Skip to main content
. 2021 Nov 19;11:22544. doi: 10.1038/s41598-021-01681-w

Table 1.

Summary of the previous studies performing classification of neurological disorders using MRI and with clear data leakage (see also Supplementary Table S1 for a detailed description).

Disorder References Groups (number of subjects) Machine learning model Data split method Type of data leakage Accuracy (%)
AD/MCI Gunawardena et al.36 AD-MCI-HC (36) 2D CNN 4:1 train/test slice-level split Wrong split 96.00
Hon and Khan21 AD-HC (200) 2D CNN (VGG16) 4:1 train/test slice-level split Wrong split 96.25
Jain et al.37 AD-MCI-HC (150) 2D CNN (VGG16) 4:1 train/test slice-level split Late and wrong split 95.00
Khagi et al.38 AD-HC (56) 2D CNN (AlexNet, GoogLeNet,ResNet50, new CNN) 6:2:2 train/validation/test slice-level split Wrong split 98.00
Sarraf et al.22 AD-HC (43) 2D CNN (LeNet-5) 3:1:1 train/validation/test slice-level split Wrong split 96.85
Wang et al.39 MCI-HC (629) 2D CNN Data augmentation + 10:3:3 train/validation/test split by MRI slices Wrong split and augmentation before split 90.60
Puranik et al.40 AD/EMCI-HC (75) 2D CNN 17:3 train/test split by MRI slices Wrong split 98.40
Basheera et al.41 AD-MCI-HC (1820) 2D CNN 4:1 train/test split by MRI slices Wrong split 90.47
Nawaz et al.42 AD-MCI-HC (1726) 2D CNN 6:2:2 slice level split Wrong split 99.89

AD Alzheimer’s disease, HC healthy controls, MCI mild cognitive impairment.