PBPK model predictions. Antibody

concentrations in human a serum, b brain interstitial fluid (ISF),

c brain CSF in lateral ventricle (LV), and d brain CSF in subarachnoid

space (SAS). Five IV doses were simulated 1 (red), 3 (green), 10

(blue), 30 (purple), and 100 (pink) mg/kg for a duration of 1000 h.

Dotted and solid lines represent minimal and full PBPK model

simulations, respectively (Color figure online)
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easier integration with platform quantitative systems

pharmacology (QSP) models of neurological disease,

which have been increasing in popularity over the last few

years [19]. The model is available as MATLAB code and a

SimBiology project file (MATLAB version 2020b). For

SimBiology, the parameter sets for the individual species

are captured as separate variants while dosing is handled

through the Dose tab. Drug specific parameters can be

added as a new variant and combined with the species

variant of interest for simulations.

Model applications include a priori predictions of anti-

body pharmacokinetics in plasma and brain in mouse, rat,

monkey, and human, which could be used to evaluate drug

exposure differences for various dosing regimens. More-

over, the model could be expanded to describe in detail

distribution into any other tissue/organ of choice which

was included in the full model. Engineering Fc regions to

extend the half-life of circulating antibodies has become a

popular method for increasing drug exposure and

decreasing the frequency of drug administration [20]. The

role of differences in FcRn binding due these mutations on

antibody half-life could be evaluated using the model.

However, FcRn binding improvements do not always

translate into longer half-life as other physicochemical

characteristics that govern endosomal trafficking dynamics

also play a role in drug elimination [21, 22]. This is a

current limitation of the model as improving FcRn affinity

will always result in PK predictions with improved half-

life. Understanding the structural and physicochemical

characteristics of antibodies that govern uptake into the

endosome, FcRn binding and recycling, and endosomal

degradation would provide insights into inter-antibody

pharmacokinetic differences. Another consideration is the

competition for binding to FcRn by endogenous IgG. There

is a lack of experimental measurements for the concen-

tration of FcRn, which was originally estimated, and the

fraction of antibody recycled via FcRn [18]. Additionally,

there is some uncertainty around the parameter for endo-

somal volume, which could range from 0.034 to 0.5% of

total tissue volume [23, 24]. These uncertainties should be

considered when including endogenous IgG competition.

Currently, the model is only applicable to describe the

pharmacokinetics of antibodies. The model could be

repurposed for other biologics, however there are a few

points to consider. First, antibodies are able to bind to FcRn

to prevent degradation via the lysosome, which may not be

applicable to other biologics. Therefore, one would need to

determine potential interactions with FcRn or other recy-

cling mechanisms and potential differences in the endo-

somal degradation rate. Second, biologics that are small in

molecular weight could be subject to clearance via

glomerular filtration, which has been described in a recent

paper investigating clearance differences between antibody

fragments and IgG in mice [25]. Biologics smaller than

albumin (66.5 kDa) begin to exhibit enhanced clearance

via glomerular filtration [26]. Third, the vascular perme-

ability of biologics could be different than antibodies.

Therefore, parameters that govern the uptake of antibody

into tissues, such as the tissue and brain reflection coeffi-

cients, would have to be re-estimated. In future, as data

accumulates, these parameters could be defined as a

function of molecular size and other relevant physico-

chemical characteristics.

One of the most significant applications is expanding the

mPBPK brain model to include targets of interest, which

would expand model utility and enable predictions to

understand target engagement, determine efficacious dos-

ing regimens for clinical studies, support affinity opti-

mization by understanding desirable affinity ranges, and

evaluate levels of target engagement amongst several drug

candidates. Expanding the model to include target-medi-

ated processes introduces additional parameters that need

Table 2 AUC ratios of minimal vs full PBPK model simulations

Mouse Rat NHP Human

Plasma 0.96 1.00 1.06 1.05

ISF 0.94 1.00 1.06 1.04

CSF (LV) 1.17 1.19 1.22 1.21

CSF (SAS) 0.96 1.00 1.06 1.04

Fig. 4 Computational speed improvement. Simulation time differ-

ences between the original/full (red) and reduced/minimal (blue)

PBPK models. Simulations were performed for 5 doses over 1000 h

for each species, using a solver step size of 0.01 h. The differential

equation solver used was ode15s using a relative and absolute

tolerance of 2.3E-14 and 1E-22, respectively. Each bar represents

the average simulation time across four simulations, one simulation

per species. Processor: Intel i7-8700K CPU @ 3.70 GHz (Color

figure online)
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to be defined, such as target expression and turnover as

well as antibody-target association and dissociation rates

[27]. Various experimental technologies, such as Biacore

and KinExA, can be used to measure antibody affinity [28].

Careful consideration should be taken in the experimental

designs and use of these affinity measurements as there can

be a significant amount of variability between/within

assays and potential disconnects between in vitro mea-

surements and in vivo observations. Common drug targets

for neurodegenerative diseases are proteins that self-ag-

gregate. Applications could include evaluating relative

target engagement to monomeric, oligomeric, and insol-

uble species. The target of interest could exist in plasma,

non-brain tissues, brain ISF and CSF. If the target exists in

plasma, the model should also be expanded to include the

target in plasma as well as brain and tissue vascular com-

partments. The target and antibody target complex could

follow the same kinetic processes as antibodies or a sim-

plifying assumption could be implemented where the target

and antibody target complex don’t distribute between

compartments. The antibody target complex could follow

the same elimination as a typical antibody, which is often

the case for soluble targets that have a relatively lower

molecular weight than an antibody. For membrane targets,

a key parameter to determine is the antibody-receptor

complex internalization rate as the target could impact

antibody elimination.

Multiple clinical trials investigating therapeutic anti-

bodies for the treatment of neurodegenerative disease have

used concentrations of antibody and target engagement in

the CSF as a surrogate for expected concentrations and

engagement in the brain [10]. However, this may not be an

entirely appropriate assumption as there could be differ-

ences in drug pharmacokinetics and target dynamics (ex-

pression and turnover) in brain ISF, the site of drug action,

compared to CSF. Since it is experimentally impractical to

sample drug concentrations and engagement in the human

brain, a PBPK model of the brain expanded to include the

target of interest enables drug exposure and target

engagement predictions in an otherwise unobservable

compartment. The minimal PBPK model presented here

could be expanded to include drug targets to support pre-

clinical and clinical drug development programs investi-

gating antibody therapeutics for the treatment of

neurological diseases.
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supplementary material available at https://doi.org/10.1007/s10928-
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