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Abstract
The prostate is an exocrine gland of the male reproductive system dependent on
androgens (testosterone and dihydrotestosterone) for development and maintenance.
First-line therapy for prostate cancer includes androgen deprivation therapy (ADT),
depriving both the normal and malignant prostate cells of androgens required for pro-
liferation and survival. A significant problem with continuous ADT at the maximum
tolerable dose is the insurgence of cancer cell resistance. In recent years, intermittent
ADT has been proposed as an alternative to continuous ADT, limiting toxicities and
delaying time-to-progression. Several mathematical models with different biological
resistance mechanisms have been considered to simulate intermittent ADT response
dynamics. We present a comparison between 13 of these intermittent dynamical mod-
els and assess their ability to describe prostate-specific antigen (PSA) dynamics.
The models are calibrated to longitudinal PSA data from the Canadian Prospective
Phase II Trial of intermittent ADT for locally advanced prostate cancer. We perform
Bayesian inference and model analysis over the models’ space of parameters on-
and off-treatment to determine each model’s strength and weakness in describing
the patient-specific PSA dynamics. Additionally, we carry out a classical Bayesian
model comparison on the models’ evidence to determine the models with the highest
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likelihood to simulate the clinically observed dynamics. Our analysis identifies sev-
eral models with critical abilities to disentangle between relapsing and not relapsing
patients, together with parameter intervals where the critical points’ basin of attraction
might be exploited for clinical purposes. Finally, within the Bayesian model compar-
ison framework, we identify the most compelling models in the description of the
clinical data.

Keywords Prostate cancer · Intermittent hormone therapy models

1 Introduction

The prostate is an exocrine gland of most mammals’ male reproductive system.
The normal prostate is dependent on androgens, specifically testosterone and 5α-
dihydrotestosterone (DHT), for development andmaintenance (Feldman and Feldman
2001). Prostate carcinoma (PCa) results from the abnormal growth of tissue from the
prostate’s epithelial cells, which might induce metastasis in bones and lymph nodes.
PCa is the second most common cancer in the USA and the second leading cause
of cancer-related death after lung cancer (Siegel et al. 2021). The average male is
70 years of age at the time of diagnosis, with a strong of the distribution asymme-
try biased toward older ages. PCa risk is often influenced by genetics. Men with a
first-degree relative with PCa are twice as likely to develop it themselves; men with
high blood pressure are also at higher risk of PCa. Treatment options typically include
surgery, radiotherapy, high-intensity focused ultrasound, chemotherapy, and hormonal
therapy.

Screening for PCa is commonly performed through rectal examination or the
noninvasive blood biomarker prostate-specific antigen (PSA), although its efficiency
remains controversial (Lin et al. 2008). Today, more robust marker indicators, such as
the overexpression of prostate cancer gene 3 (PCA3) obtained from the messenger-
RNA (mRNA) in the urines, are considered more suited to monitoring the cancer
evolution (Bussemakers et al. 1999, p. 3; Laxman et al. 2008; Neves et al. 2008; Hes-
sels and Schalken 2009, p. 3; Borros 2009; Qin et al. 2020). PSA is a measure of a
hematic enzyme produced by the prostate. PSA levels between 4.0 and 6.5 µh L−1

are generally considered normal (with a strong dependence on age). PSA is naturally
present in the serum, and usually, only a small amount of PSA of the prostate leaks
into the blood. Hence, high levels are an indication of prostatic hyperplasia or cancer.
Since prostate cells and their malignant counterparts require androgen stimulation to
grow, prostate cancer can be treated by androgen deprivation therapy (ADT), a type
of hormone therapy. This therapy reduces androgen-dependent (AD) cancer cells by
preventing their growth and inducing cellular apoptosis.

Unfortunately, treating with ADT often results in a relapse in the form of
hormone-refractory PCa due to the selection for the androgen-independent (AI) cells.
Intermittent androgen deprivation (IAD) therapy, whereby treatment is cycled on and
off, is often used as an alternative to ADT to delay treatment resistance. In IAD, andro-
gen deprivation therapy is administered until a patient experiences a remission and
then is withheld until the disease progresses up to a certain level. Clinical studies have
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shown that patients are responsive to multiple hormone therapy cycles, eventually
delaying the androgen independence insurgence (Klotz et al. 1986; Larry Goldenberg
et al. 1995; Bruchovsky et al. 2006).

We consider models of intermittent therapy due to clinical interest and solve the
inference problem using longitudinal PSA data from the Canadian Prospective Phase
II Trial of IAD for locally advanced prostate cancer. This work aims to present the
first systematic comparative study of IAD models, emphasizing their ability to disen-
tangle relapsing and not relapsing patients and compare the models in the Bayesian
framework. The goal is to detect the single model (or the group of models) that best
represent the information in the considered dataset and, therefore, if possible, the most
promising biological frame representing them. A general and historical review of the
available prostate cancer models can be found elsewhere (Phan et al. 2020).

In Sect. 2, we present the data included in our analysis. In Sect. 3, we introduce
the statistical framework used to analyze the data. Section 4 presents an analysis of
the models and their performance over the dataset utilizing the framework considered.
Section 5 compares the performance of all the models, and Sect. 6 concludes and
discusses the paper’s findings and future developments.

2 Dataset

2.1 Data Cohort

We consider data from the Canadian Prospective Phase II Trial of intermittent ADT
for biochemically recurrent prostate cancer (Bruchovsky et al. 2006, 2008). The total
patient number isNpat � 101. Theirmedian pretreatment serum testosterone is 13.0µg
L−1, ranging between 0.4 and 23.0 µg L−1. Over a maximum of n � 5 intermittent
ADT cycles, a median of 35.1–36.0 weeks is spent on-treatment (depending on n),
and 25.6–53.7 weeks (e.g., n � 5 and n � 1 respectively) are off-treatment during
the 6-year study. An example of a PSA profile for an individual patient is shown in
Fig. 1a. This patient responded to treatment during the first two treatment cycles (τ1
and τ2) and progressed in his third cycle of treatment (τ3). The oscillatory dynamics
demonstrate the effect of the intermittent treatment, with a decrease in PSA during
treatment and an increase once treatment is turned off. Each data point is assigned
with an error of 1 day in time (i.e., the time resolution of the dataset) and a maximal
PSA error value emax assigned of emax � 0.1 µg L−1 assumed from the literature
(Borros 2009).

We set the minimal PSA detection threshold equal to �1 � 0.1 µg L−1, i.e., any
patient data below this threshold is set to 0.1 µg L−1. Patients with a minimal per-
day fluctuation below 2.0 µg L−1, i.e., a minimal per-day fluctuation of the KLK3
glycoprotein enzyme of PSA of a typical man (Morgentaler and Conners 2015), are
excluded because such small fluctuations are considered natural and not pathological.
To only consider PSA concentrations above Poisson noise, patients with less than
�2 � √

Npat (i.e., the sample shot/Poisson noise) data points are also excluded. These
exclusions result in our analysis considering data from 89 (Npat � 89) rather than 101
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Fig. 1 Model data. a PSA data for patient #33 from tmin � 88 [day] to tmax � 941 [day]. Black dots indicate
PSA values (error bars are omitted due to little variability), orange points indicate where PSAwas collected,
and graphically represented as an orange continuous box function, evidenced only in this example panel
by yellow shaded areas. Treatment intervals are labeled τ1, τ2 and τ3. t* is the first minimum of PSA in
τ1. b Distribution of the number of data points per patient. The original data are shown by the red dashed
lines, while the selected subset of patients used in this analysis is shown in the yellow shaded region (Color
figure online)

patients. The patients’ distribution per number of data points used after the selection
process is shown in Fig. 1b compared to the original distribution.

2.2 Data Interpretation

The PSA trend shown in Fig. 1a is based on the interplay between cellular populations,
i.e., with a compartment modeling approach. An androgen-dependent set of ND ≥ 1
cell populations (each with a concentration nD,k � nD,k(t), k � 1, . . . , ND repre-
senting the compartment concentration [μgL−1], t ∈ R time [day]) is assumed to
contribute to the oscillatory behavior of PSA. Additionally, a set of time-dependent
androgen-independent cellular populations of NI ≥ 0 cell populations nI ,l � nI ,l(t),
l � 0, . . . , NI , also contributes to the PSA profile, such that PSA concentration cPSA
is given by cPSA � f

(
nD,k, nI ,l

)
,where f ∈ C0 is a function belonging to the class of

continuous solution C0 (not necessarily smooth) of a suitably designed ODEs system.

Any further dependence on space, temperature, and pressure is generally neglected in
the IAD models’ compartment approach. Furthermore, f is often assumed to be a lin-
ear combination of the ND and NI compartments, e.g., cPSA � ∑

k
wknD,k +

∑

l
wln I ,l

for some weights wl and wk .

By assuming ADT to be highly effective in the first treatment interval τ1, we can set
nD(t ∈ τ1) ∼� 0 for some t as an initial condition (hereafter i.c.). This approach does
not necessarily hold for τi with i > 1: Generally, ∀i where cPSA ∼� 0, we can equally
well assume this setting for the i.c. of the nD,k � nD,k(t) equations. Equivalently
we can assume that a non-holonomic (i.e., with inequalities) condition for the fitting
procedure holds at the beginning of the patient time series nD(t) ≤ nI (t) for some
t ∈ τ1. Furthermore, in most of the models that we accounted for, these considerations
are articulated with the addition of a few extra equations that interpret, at a local or
global level in the parameter space, the contribution to cPSA(t) by the androgen quota,
cellular plasticity, staminal cells populations, or other model specificities.
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Finally, we know from biological arguments that, under treatment, the models’
equations are designed to permit, at least for cPSA, to tend asymptotically to the value
cPSA � 0. Any model that does not permit the phase state cPSA � cPSA(t) to reach
approximatively null values for any t , i.e., �t R: cPSA(t) ∼� 0, would fail to reproduce
the patients whose first treatment is always successful (see Fig. 1a).We elaborate more
on this in Sect. 4. Therefore, it is worth investigating if the models allow for stationary
equilibria outside the treatment intervals and then if any of the patient best fit values
have fallen close to those equilibria (when they exist). This behavior would imply a
stationary or recurrent solution for the dynamics and, therefore, a constrained PSA’s
evolution if this “basin of attraction” is achievable in a biological time of interest. We
stress that this mathematical behavior does not imply that the patient can effectively
reach the point of equilibrium on the biological timescale of interest or a plausible
point regarding toxicity levels.

3 Bayesian Inference

The Bayesian regression approach stems from the concept of probability as a measure
of the plausibility of a model given the truth of the information in the data presented
above. First, we encode the prior state of knowledge about the parameters considered
p � {p1, p2, . . .} into a prior distribution function Pr(p|I ), where I represents any
available information. Typically, this can be achieved with a flat, uniform, and not
informative prior at the beginning or with a sharper prior when the model is better
trained. We return to this point in Sect. 3.1. Secondly, we consider the dataset, D,
through the likelihood L(p, D) � Pr(D|p, I ). Finally, the inference problem is solved,
studying the probability distribution function encoding the knowledge of the prior and
the information encoded in the likelihood of the data Pr(p|D, I ) ∝ Pr(p|I )L(p, D).

Standard techniques to achieve this result are fully analytical (e.g., for some linear
regression), approximated (e.g., asymptotic approximation, Laplacian approxima-
tion, Gaussian approximation, etc.), iterative (e.g., Levenberg–Marquardt), or fully
numerical (e.g., simulated annealing genetic algorithms). The choice between these
techniques depends on the nature of the problem. Here, we start using Laplacian
approximation with hyperparameters (Hutter et al. 2011; Murphy 2012; Theodoridis
2015), as a few of the mathematical models that we consider herein are nested, to solve
the inference problem (i.e., to search for the optimal set of parameters p that best rep-
resent the data). In order to confirm the inference results and to perform the Bayesian
model comparison numerically, we test the results both against the nested sampling
approach to the global likelihood (hereafter evidence) (Skilling 2004; Mukherjee et al.
2006; Feroz and Hobson 2008) and with the differential evolution search (Feoktistov
2006; Goode and Annin 2015) with up to aggressive scaling factors (≤ 0.9) and cross
probabilities (≥ 0.1). For the Bayesianmodel comparison part of our work, see Sect. 5,
the nested sampling-based approach will embed the results in a natural framework.

Finally, we note that substantial limitations in the fitting procedure came from the
sparse and irregular temporal sampling in the clinical data. This irregularity impacts the
parameter space exploration due to the lack of condition on the PSA trend’s derivative.
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The partial derivative ∂t cPSA(p; t) is not smooth, thus inhibiting using some straight-
forward optimization techniques based on the PSA curves’ gradients or convexity
(Theodoridis 2015).

3.1 The Priors Pr
(
p|I)

While robust approximations or numerical tools have been adopted for the Bayesian
framework, special attention is paid to the use of priors. As mentioned, Bayesian
inference requires the use of the priors, Pr(p|I ), for parameter estimation. With ini-
tially unknown priors, we implement uniform priors over the parameters’ full ranges
(Fig. 2a). By requiring all model parameters to be positive, we can assume the Heavi-
side step function θ � θ(p) as (unnormalized) prior, this approach is generally referred
to as “improper prior” as it is unbounded above, it cannot be normalized and therefore
it does not have amean, standarddeviation,median, or quantiles.We set anupper bound
for each parameter to be p < pmax with a max value pmax < +∞ ∀p strictly. An alter-
native functional tested is the non-informative Jeffreys prior, Pr(p|I ) ∝ √

det(F(p))

with F symbol referring to the Fisher Information matrix (Jeffreys 1946) and “det” to
the matrix determinant.

Extra than testing with flat/Jeffreys priors, in the numerical nested sampling
approach, we explore the parameter space logarithmically to avoid divergences, and
once we reach a statistically significative sample, i.e., above the Poisson noise fluctu-
ation (∼ √

Npat) shaping the posterior PDF, we proceed to implement the posterior as
a prior for the patients analyzed in the dataset; finally, we reiterate by implementing a
recursive determination of the prior (Fig. 2b, c). Further details can be found in Pasetto
et al. (2021), where we discuss Bayesian analysis of retrospective data to guide clinical
decisions.

4 Analysis of IADTMathematical Models

Here we consider only IADmodels due to current clinical interest. Each model is pre-
sented and justified in a biological and mathematical sense in the original paper where
the model was first presented, and we refer the reader to that papers for detailed model
derivations. Similarly, the sensitivity analysis of the model parameters is presented in
each paper individually, and we elaborate on it here only where necessary. We will
refer to the relapsing patient set as �-set and not relapsing to as relapse ¬�-set.

We parametrize the individual IAD data with a patient-specific control function
Tps defined as follows: Tps(t) � ∑n

i�1 1τi (t), 0 < t ∈ [tmin, tmax]1 with tmin and
tmax minimum and maximum patient-specific treatment under consideration (e.g.,
Fig. 1a) and tmin generally after the first treatment drop; n ≥ 1 is the number of
intervals τi considered. τi ⊆ ]tmin, tmax[∀i is referred to as the “ith treatment cycle,”

1 We use compact set notation here, e.g., 0 < t ∈ [tmin, tmax] means all the possible values of t, positive,
between tmin and tmax, i.e., 0 < tmin ≤ t ≤ tmax. Open brackets will exclude the borders, e.g., soon after
τi ⊆ ]tmin, tmax[ means that the interval τi , e.g., τ � [a, b] is properly included between tmin and tmax,
but the limits of tmin and tmax are excluded: tmin < τi < tmax. This allows us to work with the domain of
existence of the indicator functions but arbitrarily truncate it at tmin or tmax.
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Fig. 2 Model prior development. This example refers to the model by Hirata et al. 2010 and its 13 defining
parameters. A similar technique is adopted for the other models. a. Initial bounded flat prior. b. Evolution of
prior development for γD

on [day−1] as the number of patients analyzed is increased (Npat � {10,25,60,72},
respectively). c Final priors for the remaining 12 parameters (colors correspond to those shown in panel a)
(Color figure online)
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and 1τi is the indicator function2 for the interval τi (defined as 1τi � 1 for t ∈ τi ,
0 otherwise). For modeling purposes, the weights/errors, ei for each data i , have
been assigned either uniformly ei � cnst.∀i or with a linear decreasing relevance
from the last PSA concentration cPSA peak, say ĉPSA (e.g., in τ3 of Fig. 1) with
ei � ∣∣cPSAi − ĉPSA

∣∣
t�t̂ , i.e. at t � t̂ , and ei � ∣∣ĉPSA

∣∣ − ∣∣t̂ − t
∣∣ + |cPSAi | for t �� t̂ .

Finally, we performed sensitivity analysis on all the models included here. Comments
on the technique adopted are technical and left to Supplement A.

4.1 Ideta et al. (2008)

Themodel by Jackson (2004) can be considered the continuousADTmodel prototype.
Its extension to IAD therapy of interest was presented by Ideta et al. (2008). In this
model (hereafter, I08), the authors drop the dependence of Jackson’s model on the
spatial distribution,which is only of theoretical interest but not resolved in clinical PSA
data. Model simulations predict that intermittent ADT can only prevent progression if
normal androgen levels decrease the growth rate of AI cells, whichmay be biologically
unlikely since AI cells have androgen receptors with increased sensitivity (Grossmann
et al. 2001). We consider the I08 model in the following form:

dnD
dt � (γD − δD − μDI)nD,

dnI
dt � μDInD + (γI − δI )nI ,

(1)

with initial conditions nD(t0D) � nD0, nI (t0I ) � nI0.3 As previously mentioned, nD

and nI are the androgen-dependent and -independent population number of cells (or
concentration). γi and δi , i ∈ {D, I } are growth and apoptosis rates for AD and AI
cells, given, respectively, by:

γD � γDmax

(
γDA + (1 − γDA)

cA
cA+kDAγ

)
, γI � 1 −

(
1 − δI A

γI A

)
cA
cA0

,

δD � δDmax

(
δDA + (1 − δDA)

cA
cA+kDAδ

)
, δI � 1.

(2)

In Eq. (2) γDmax and δDmax are the maximal AD proliferation and apoptosis rates,
δDA is a control parameter on the effect of low androgen levels on the AD apoptosis
rate, kDAγ �� 0 is the AD half-saturation rate, kDAδ �� 0 is the AD apoptosis rate
dependence on androgen. Finally, δI A and γI A �� 0 modulate hormonally patient
failing death and growth. Mutation from AD to AI cells are allowed at a mutation rate:

μDI � μDImax

(
1 − cA

cA0

)
, (3)

thus, the mutation rate decreases as the androgen (here normalized at its homeostatic
level cA0 �� 0) approaches its max value μDImax. A decoupled ODE model of the

2 Note that in our case the indicator function 1τi is not-continuous scalar function, but traditionally indicated
with bold characters even if it is not a matrix or a vector.
3 Note how, in general t0D �� t0I for what is seen in Sect. 2.2.
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serum androgen concentration under treatment cA is given by:

dcA
dt

� δcA(cA0 − cA) − δcAcA0Tps, (4)

with initial condition cA(t0A) � cA0 �� 0, where δcA is the androgen clearance rate.
Here Tps � Tps(t) is the patient treatment-specific function as defined in Sect. 2.1.
Finally, the PSA density concentration of interest to us, cPSA, is a linear combination
with weight wi of the population densities

cPSA �
∑

i∈{D,I }
wi ni . (5)

Based on the original analysis of Ideta et al. and the available dataset, we explored
two versions of this model, namely, where δI A � γI A in Eq. (2), i.e., γI � cnst.
(hereafter model I08A) and the original form of the equations (δI A �� γI A hereafter
model I08B).

4.1.1 I08A in the Context of the Data

We noted that the system of equations (hereafter SoE) composed by Eqs. (1)–(4)
decouples in the androgen concentration cA. The analysis of the system results in
a line of infinite equilibria on the intersection of the plane nD � 0 with the plane
cA � cA0−cA0Tps in the space of phase-state variables (nD, nI , cA). Thus, cA � cA0
off-treatment and cA � 0 on-treatment. Standard linear stability analysis (Wiggins
2003) shows that the Jacobian of the system produces a null generalized eigenvalue
λ1 � 0, a negative one λ2 � −δA, and a more complicate third generalized eigenvalue
that takes, off-treatment, the elegant form:λoff3 � γDmax +

(γDA−1)γDmaxkDγ /2
cA0+kDγ /2

− δDmax −
(δDA−1)δDmaxkDδ/2

cA0+kDδ/2
. The sign of λoff3 can be evaluated for the best-fit parameter values

that result from the inference works of Sect. 3 in the patients’ cohort considered here
(Sect. 2), resulting in being always positive for all the patients. Therefore, the above-
found equilibria lines represent a 1D nonstable manifold, and further investigations
(e.g., in the context of the central manifold theory) are not of additional interest to us.

We are indeed more interested to further exploit the characteristics of the present
dataset in the context of thismodel byusing the decouplednature of the serumandrogen
concentration cA. All the patients are considered from their first cycle of treatment,
starting with Tps(t) � 1 for t ∈ τ1. Hence, we can emulate with a Heaviside step
function Tps � θ(−t) a cycle of treatment followed by the off-treatment period for a
suitable cyclic interval (on–off, on–off, on–off, and so forth) around the off-treatment
start, set at t � 0. Within this approach, the general solution of Eq. (4) is algebraic
and reads:

cA(t) � cA0e
−δA(t+1)(eδAθ

(
eδAt − 1

)
+ 1

)
. (6)
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Fig. 3 Ideta et al. model analysis results. a Evolution of the normalized androgen concentration cA (normal-
ized to its homeostatic value cA0, (left y-axis) as a function of time (blue curve) for a representative patient.
For completeness, the PSA profile is also reported in light red (right y-axis). b Normalized androgen-
dependent probability distribution functions on the cohort of best-fit parameters for progressive (�, red)
and responsive (¬� , blue) sets (Color figure online)

This equation is monotonic on the two phases on/off-treatment because the deriva-
tive dcA/dt � cA0δAe−δA(t+1)

(
eδAθ − 1

)
is never null neither for t < 0, i.e.,

on-treatment nor for t ≥ 0, off-treatment. By splitting the treatment in on/off-time, we
can always reverse the bilinear map cA � cA(t) in t � t(cA). For example, in our case,

it reads t � − 1
δA
log

(
cA
cA0

)
+ δA on-treatment and t � 1

δA
log

cA0
(
e−δA−1

)

cA−cA0
off-treatment4

for cA �� cA0, and cA �� 0 and δA �� 0.We exploit Eq. (6) to obtain the probability dis-
tribution function (PDF) of the orbits over all the sets of patients remapping each cycle
over the phase space section (O, nD, nI ). We take advantage by the sharp cA passage
from its homeostasis value cA0 to null and vice versa in conjunction with the bijection
map just found. Figure 3a shows the cA profile for a representative patient. While time
is a monotonic increasing function, the map we considering is one-to-one only over
the treatment cycle Tps � 1 and the off-cycle Tps � 0, respectively, and in these two
tracks we can write the SoE as nD � nD(t(cA)) � nD(cA) and nI � nI (cA). As cA
sharply switches from cA � cA0 and cA � 0, we can limit ourselves to a first-order
solution of the SoE. After simple algebra, we arrive at the approximate solution of the
SoE in the form:

nD 
 nD0 − 1
cA0δA

nD0(cA − cA0)
(

γDmax(cA0+γAkDγ /2)
cA0+kDγ /2

− δDmax(cA0+δDkDδ/2)
cA0+kDδ/2

)
,

nI 
 nI0,
(7)

to the first order in cA (and where 
 means asymptotic-to). As evident, the second
equation remains close to its initial value nI0, while the first is perturbed away, sug-
gesting that we can first sample the PDF of the dataset for fixed values in nI around nI0
and then investigate the PDF as sampled from the best fit obtained by the patient in the
trial with Eq. (7). The results are shown in Fig. 3b. The trend of the two distributions

4 Note how we could consider the resulting SoE as function of the variable cA to reach a fully algebraic

solution of the system by taking the ration of dnD
dcA

/
dnI
dcA

. Nevertheless, it is more fruitful to look at the trend
of Eq. (6) as obtained by the best fit procedure introduced in the next section.
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for the development of resistance and continuing response patients is comparable as
above the starting value nD � nD0, while the trend diverges for smaller values nD .
Because we assume nD is a proxy for cPSA at small values of nI , as evicted from
Eqs. (5) and (7), if the model correctly interprets the data, then a patient with an initial
PSA-drop below 10% of its initial value is highly likely to be a continuous responder.
The risk of resistance development grows to about 50% when the initial drop in PSA
is around 30%.

4.1.2 I08B in the Context of the Data

For I08B, where δI A �� γI A, the ratio presented in Eq. (3) evidences the structural
non-identifiability of the SoE. The treatment of the equilibria and their stability is
more straightforward in this model form than in I08A. The only equilibrium point is
given by {nD, nI , cA}eq � {

0, 0, cA0 − cA0Tps
}
with generalized eigenvalues λi of

the Jacobian at the equilibriumgiven byλ1 � (
Tps − 1

)
(γIA − δIA)γ −1

I A with γI A �� 0,
λ2 � λI08A2 andλ3 � λI08A3 . Following the I08Aassumptions,we investigate themodel
under the conditions δDmax > γDmax, δDA > 1, and by requiring that μmax < γI − δI
to avoid the annihilation of the populations. Under these conditions, we can prove that
λ1 ≤ 0 and λ2 ≤ 0, and that for λ3 it holds the same consideration as for I08A due to
the non-stable nature of the resulting equilibrium manifold.

Analogous consideration on the non/relapsing treatment holds for I08B as for I08A,
but with more straightforward treatment for I08B than for I08A: the two equilibria
at homeostasis cA � cA0 and at null androgen concentration, cA � 0, attract the
dynamics as for I08A and self-explain the orbit profiles. Therefore, the identical results
from the inference of I08B on patients’ trials can be obtained for the PDF but are not
depicted again.

4.2 Eikenberry et al. (2010)

The model developed by Eikenberry et al. (2010, hereafter E10) was an attempt to
describe the interaction between testosterone (T, the primary androgen in the serum),
its enzyme 5a-reductase to dihydrotestosterone (DHT), and their binding (T:AR and
DHT:AR) with the androgen receptors (AR) in the prostate. Because of model E10’s
versatility, we have included it in the IAD treatment model comparison. Of note, the
authors have not proposed the model to fit data, and here we reinterpret E10 beyond
the scope of the original paper. The modulation due to intermittent IAD is assumed
in testosterone time modulation. While a linear relation might not be readily available
from the literature between testosterone and PSA level (Elzanaty et al. 2017), we
recode the testosterone concentration nT , in E10 as follows:

dnT
dt

� nT

(
δT − μcatn5α

kM + nT
− κT :RnR

)
+ δT :RqT :R − (

Tps − 1
)
ϒ(nS), (8)
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which we couple with the original system of equations:

dnR

dt
� nR(γR − δR − κDHT nDHT − κT :RnT ) + δDHT :RqDHT :R + δT :RqT :R,

dnDHT

dt
� μcatn5αnT

kM + nT
− nDHT (δDHT + κDHT nR) + δDHT :RqDHT :R,

dqT :R
dt

� κT :RnRnT − δT :RqT :R,

dqDHT :R

dt
� κDHT nDHT nR − δDHT :RqDHT :R,

(9)

with five nominals initial conditions: nR0 � nR(t0R), nT 0 � nT (t0T ), nDHT 0 �
nDHT (t0DHT ), qT :R0 � qT :R(t0T :R) and qDHT :R0 � qDHT :R(t0DHT :R). Here, the
treatment function Tps modulates testosterone influx into the prostate-function ϒ(nS)
original in E10 and that we are going to adopt here, where nS is the testosterone
serum concentration. Furthermore, we consider the androgen receptor concentration
nR and the dihydrotestosterone concentration nDHT together with two quota concen-
trations qT :R and qDHT :R (Droop 1968), here, taken to be the T:AR complex and the
DHT:AR complex concentration, respectively. γR is the AR production rate, δR is the
AR degradation rate, δT is the testosterone-specific degradation rate, and δDHT is the
dihydrotestosterone degradation rate. The mass-action constants for the androgen-
dependent component (testosterone) and dihydrotestosterone binding the AR are{
κT
a , κT

d , κDHT
a , κDHT

d

}
, and the 5α reductase converts T toDHTbyMichaelis–Menten

enzyme kinetics with concentration n5α , turnover number μcat and constant kM �� 0.

4.2.1 The Model in the Context of the Data

If we set a ≡ μcatn5α − δT kM , b ≡ (
1 − Tps

)
ϒ(ns), and � ≡ √

(a + b)2 − 4bδT kM ,
then two critical points can be isolated at the intersection of the nullclines hyperplanes
of the phase space. On-treatment, the first point {nR, nT , nDHT , qT :R, qDHT :R}(1,2)eq �{
0, 0, 0, −a−b∓�

2δT
, −a+b±�

2δDHT

}
holds as soon as ∓a + b + � ≤ 0 ∧ ∓a + � ≤ b. While

only the second of these equilibria is of biological interest, it is not a stable equilibrium.
Obtaining the complete set of generalized eigenvalues requires a cumbersome solution
of three cubic equations, yet the check for the stability requires much less effort once
we realize that one of the generalized eigenvalues from the characteristic equations

reads simply δT − 4δ2T μcatkMn5α
(a+b−�−2δT kM )2

where a + b − � − 2δT kM �� 0 and that it proves
to be always positive for all the inference results in the trial patients.

Finally, we note how the model could represent an essential instrument for investi-
gating the relapsing mechanism evidenced in some patients, which remains one of the
goals of this work for its potential clinical implications. We identify three over five
state variables by inspecting the phase-state space with a striking separation between
� and ¬�. Figure 4a shows the 3D probability distribution function of nT , nR, and
qT :R . The density map of the temporal evolution of � and ¬� sets clusters (over the
orbital evolution spanned by the patients analyzed) on a well distinct area of the phase
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Fig. 4 Eikenberry et al. model analysis results. a Probability distribution function of the qT :R , nT, and
nR space. The isocontours for the Pr of � and ¬� sets are shown in blue and red, respectively. A few
isocontours are shown at the border-slicing-planes for Pr � {0.1,0.68,0.95}. b–d Sensitivity of cPSA in
response to changes in the normalized values of qT :R , nT and nR for a representative patient. The optimal
fit cPSA dynamics (i.e., for optimal parameters p̂) and corresponding data are shown by the red curve and
black dots with error bars, respectively; dashed green curves and the corresponding shadows show the
sensitivity of cPSA when the parameters are increased/decreased by � (Color figure online)

space, splitting in the nT vs. nR space and at least partially in the orthogonal qT :R
space.

In Fig. 4, panels b, c, and d, we exploited the Direct Differential Method (DDM) for

sensitivity analysis to track the time dependence of the sensitivity ScPSA j ≡ ∂cPSA(t,p̂)
∂p j

computed at the best fit parameter values p̂, wherep � {nT0,nR0,qT:R0}, respectively.
As shown in Fig. 4b–d, a slight variation of the parameters does not dramatically affect
the trend of cPSA. Thus, there is minimal sensitivity of cPSA to the parameters. This
result shows that the PDF of the combination of parameters investigated might be an
excellent tool to explore the origin of the resistance with the E10 model.

The sensitivities were computed using the Direct Differential Method (DDM), as
mentioned at the beginning of Sect. 4 and it is reportedmore in details in SupplementA.
As evident from Fig. 4b-d, different parameters have different sensitivity on a different
phase orbit with nT 0 more sensitive under treatment and nR or qT :R more sensitive out
of treatment. DDM not only demonstrates the stability of the results obtained but also
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adds extra information on when a model is sensitive to a parameter change. This result
is significant when dealing with models with varying behavior on- and off-treatment.

4.3 Hirata et al. (2010)

A series of studies (Tanaka et al. 2010; Hirata et al. 2012; Hirata and Aihara 2015)
motivated the model by Hirata et al. 2010 (hereafter model H10) to capture inter-
mittent ADT dynamics. The model is based on the coupled AD-AI population cells,
supplemented with a population of irreversible AI cells, AI-Irr representing the first
three-compartment model in the literature (Fig. 5a). Here we report the mathematical
formulation in the proposed framework’s formalism and refer to the original paper for
a detailed model description. The SoE reads with our generalized notation:

Fig. 5 Hirata et al. model analysis results. a. Model schematic: under treatment (yellow arrows) and off-
treatment (violet arrow). b PDF on the nI and nD space as phase space density histograms for resistant (�,
red) and responsive (¬�, blue) patients. c. Flex in the PSA profile under treatment and off-treatment in
the nD, nI and nIrr phase space for patient #33. Colors match the sketch of panel a. d. PSA density profile
(red curve), with data points with error bar (black dots). The nI , nD and nIrr populations are shown by the
dashed blue, dashed green), and dashed cyan curves, respectively. Yellow lines along the x-axis show the
intervals of treatment (Color figure online)
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dnD
dt � nD

(
Tps

(
γ on
D − γ off

D

)
+ γ off

D

)
+ μID

(
1 − Tps

)
nI ,

dnI
dt � μDITpsnD + nI

(
Tps

(
γ on
I − γ off

I

)
+ γ off

I

)
,

dnIrr
dt � μDIrr TpsnD + μI I rr TpsnI + nIrr

(
Tps

(
γ on
I rr − γ off

I rr

)
+ γ off

I rr

)
,

(10)

nD(t0D) � nD0, nI (t0I ) � nI0, nIrr (t0I rr ) � nIrr0, where terms retain the identical
biological meaning as previously described and the two irreversible, and reversible
changes in the AI cell population are considered with the relative growth rate γ

on/off
i

on- and off-treatment with i ∈ {D, I , I rr}. The serum concentration is computed as
in Eq. (5) for i ∈ {D, I , I rr}.

4.3.1 The Model in the Context of the Data

During both on- and off-treatment cycles, nullclines analysis leads to
{nD, nI , nIrr}eq � {0, 0, 0} as the only equilibriumpoint. By settinga ≡ γ off

D +γ off
I b ≡

γ on
D +γ on

I , c ≡ γ off
D −γ off

I andd ≡ γ on
D −γ on

I ,with the discriminant� implicitly defined
by the relation �2 � c2 + Tps

(
Tps

(
(c − d)2 − 4μDIμID

) − 2c(c − d) + 4μDIμID
)
,

we can write the generalized eigenvalues of the Jacobian at the equilibrium as
λ1 � γ off

I rr + Tps
(
γ on
I rr − γ off

I rr

)
and the other two λ2,3 in a compact form as

λ2,3 � 1
2

(
Tps(b − a) + a ± �

)
. This result implies that the equilibrium is stable

on-treatment and unstable off-treatment.
The phase space shows that responsive and resistant patients cluster differently on

the phase-state variables. Figure 5b shows that the probability density function for the
best-fit patient groups around the initial value for nI ∼� nI0 and nIrr ∼� 2.1nIrr0. Thus,
the irreversible component of the model offers a potential tool to disentangle patient
responses from the model fitting. As the resistant patients are expected to increase
their irreversible cell component (i.e., asymptotically nIrr � nIrr0 with “�” meaning
asymptotic greater), we note that nI � nI0 in responsive patients.

The model structure allows for the simulation of various PSA profiles thanks to
the introduction of a new degree of freedom carried out with the third-compartment
equations. Figure 5c shows the phase space plane for an example taken from the �

set of patients (Patient #33), while Fig. 5d shows the quality of the captured PSA
concentration cPSA profile achieved by this model.

4.4 Portz et al. (2012)

The Portz et al. (2012) model is based on the cell quota concept (Droop 1968), which
is modeled as:

dqi
dt

� vmax(qmax − qi )
(
1 − Tps

)

(qmax − qimin)
(
kq/2 − Tps + 1

) − δqqi + γmax(qimin − qD), (11)

with q(t0i ) � q0i for i ∈ {D, I }. The cell quota can grow to the maximum cell quota
rate γmax and degrades at a constant rate δq , with qmax representing the shared max
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cell quota, vmax the maximum cell quota uptake rate, qimin < qmax the minimum cell
quota for androgen, and 1 �� kq/2 > 0 the uptake rate half-saturation level (Packer
et al. 2011). The authors allow mutation between both cell populations, from AD to
AI and vice versa, at rates μDI and μID given, respectively, by the Hill’s equations of
index m � 2:

μDI(q) � μDImax
kmDI/2

qm+kmDI/2
, μID(q) � μIDmax

qm

qm+kmI D/2
, (12)

where μDImax is the maximum AD to AI mutation rate, μIDmax is the maximum AI to
AD mutation rate, and kmDI/2 and k

m
ID/2 are the cells mutation rate half-saturation level.

The model follows the evolution of AD/AI cell populations, nD and nI , respectively,
with the following equations:

dnD
dt � nD

(
−δD − μDImax

k2DI/2
k2DI/2+q

2
D
+ γmax

(
1 − qDmin

qD

))
+ μIDmaxnI

q2I
k2I D/2+q

2
I
,

dnI
dt � nI

(
−δI − μIDmax

q2I
k2I D/2+q

2
I
+ γmax

(
1 − qImin

qI

))
+ μDImaxnD

k2DI/2
k2DI/2+q

2
D
,

(13)

for qi (t) �� 0∀t and i.c. nD(t0D) � nD0 and nI (t0I ) � nI0. The cell apoptosis and
proliferation rates are, respectively, given by δi and γi for i � {D, I }. The authors
model the quota for both AD and AI cell populations independently. In general, we
assume qImin < qDmin to ensure that AI cells have a greater proliferation capacity in
low androgen environments and nD(t0D) ∼� 0 with t0D soon after treatment, as well
as nI (t0I ) ∼� 0 at t0I at the beginning of the first treatment. Furthermore, a communal
maximum proliferation rate γmax between the two populations is assumed. Both AD
and AI cells produce PSA at a baseline rate γPSA0 under the androgen dependence
specified by:

dcPSA
dt

� nD

(

γPSA0 +
γPSA,Dq2D

k2PSA,D/2 + q2D

)

− cPSAδPSA + nI

(

γPSA0 +
γPSA,I q2I

k2PSA,I/2 + q2I

)

,

(14)

with cPSA(t0PSA) � cPSA0, and where kPSA,i/2 are the half-saturation rates and
γPSA,i the growth rates, for i � {D, I }. Several variants of this quota model can be
found in the literature. In the present work, we consider only a couple of them. A
detailed comparison between (Hirata et al. 2010) and (Portz et al. 2012) can be found
elsewhere (Everett et al. 2014). The model’s complexity is demonstrated with a tube
plot (Fig. 6a, b).

4.4.1 P12A in the Context of the Data

The model is an extension of the models by Ideta et al., shown in Sect. 4.1, where
the equation of the quota decouples from the two cell populations behavior. Nev-
ertheless, the quota evolution q � q(t), common to nD and nI , is generally
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Fig. 6 Portz et al. model analysis results. a Quotas for dependent and independent cells shaping the tube
plot of panel b for a particular patient. The yellow dot–lines represent the on-treatment periods, and blue
and green are the model’s independent and dependent quota levels, respectively. b The quota profiles are
represented as a cross section. The orbital evolution corresponds to the gray box time interval in panel a. The
blue and green arrows represent the independent and dependent quota levels of the model, respectively. On
the orbit section, the tube cross section has been computed considering qD along the normal N and qI along
the binormal B and by solving the Frenet–Serret formulas (assuming the vector field of the system under
consideration being along the tangent T ). c, d The distribution of the eigenvalues λoff1 and λoff2 off-treatment
for models P12B and P12A, respectively (Color figure online)

smoother than cA � cA(t) in I08A or I08B hence not justifying the approxi-
mations worked out in those models. In P12A, the only equilibrium point is at
{nD, nI }on/offeq � {0, 0} and for the decoupled quota equation at qoneq � γDmaxqmin

γDmax+δq
and

qoffeq � γDmax(kq/2+1)qmin(qmax−qmin)+qmaxvmax

(kq/2+1)(γDmax+δq)(qmax−qmin)+vmax
for the on/off-treatments, respectively. The

eigenvalues at this equilibrium point are real and negative along the direction of nD

and nI : λi ∈ R
−
0 , for i � 1, 2 both on- and off-treatment. In the decoupled q direction,

the generalized eigenvalues λon3 � −(
γDmax + δq

)
and λoff3 � λon3 − vmax

(kq/2+1)(qmax−qmin)

are always negative, leading to a node (attractor).
Nevertheless, we note that from the plot in Fig. 6c, how the best-fit solutions

obtained from our inference work for all patients with this model falls in the area
where λi > 0, for both i � 1 and i � 2, i.e., we are never in the presence of an
attractor (off-treatment). Therefore, patient dynamics never intercept an area of the
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parameters’ space defined by the hyperplane that would (eventually asymptotically)
lead to the annihilation of the nD and nI cell population, i.e., a steady state or a reduc-
tion of the disease present under the detection threshold. This plot is compared with
the companion model in the next section, which simplifies P12A.

4.4.2 P12B in the Context of the Data

In this model, the authors extend the use of the quota concept to both nD and nI
individually, i.e., fully exploiting Eq. (11), but retaining the same proliferation rate
γmax. The large number of parameters required by the model makes the posterior max-
imization time-consuming and computationally expensive in the Bayesian framework,
especially in a fully numerical nested sample approach (Skilling 2004) or using differ-
ential evolution optimization tool (Feoktistov 2006; Goode and Annin 2015). For this
reason, a first inference approach has been performed within Laplace approximation
and followed up at the patient-specific level where judged necessary.5

As in P12A, the P12B critical points are {nD, nI , cPSA}eq � {0, 0, 0} both on-
and off-treatment, while for the decoupled quota equation-stability points are found at
qoni,eq � γmax

δq+γmax
qimin and qoffi,eq � a−1μmaxqimin

(
kq/2 + 1

)
(qmax − qimin) + qmaxvmax

with a ≡ vmax − (
kq/2 + 1

)(
δq + γmax

)
(qimin − qmax) �� 0, δq �� 0 and γmax �� 0 and

for i ∈ I , D. As in P12A, the three generalized eigenvalues of the Jacobian at the
equilibrium are always negative. Equations for the generalized eigenvalues λ

on/off
i for

i � 1, 2 along the quota directions are analytically available but slightly cumbersome;
vice versa, more interesting is the plot of λoffi for i � 1, 2 shown in Fig. 6d. The P12B
solutions distribute a small number of patients in the P12A inaccessible area of double
negative generalized eigenvalues (orange square in Fig. 6c, d). In this zone of the P12B
parameter space off-treatment, the model predicts a constrained (or asymptotically
constrainable) tumor cell population. Finally, we note how P12A is nested in P12B.
Thus, P12B always obtains a better score in the same data representation but suffers
from overfitting. We investigate this problem and offer a solution in Sect. 5 in the
context of the Bayesian model comparison.

4.5 Morken et al. (2014)

In Morken et al. (2014), the authors extend model P12B by adding ADT-induced
apoptosis of prostate cancer cells in addition to the inhibition of their growth and pro-
liferation. Therefore, themodel (hereafterM14) implements the per capitamortality of
androgen-dependent and independent populations introduced in the previous section
with the equation:

δi (qi ) � δi max
k2i/2

q2i + k2i/2
, (15)

5 Note on the statistical analysis: Details of statistical implementation are often omitted to focus the present
work on the mathematical biology aspects pertinent to the work and the journal, but available upon request
to the authors.
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where ki/2 for i ∈ {D, I } are the apoptosis and half-saturation levels for the dependent
and independent populations, respectively. We consider the SoE in the form of:

dnD

dt
� nD

(

−δD − δDmaxk2Dδ/2

k2Dδ/2 + q2D
− k2DI/2μDImax

k2DI/2 + q2D
+ γmax

(
1 − qDmin

qD

))

+
μIDmaxnI q2I
k2I D/2 + q2I

,

dnI
dt

� k2DI/2μDImaxnD

k2DI/2 + q2D
+ nI

(

−δI − δImaxk2I δ/2
k2I δ/2 + q2I

− μIDmaxq2I
k2I D/2 + q2I

+ γmax

(
1 − qImin

qI

))

,

(16)

for qi (t) �� 0∀t and i.c. nD(t0D) � nD0 and nI (t0I ) � nI0, together with the equiva-
lent of Eq. (14):

dcPSA
dt

� −cPSAδPSA+nD

(

γPSA0 +
γPSA,Dq2D

k2PSA,D/2 + q2D

)

+nI

(

γPSA0 +
γPSA,I q2I

k2PSA,I/2 + q2I

)

,

(17)

with i.c. cPSA(t0PSA) � cPSA0. Furthermore, the same notation as in the models by
Portz et al. is followed and not repeated here.

4.5.1 The Model in the Context of the Data

The analytical treatment is analogous to P12B but enriched in the dynamics variety for
the extra parameters introduced in Eq. (15), although without changing equilibrium
points.6 Our model analysis did not report other notable features.

4.6 Baez and Kuang (2016)

The model by Baez and Kuang (2016) presents a variant of the P12A model that is
able to fit PSA and androgen dynamics, thus improving PSA trend forecasting. Two
models are presented in the authors’ work and considered here. The first (hereafter
B16A) is a single population model of cellular concentration n, and two equations
are coupled with it, for δmax the time-dependent (over a timescale τδmax) maximum
baseline cell death rate and cPSA the PSA concentration that are modeled as:

dn
dt � n

(
−nδ − kn/2δmax

q+kn/2
− γmaxqmin

q + γmax

)
,

dδmax
dt � −τδmaxδmax,

dcPSA
dt � q(γPSA1n + γPSA0) − δPSAcPSA,

(18)

and a decoupled equation for androgen level:

dq

dt
� γ (qmax − q) − γmax(q − qmin), (19)

6 Due to the complexity of the model, analogous inference approximations to P12B have been used in this
analysis.
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with n(t0n) � n0, cPSA(t0PSA) � cPSA0,δmax(t0δmax) � δ0max, and q
(
t0q

) � q0 > 0
strictly. The quota q �� 0∀t is produced at a rate γ � γ1Tps + γ2.

In the samework, the authors also presented a two-populations model tracking both
sensitive nD and independent nI cell evolution (hereafter B16B). By implementing
their SoE within the approximation that all the cells have, on average, the same mass
and density, we can recast their SoE in the form:

dnD

dt
� nD

(
−δDmaxkD/2

q + kD/2
− kDI/2μDImax

q + kDI/2
+ γmax

(
1 − qDmin

q

))
− δDn

2
D,

dnI
dt

� kDI/2μDImaxnD

q + kDI/2
+ nI

(
γmax

(
1 − qImin

q

)
− δImaxkI/2

q + kI/2

)
− δI n

2
I ,

dq

dt
� −q

(
γ2 + γmax + γ1Tps

)
+

γmax(qDminnD + qIminnI )

nD + nI
+ qmax

(
γ2 + γ1Tps

)
,

dcPSA
dt

� q(γPSA0 + γPSA1(nD + nI )) − δPSAcPSA,

(20)

for ni , i ∈ {D, I } never contemporaneously null, with initial conditions nD(t0D) �
nD0, nI (t0I ) � nI0, q

(
t0q

) � q0, and cPSA(t0PSA) � cPSA0. The maximum AD to
AI mutation rate is given by μDImax . Furthermore, because AI cells, nI , prolifer-
ate at lower androgen level it is assumed that qImin < qDmin, and δDmax > δImax
because independent cells are less susceptible to apoptosis by androgen deprivation
than sensitive cells.

4.6.1 B16A in the Context of the Data

The decoupled quota equation presents an equilibrium at qeq � γmax(qmin−qmax)
γmax+(γ2+γ1Tps )

+ qmax

when γmax + (γ2 + γ1Tps) �� 0, belonging to the positive hyper-quadrant of
the phase space (i.e., it is of biological interest). The remaining set in Eq. (18)

shows two equilibria at {n, δmax, cPSA}(1)eq �
{
0, 0,

γPSA,0qeq
δPSA

}
, which are always

in the positive quadrant of the phase space of interest and {n, δmax, cPSA}(2)eq �{
γmax(qeq−qmin)

qeqδ
, 0,

δγPSA,0qeq+γmaxγPSA,1(qeq−qmin)
δPSAδ

}
with qeq �� 0, δPSA �� 0 and δ �� 0,

which is also biologically meaningful. By studying the generalized eigenvalues, we
see that the first of the equilibrium presents three negative generalized eigenvalues,
one of which is always positive (i.e., it is a saddle point); the second equilibrium point

produces the eigenvalues λ
(2)
1 � γmax

(
qmin
qeq

− 1
)
, λ(2)

2 � −δPSA, λ
(2)
3 � −τδmax and

λ
(2)
4 � −γmax− (

γ2 + γ1Tps
)
which are all always negative, thus representing a stable

point of attraction.
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Due to the stability of the second equilibrium (on- and off-treatment), it is worth
investigating the proximity of the patients’ orbits to the equilibria on the Poincare
sections involving the PSA concentration cPSA we obtained from Eq. (18). Neverthe-
less, the low quality of the likelihood, L(p) � Pr(D|p, I ), see Sect. 3) in the � set of
patients, demotivates further analysis. A single population n seems to not adequately
capture disease progression, which remain the primary focus of our work, making the
model less attractive for clinical implications and therefore not pushed forward here.

4.6.2 B16B in the Context of the Data

The model presents cubic dependence on q and quadratic on nD .7 We select to
investigate only the null-equilibrium point of independent and dependent cells. It
is evident that nD � 0 is an equilibrium for the first of Eq. (20). Therefore, by
assuming nD � 0 (and nI > 0 strictly), we can confirm the existence of two equi-

libria, the first located at {nI , q, cPSA}(1)eq �
{
0, qmax +

γmax(qImin−qmax)
γmax+(γ2+γ1Tps)

,
γPSA0
δPSA

qeq
}
, for

γmax + (γ2 + γ1Tps) �� 0 and δPSA �� 0, which is of biological interest. The second,
algebraically more cumbersome, reduces its nonnegativity condition to the simple
one δImax +

γ γmax(qImin−qmax)
γmaxqImin+γ qmax

+ γ γmax(qImin−qmax)
kI/2(γ+γmax)

≤ 0, that is verified over all studied
patients.

Again, as explored in previousmodels, we are interested in the existence of negative
generalized eigenvalues of the Jacobian at the equilibria off-treatment, i.e., a point of
equilibrium with an asymptotic constrained expansion of the tumoral cell population.
Despite the model complexity, it is easy to prove numerically that the Jacobian for
both equilibrium points has at least one positive generalized eigenvalue, making these
points saddle points that are not of interest to us.

4.7 Elishmereni et al. (2016)

The Elishmereni et al. (Elishmereni et al. 2016) model accounts for two dynamics:
disease dynamics represented by PSA used as a proxy for tumor volume and the phar-
macology dynamics combined with the emergence of resistant cells from androgen
receptor-independent nI and testosterone androgen receptor-dependent nI AR mech-
anism. The PSA concentration cPSA of interest to us, is governed by the following
numerically highly complex SoE8:

7 Throughout algebraic manipulators as Mathematica or MAPLE it is possible to show that the system
characterizing equation for cPSA is algebraic of order 12, whose complete numeric roots investigation is
beyond the scope of the present paper.
8 Note on the integrators: details of numerical integration are often omitted to focus the present work on
the mathematical biology aspects pertinent to the work and the journal, but available upon request to the
authors.
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dcPSA
dt

� ĉPSAγtPSAmin

(
γPSAc

K
PSA,

log2

γPSAmax

)

+ ηT ,PSA

(
cPSA − c̃PSA

2

)+(
ηI ,T RI ĉPSA + nT − 1

)
,

dnT
dt

� γT
(
1 − Tps

)

ηH ,T H + 1
− γT nT ,

dH

dt
� T − δT lmax

H HeRT :AR

eRT :AR + lmax
H

,

dRT :AR

dt
� γT :ART R̂T :AR,

dRI

dt
� γI T R̂ I ,

dK

dt
� −ρK ,

dT

dt
� −δT T (21)

with cPSA(t0PSA) � cPSA0, nT
(
t0nT

) � nT 0, H(t0H ) � H0, RT :AR(t0T :AR) �
RT :AR0, RI (t0I) � RI0, K (t0K ) � K0, and T (t0T ) � T0 with (x)+ � xθ(x)
ramp/positive function of the generic x , θ the previously introduced Heaviside step
function. In the above equation γPSAmax is the limit to the PSA growth rate, ρK the
K growth rate, ηT ,PSA the testosterone, T , effect on the PSA growth, γT the instanta-
neous rate of change in T , ηH ,T the effect of intermediate components H , e.g., bound
androgen receptor AR, on T , with same clearance rate δT . γT :AR is the increase resis-
tance rate, γI the increase resistance rate for testosterone-AR-independent paths RI ,
and ηI ,T rules the effect of RI on the PSA growth. The growth rate of cPSA is given
by

γPSA �
{
1 cPSA > ctPSA
σPSA + (1 − σPSA)

cPSA
ctPSA

cPSA ≤ ctPSA,
(22)

where σPSA rules the steepness on the linear grown relation, ctPSA the PSA threshold
to switch in quiescent mode. Finally, control limits li i ∈ {PSA, H , nI , nI AR} are
added by hand to handle system divergences with a “manual”-bounding scheme ( f̂

i
≡

(li max− fi )+

li max
for the generic function fi ).

In the practice the dynamics of the system is designed so that the instantaneous
androgen rate of change γT is saturated by a control coefficient ηT ,PSA through an
intermediary delaying effect ruled by a delay modeling function H over the ADT
therapy, T therapy function with scale factor δADT and a double mechanism for andro-
gen independence cell population depending on ηI ,T , and not depending on nI , the
androgen receptor (with the respective scale factor γI and γT :AR).
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4.7.1 The Model in the Context of the Data

The system has no equilibria influencing its dynamics, as evident from the 6th of
Eq. (21). Further analysis is done in Sect. 5 to determine how well the model performs
in the Bayesian model comparison.

4.8 Zhang et al. (2017)

Zhang et al. (2017) present a three-population competition model, based on Lotka—
Volterra (LV) dynamics, where androgen-dependent nD , androgen producing nP , and
androgen-independent cells nI , are considered. Basing the approach on game the-
ory, the authors derive a competition matrix α � αi j i, j ∈ {D, I , P} based on the
parametrization of growth rates γi and carrying capacities Ki with i ∈ {D, I , P}
resulting in this set of algebraic-differential equations:

dnD
dt � γDnD

(
1 − α11nD+α12n p+α13nI

n p(β−Tps+1)

)
,

dnP
dt � γPn p

(
1 − α21nD+α22n p+α23nI

KP

)
,

dnI
dt � γi n I

(
1 − α31nD+α32n p+α33nI

KI

)
,

(23)

where ADT is modeled by the decreasing carrying capacity with β < 1 or supporting
androgen-dependent cells with β > 1. The authors considered several constraints
derived from the literature and researchers’ experience to shape the model parameter
influence: αi i � 1∀i , α31 > α21, α32 > α12, α13 > α23, α13 > α21, α32 > α31, and
αi j ∈ ]0, 1[∀i �� j . Finally, the PSA dynamics is governed by:

dcPSA
dt

�
∑

i∈{D,P,I }
ni − δcPSA, (24)

with δ the PSA clearance rate.

4.8.1 The Model in the Context of the Data

With the coupling of Eq. (24), the system presents four equilib-
ria, but only two are of biological interest: {nD, nP , nI , cPSA}(1)eq �
{
0, kP , 0, kP

δ

}
∈ R

4+
0 and {nD, nP , nI , cPSA}(2)eq �

{
kP(β−α12−Tps+1)

α21(β−α12−Tps+1)+1
,

kP
α21(β−α12−Tps+1)+1

, 0
kP(α−α12−Tps+2)

δ+δα21(β−α12−Tps+1)

}

where these ratios exist. For the first

equilibrium, the eigenvalues of the Jacobian are positive in the nD , nP and cPSA
phase space and therefore of marginal interest. Vice versa, by setting a ≡ 1 + β,
b ≡ β − α12 + 1, d ≡ α21(β − α12 + 1) + 1 and e ≡ β + α21(β − α12 + 1)2 − α12 + 1
together with the discriminant squared �2 � (eγD + βγP + γP )2 − 4adeγDγP ,
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we can write the four eigenvalues of the Jacobian for the second equilibrium off-
treatment as: λ

(2)off
1 � −δ, λ

(2)off
2 � γI − γI kP (bα31+α32)

dkI
, λ(2)off

3 � − aγP+�+eγD
2ad and

λ
(2)off
4 � �−aγP−eγD

2ad , where the ratios exist, which are always negative for the fitted
parameters, hence representing a stable equilibrium and opening the possibility to
achieve an equilibrium off-treatment.

4.9 Phan et al. (2019)

The model (hereafter P19) presented by Phan et al. (Phan et al. 2019) is a variant of
the work of Sect. 4.6 (Baez and Kuang 2016) in which the third population of weakly
dependent cells, nwD, is added to investigate the influence of extra degrees of freedom
added by the new population. The death term is also adapted from Eq. (16). Retaining
the notation used in Sect. 4.6, we can recast the model in the following form:

dnD

dt
� nD

(
−δDmaxkD/2

q + kD/2
− 2kDI/2μDImax

q + kDI/2
+ γmax

(
1 − qDmin

q

))

+
kDI/2μDImaxnwD

q + kDI/2
− δDn

2
D

dnwD

dt
� nwD

(
−2kDI/2μDImax

q + kDI/2
− δwDmaxkwD/2

q + kwD/2
+ γmax

(
1 − qwDmin

q

))

+
kDI/2μDImaxnD

q + kDI/2
− δwDn

2
wD

dnI
dt

� kDI/2μDImax(nD + nwD)

q + kDI/2
+ nI

(
γmax

(
1 − qImin

q

)
− δImaxkI/2

q + kI/2

)
− δI n

2
I

dq

dt
� q

(−(
γ2 + γ1Tps

) − γmax
)
+

γmax(qDminnD + qIminnI + qwDminnwD)

nD + nI + nwD

+ qmax
(
γ2 + γ1Tps

)

dcPSA
dt

� q(γPSA0 + γPSA1(nD + nI + nwD)) − δPSAcPSA (25)

with initial conditions nD(t0D) � nD0, nwD(t0wD) � nwD0, nI (t0I ) � nI0, q
(
t0q

) �
q0, cPSA(t0PSA) � cPSA0 together with the required biological inequalities qDmin >

qwDmin and qDmin > qImin.

4.9.1 P19 in the Context of the Data

The idea of a third population is not new and already advanced with success in
the model by Hirata et al. (2010). Nevertheless, the structure of the equations in
Eq. (10) is very different from the Hirata et al. model in Eq. (10), with signif-
icantly more parameters not readily justifiable within the present dataset quality.
Similar considerations were already worked out by Phan et al. We remark only
that the complexity of the analysis, already evident in Sect. 4.6.2, is pushed fur-
ther in this context, where only numerical investigation is available for equilibria
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and stability. The only off-treatment equilibrium accessible by the orbits is the one

for
{
nD, nwD,nI , q, cPSA

}off
eq �

{
0, 0, 0, γmaxqI min+γ2qmax

γ2+γmax
,

γPSA0(γmaxqI min+γ2qmax)
δPSA(γ2+γmax)

}
and

δPSA �� 0which is always positivewith always negative eigenvaluesλoff1 � −γ2−γmax
and γ off

2 � −δPSA. This is of limited biological interest as it is not compatible with
the irreversibility nature of nI , if not by surgical castration.

4.10 Brady-Nicholls et al. (2020)

The Brady-Nicholls et al. (2020) model (hereafter B20) is based on the hypothesis
that prostate cancer stem cells’ enrichment induces resistance. The model correlates
stem cell proliferation with serum PSA through SoE for the prostate cancer stem cells
nS , the non-stem (differentiated) cells nD , and for PSA serum concentration cPSA.
We report the system in the following way:

dnS
dt � pS log(2)n2S

nD+nS
,

dnD
dt � log(2)nS

(
1 − pSnS

nD+nS

)
− δDTpsnD,

dcPSA
dt � γPSAnD − δPSAcPSA,

(26)

with initial conditions nS(t0S) � nS0, nD(t0D) � nD0 and cPSA(t0PSA) � cPSA0. It
is assumed that stem cells divide at rate log(2), and the division is either symmetric
yielding two stem cells (Enderling 2015) or asymmetric, where the stem cell produces
one stem and one differentiated cell. The parameter that governs this effect is ps . The
PSA differentiated cell production rate and PSA clearance rate are given by γPSA and
δPSA, respectively, and Tps is the patient-specific treatment function (see Sect. 2.1).

4.10.1 The Model in the Context of the Data

The SoE presents an infinite set of equilibrium points when off-treatment Tps(t) �
0 in the intersection of the plane nS(t) � 0 with the plane given by cPSA(t) �
γPSAnD(t)

δPSA
conditional to nD �� 0 and δPSA �� 0 and the generalized eigenvalues of the

Jacobian results in a double-zero generalized eigenvalue λ1 � 0, λ2 � 0 and a third
negative eigenvalue λ3 � −δPSA. Standard center manifold computation (Wiggins
2003) shows slow-2D-manifold dynamics that can be integrated to prove that the
equilibria are unstable, and therefore not of interest.

5 BayesianModel Comparison

Maybe themost vital point of theBayesian framework, and the reason for its increasing
popularity, is its innate model comparison ability, based on logic as an instrument
for selection. We exploit this feature here using the Bayesian factor to compare the
different models in their ability to simulate the data. It should be noted that this
framework innate penalizes models based on the number of parameters required. This
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phenomenon is sometimes referred to as the Occam’s razor factor (Jefferys and Berger
1992).

Starting from the classical Bayesian theorem, the Bayes factor βi j for PSA model
Mi over the PSA model Mj is computed as a ratio of the probabilities of the two
models (the odd-ratio, Oi j )

Oi j � Pr(Mi , I )Pr(D|Mi , I )

Pr
(
Mj , I

)
Pr

(
D|Mj , I

) � Pr(Mi , I )

Pr
(
Mj , I

)βi j , (27)

such that, because
∑Nm

i�1 Pr(Mi |D, I ) � 1 (with Nm number of models to compare)
if we are interested in how a model, say M1, compares to the other models Mj , we
arrive at

Pr(M1|D, I ) � Oi1
∑Nm

j�1 Oj1

. (28)

We implement Eq. (28) to compare one patient at a time in one model against all the
other models individually. For example, we are going to implement the comparison
betweenM1, and every otherM2 as Pr(M2|D, I ) � 1

1+O−1
21
, andwe proceed iteratively.

We first explore the Laplace approximation framework under the assumption of
equally-prioritized models, i.e., assuming that no previous preference can be accorded
to any of the PSA models considered. We can exploit the asymptotic approximation
(Murphy 2012; Theodoridis 2015) to the global likelihood, i.e., the evidence of the i th

model, Pr(D|Mi ), writing

Pr(D|Mi ) � ∫ dpPr(p|M, I )L(p|I )
∼� Pr

(
p̂|Mi

)
L
(
p̂
)√

det(F(p)), (29)

with F being the information matrix introduced in Sect. 3.1. A classical result of
Bayesian analysis is to consider the limit of the previous expression, but for an
increased number of data points (Np → ∞) and flat priors, i.e., to compute the pop-
ular BIC index against AIC (Akaike 1974; Schwarz 1978). As the number of patient
data points is often limited Np � ∞ and we make explicit use of priors, BIC or AIC
indices are not justifiable for model comparison. Instead, we build up a model-of-
model function (Pasetto et al. 2021) to encode prior information as soon as available.
Furthermore, as introduced above, we verified the Laplace approximation with fully
numerical integration based on nested sampling algorithms (Skilling 2004;Mukherjee
et al. 2006; Feroz and Hobson 2008), i.e., a numerical technique designed explicitly
to compute the global likelihood of models with different degrees of freedom.

5.1 Single Patient Comparison Results

Figure 7a shows an example of the quality of the model calibration achieved by
Bayesian posterior inference introduced in Sect. 3 applied to the parameter inference
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Fig. 7 Bayesianmodel comparison results. aBest fits for the 13models analyzed for a representative patient.
The black squares are the error bars enhanced with a more prominent marker for visibility reasons; yellow
lines along the x-axis represent the on-treatment periods. b Model log-evidence comparison on patient
#60 with error bars as obtained by nest-sampling technique. The color range shows the best-performing
model (yellow) and fades to the worst-performing model (gray). c Unnormalized posterior PDF for the best
performing model, E16, and credible interval as black segment over the x-axis. d Comparison between the
normalized log-evidence overall patient data. (The color scheme is consistent with panel b) (Color figure
online)

problem to all the models. The simulated disease dynamics vary significantly between
the different models, and discrepancies between different models and patient data
may indicate likely or unlikely biological mechanisms driving individual patients’
resistance.

Model evidence (Fig. 7b) demonstrates that no single model represents all patient
data accurately, suggesting that different biology drive individual patients’ responses
or that no model correctly faces the PSA problem. It may also imply that the PSA
dynamics alone may be insufficient to discriminate between the different biological
models. For some patients, model selection identifies models with a higher probability
than others, but selection varies on a per-patient basis. As a classical proof-of-concept
of the Bayesian technology employed, we report for the best performing model, E16,
for patient #60 the unnormalized posterior marginalized PDF for each parameter in
Fig. 7c. The PDFs are almost unimodal (but not for all parameters, see next Sect. 6),
suggesting that this model represents fairly the patient and that the Laplace approxi-
mation could be justified. The credible intervals for the log parameters are also plotted
and superimposed to the x-axis.
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5.2 Overall Model Selection

We calculate the Bayesian maximum a posteriori performance for all the patients for
each model (Fig. 7d), resulting in the Elishmereni et al. (2016) model marginally
performing better on most patients. This result does not surprise us, as it is a model
designed on clinical necessities, i.e., it was crafted with careful handling of the med-
ical treatment. Nevertheless, as mentioned before, in the case of model comparison
on a patient-to-patient basis, we could not identify a model that performed statisti-
cally better than the others thus eventually indicating the correct biological mechanics
governing PSA dynamics. Figure 7d shows that E16 is preferred only on 10% of the
patients, and eight of the 13 models have scores above the 8%.

6 Conclusion and Discussion

This work considers several mathematical models (Table 1) to simulate PSA dynamics
of prostate cancer response to IADT in a prospective clinical trial.We exploit Bayesian
continuous and discrete inference to interpret the data and identify the model with the
highest likelihood of simulating the clinically observed dynamics. Using the PSA
biomarker and the comparison between the different models, we1) identify several
models that can separate responding patients and patients that develop resistance to
intermittent ADT through themodel fitting, 2) performed the Bayesianmodel compar-
ison and demonstrated that the model by Elishmereni et al. (2016) performed slightly
better than the others, i.e., as a better representative of most patients in the trial. Never-
theless, as evidenced in the example of Fig. 7c, themarginalized posterior PDF is often
not all optimally single-peaked, casting shadows in an attempt to use this model to
solve forecast problems. While we have focused on the models’ inference to evaluate
the possible connection with their underpinned biology, we will explore the potential-
ity and limitation of the models’ forecasting ability to predict clinical PSA trends in a
follow-up paper (Pasetto et al. 2021, in preparation).

The models analyzed herein synonymously use longitudinal PSA data to infer bio-
logical mechanisms underlying the observed PSA dynamics. PSA alone limited the
potentiality of the presented approach and did not identify a single dominant model.
Further information is necessary to simulate accurately and ultimately predict patient-
specific PSA trajectories and the corresponding biological drivers of resistance. PSA
alone might not be a helpful biomarker due to several dominant environmental factors
outside the models’ scopes that influence its evolution under treatment. The use of
PSA as a surrogate marker for prostate cancer burden is indeed controversial. Over-
expression of the PCA3 gene obtained from the mRNA in urine samples is proposed
to be more suited to monitoring the cancer evolution (Bussemakers et al. 1999, p. 3;
Laxman et al. 2008; Neves et al. 2008; Hessels and Schalken 2009, p. 3; Borros 2009).

Two alternative directions might to improve our understanding of the PSA as a
prostate cancer monitor biomarker. From one side, a deeper understanding of the
connection between PSA and tumor burden throughout model investigation might
present the opportunity for a new class of models. Recently, the role of immature
blood vessels formed under angiogenesis cues has been investigated to decrypt the
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Table 1 Model compartment sketches with phase variables and parameters modeled in the inference process

relation between an increased tumor burden contemporaneous to decreasing PSA
concentration (Barnaby et al. 2021). Additionally, models that include both PSA and
androgen concentrations might present some advantages in the future. The modest
but significant evidence of the E16 model over the other models might indicate a
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Table 1 (continued)

more critical relevance of the dormancy whose biology and mathematics are worth
undoubtedly deeper understanding.

Exploring PSAmodel probability distributions to disentangle responsive and resis-
tant patient cohorts in a clinical setting could be investigated through cross-correlations
with PCA3 biomarkers. Such cross-correlation would provide independent verifica-
tion of the analytical findings herein that remain, for the moment, data-driven and,
therefore, entirely dependent on the one dataset utilized in all discussed models.

Alternatively, PSA could be a perfect biomarker, but inter-patient heterogeneity in
resistance mechanisms may disallow identifying a single model for all patients. Addi-
tionally, different resistancemechanismsmay evolve in an individual patient,with their
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Table 1 (continued)

respective contribution to the observed response dynamics changing during therapy.
More complex models and dynamic adaptive weighting of different variables, terms,
and parameters may be necessary. Such models, however, would be non-identifiable
with the presently available data. A close dialogue between biologists, statisticians,
and mathematical and genitourinary oncologists may help identify which data should
be collected in future clinical studies to help detangle the complex prostate cancer
response dynamics to intermittent ADT.
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Table 1 (continued)

Initial condition (i.c.) are not reported, but phase variables are. α � {kDI/2, kI D/2, kq/2, qmax,

vmax, δD, δq , μDImax, μI Dmax}. Simbols used for the compartments are self-explanatory

While the Bayesian framework is an invaluable tool to estimate model parameters
and fit model dynamics to clinical measurements, the goodness of a fit informs neither
the reliability of the estimated parameters nor the likelihood of a model representing
the data chosen for the valid biological reason. Relatively invariant PSA profiles can
be obtained for a significant range in each parameter, as it is the case of a weakly
sensitive—highly non-identifiable parameter. This fact is often omitted in the mod-
eling literature, where the results are often presented without structural or practical
identifiability analysis. Many of the herein discussed models have not demonstrated
structural identifiability, hence jeopardizing the attempt to claim the inference’s prac-
tical identifiability herein. Nevertheless, we stress that a model’s value may also be
found in its interpretative role (Enderling and Wolkenhauer 2021). The complexity of
the mechanism involved in the biological responses to intermittent ADT can be cap-
tured correctly for a single patient but fail for others. Therefore, the model comparison
is not intended to provide an absolute ranking; instead, it provides an instrument to
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explore the different biological mechanisms implemented in mathematical models in
clinically observed treatment response and progression dynamics.

7 Supplement

We have performed a sensitivity analysis for all the models included in the paper.
However, as this analysis overlaps with the original papers’ work, we do not include
those results here. Our sensitivity is motivated by: (1) to understand the dependence
of our results on the parameters. For example, if we can claim the possibility to split
between relapsing (�) and not to relapse (¬�) patients by exploiting some specific
model parameter combination, then the robustness of our result worth be investigated
on the same parameter sensitivity to assign it the correct relevance and to evaluate its
possibility to be applied to clinical tumor forecasting. (2) The technique implemented
for the sensitivity analysis investigates the parameter’s sensitivity and the best-fit
orbital integration, i.e., over the available longitudinal data. This approach enhances
our understanding of when a particular �/¬� segregating technique is more useful
during or off-treatment, with consequent indications on the role that a model splitting
potentiality might or might not have (and when) on a per-patient base. (3) Continuous
but not differentiable functions might need particular attention in the computation
of the sensitivities because of their definition as the Jacobian matrix’s function. This
approach represents a current research field often omitted in the mathematical oncol-
ogy literature and is worth being brought to light.

Therefore, in what follows, we exploit the direct differential method (DDM) for
sensitivity analysis (Gu andWang 2013) to track the time dependence of the sensitivity
Si j � ∂xi (t ,̂p)

∂p j
, where in general it is xi � cPSA and pj the generic parameter dependent

on the particular model in the exam. For a generic vector field ∂x(p;t)
∂t � f (x,p) with

x(t0,p) � x0 we couple the integration of the SoE defining the model with:

∂Si j
(
t, p̂

)

∂t
� ∂ fi

(
xk

(
t, p̂

)
, p̂

)

∂xk
(
t, p̂

) Skj
(
t, p̂

)
+

∂ fi
∂p j

. (30)

Generalized sensitivity (Stechlinski et al. 2018), based on the concept of generalized
derivative for non-smooth cPSA profiles (Clarke 1990) and used because of the loss of
differentiability at the bifurcation points Tps � {0, 1} on the treatment parameter, has
also been considered. We will not report the DDM analysis if not relevant to strength
our specific results and we refer to the original model paper for general sensitivity
analysis of the presented models.
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