A RTl C L E W) Check for updates

Cis-regulatory architecture of human ESC-derived
hypothalamic neuron differentiation aids in variant-
to-gene mapping of relevant complex traits
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The hypothalamus regulates metabolic homeostasis by influencing behavior and endocrine
systems. Given its role governing key traits, such as body weight and reproductive timing,
understanding the genetic regulation of hypothalamic development and function could yield
insights into disease pathogenesis. However, given its inaccessibility, studying human
hypothalamic gene regulation has proven challenging. To address this gap, we generate a
high-resolution chromatin architecture atlas of an established embryonic stem cell derived
hypothalamic-like neuron model across three stages of in vitro differentiation. We profile
accessible chromatin and identify physical contacts between gene promoters and putative
cis-regulatory elements to characterize global regulatory landscape changes during hypo-
thalamic differentiation. Next, we integrate these data with GWAS loci for various complex
traits, identifying multiple candidate effector genes. Our results reveal common target genes
for these traits, potentially affecting core developmental pathways. Our atlas will enable
future efforts to determine hypothalamic mechanisms influencing disease susceptibility.
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ARTICLE

he hypothalamus is a critical regulator of many physiolo-

gical functions, including energy homeostasis, reproduc-

tion, sleep, and stress!. This brain region senses neural and
physiological signals, which triggers distinct populations of neu-
rons to release neurotransmitters and peptide neuromodulators
to signal the autonomic nervous and endocrine systems!=3.
Monogenic mutations in key nutrient-sensing hypothalamic
genes, such as the leptin and melanocortin 4 receptors, result in
obesity through dysregulating the neural circuit involved in
controlling hunger and satiety, while mutations impacting
gonadotrophin-releasing hormone signaling impair the onset of
puberty by disrupting pituitary gland signaling?4.

There is a lack of epigenomic data characterizing the genetic
regulatory architecture of the developing and mature human
hypothalamus, limiting our ability to translate studies into
information directly relevant for disease®. Recently, improve-
ments in embryonic and induced pluripotent stem cell differ-
entiation strategies!»> have partially mitigated the need to study
human hypothalamic neurons ex vivo. As the precise regulation
of hypothalamic development remains poorly understood, dif-
ferentiating hypothalamic neurons from ESCs provides an
opportunity to study these cells and their precursors over time,
which could lead to a greater understanding of the development
of hypothalamic-governed traits and diseases.

Genome-wide association studies (GWAS) have yielded hun-
dreds of loci statistically associated with phenotypes known to
involve hypothalamic function’-12. GWAS efforts typically only
report single-nucleotide polymorphisms (SNPs) yielding the sta-
tistically strongest associations per locus. However, these lead
SNPs are not necessarily the causal variants due to the presence of
other SNPs in linkage disequilibrium (LD). The majority of
GWAS signals reside in noncoding regions of the genome, sug-
gesting that their impact on phenotype is primarily via gene
regulation. As cis-acting regulatory elements (cREs), such as
enhancers or silencers, can act locally or over large genomic
distances, the nearest gene to a GWAS signal may not be the
principal effector gene!3-16. Thus, a major challenge in complex
trait genetics is to confidently identify the precise regulatory
variant(s) tagged by sentinel SNPs and their corresponding
effector target gene(s).

Chromatin conformation approaches to identify SNP-
harboring regions that contact effector genes via long-range
promoter interactions in various cell and tissue contexts!’-1°.
Recently, we combined a suite of techniques to systematically
evaluate GWAS signals located in distal elements20-23. Together,
our integrated “variant-to-gene mapping” approach aims to
physically fine-map significant GWAS loci by identifying open
proxy SNPs in LD with each given sentinel signal that directly
contacts a gene promoter. Assaying relevant cell types in this
regard is critical, as promoter architecture varies across cellular
identity and developmental stage!7-2425,

While changes in hypothalamic gene expression during
development have been studied2®27, the corresponding cis-reg-
ulatory architecture in hypothalamic neuron differentiation
remains largely unexplored. In this study, we use an arsenal of
molecular techniques to characterize the genetic architecture of
differentiation of embryonic stem cells, first into hypothalamic
progenitors (HPs) and then arcuate (ARC) nucleus-like hypo-
thalamic neurons (HN). While the hypothalamus consists of a
diverse array of neuronal subtypes, we approached this using bulk
sequencing approach on differentiated cells. The term “hypo-
thalamic neurons (HN)” will be used to describe the differentiated
cell population composed of a diverse set of differentiated
hypothalamic-like neurons, and a small population of non-
neuronal cells. Utilizing this model, we subsequently superimpose
GWAS findings for relevant traits on these data to implicate

critical and novel effector genes, along with their corresponding
putative regulatory elements.

Results

ESC-derived hypothalamic-like neurons (HN) recapitulate
molecular characteristics of the hypothalamus. We utilized an
established protocol to derive ARC HN-like neurons that gen-
erate predominantly neurons that express markers such as NPY
and POMC (80-95%)28, and collected cells at three stages of
differentiation: pluripotent ESCs, NKX2-1+ hypothalamic pro-
genitors (HPs), and HNs generated from a human ESC line (H9)
derived from one female donor. Twelve days were selected as the
HP timepoint due to high expression of the neuroprogenitor
marker Nestin and the low expression of the neuronal marker
Tubulin Beta 3 (TUBB3), while day 27 was chosen as HN time-
point due to high TUBB3 and POMC expression28, We then
profiled global gene expression patterns for these three stages
using RNA-seq, chromatin accessibility with ATAC-seq, and
chromatin conformation via promoter-focused Capture C to
generate a high-resolution atlas of the distal promoter interaction
landscape in an in vitro human model of hypothalamic devel-
opment (Fig. 1a). To assess the reproducibility between replicates
(separate differentiations), we performed principal component
analysis and pairwise Pearson correlation on the RNA-seq and
ATAC-seq datasets. In both cases, the first principal component
corresponded to the stage of differentiation and accounted for
more than half of the variation (RNA-seq: 52.60%; ATAC-seq:
55.30%) (Supplementary Fig. la-d).

To further confirm the molecular congruence of HN differentia-
tion to the in vivo development of HNs, we examined the expression
of several marker genes (Fig. 1b and Supplementary Fig. 1€)%%, which
were consistent with expectations?®?%. As a negative control, we
examined the expression of the developing telencephalon/forebrain
marker FOXG1, and which as expected was detected in low levels in
HPs and later expressed in HN (Supplementary Fig. 1c), similar to its
absence from hypothalamic progenitors and later expression in
subsets hypothalamic neurons later in developmentZ.

In particular, we investigated the expression and promoter
interaction landscape of NKX2-1, which encodes a transcription
factor (TF) critical for hypothalamus specification. NKX2-1 is
expressed in the developing hypothalamus and subsequently
becomes restricted to a subset of neurons3’. NKX2-1 expression
followed a similar pattern during HN differentiation (Fig. 1b). In
addition, we observed a distinct change in the accessibility of the
NKX2-1 promoter, concordant with its expression pattern
(Fig. 1c), as well as fewer interactions detected as NKX2-1
expression decreased (Fig. 1d), confirming our detection of
expected dynamic changes.

In addition to confirming the expression of known marker
genes, we compared the global transcriptomic profile of HNs to
the GTeX RNA-seq database, which is derived from primary
human tissue samples (Fig. le and Supplementary Data 1)31. HN
gene expression was highly correlated with the hypothalamus
(Spearman’s rho= 0.719; adjusted P=1.14 x 10~14). Taken
together, these results show that ESC-derived HNs resemble
hypothalamus tissue. To supplement the comparison with GTeX,
we queried the top 500 expressed genes in HNs against a database
of brain region-specific marker genes3%33, which had been
previously been used to verify the identity of iPSC-derived
neurons’. The strongest cell-type enrichment for the HN gene set
was the hypothalamus hypocretinergic neurons (Fisher’s Exact
test: FDR = 3.863 x 10~94) as well as weaker enrichment detected
in striatal cholinergic neurons (Fisher’s Exact test: FDR = 0.010).

As the differentiated HNs represent multiple hypothalamic
neuronal subtypes from the hypothalamus?334, bulk sequencing
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Fig. 1 An integrative functional genomics approach to model the differentiation of hypothalamic neurons. a Schematic of the study design. ESC, HP, and
HNs were used to generate RNA-seq, ATAC-seq, and Capture C profiles, which we compared to the GWAS signals mined using our variant-to-gene
mapping approach. b Expression level of NKX2-1 determined by RNA-seq (error bars reflect standard deviation; n=3). ¢ Accessibility change of OCR
located in the NKX2-1 promoter over the course of HN differentiation (error bars reflect standard deviation; ESC, HP n=4; HN n=6). d A 600 kb region
around the NKX2-1 gene in ESCs (teal), HPs (purple), and HNs (orange). The peaks track represents the ATAC-seq coverage, where higher peaks depict
increased accessibility (open chromatin), and arcs represent significant (Chicago Score >5) interacting regions between the NKX2-1 promoter. e
Comparison of HN expression profile to median GTeX database, scores give the Spearman correlation coefficient of the top 16,953 genes expressed in both

datasets.

approaches are not sufficient to capture the cellular heterogeneity
of the tissue. Previous single-cell RNA-seq of neurons differ-
entiated using this protocol have previously been shown to
consist of POMC, SST, and AGRP/NPY neural subtypes*. While
POMC and SST were detected at high levels, we detected very low
levels of NPY and AGRP (Supplementary Fig. 1c).

Temporal dynamics of regulation of gene expression and cis-
regulatory elements during hypothalamic neuron differentia-
tion. We assessed the temporal profile of gene expression to
identify genes with developmental stage-restricted expression
during human HN differentiation, with 15,808 genes differentially
expressed in at least one stage (Fig. 2a). We assigned these genes
to six clusters based on expression patterns during the course of
differentiation. Each cluster corresponded to genes specifically
enriched or depleted in at least one stage of differentiation
(Fig. 2b and Supplementary Fig. 2a, b). Gene Ontology (GO) and
REACTOME enrichment analysis of each cluster identified
known biological processes related to proliferating progenitor
cells and differentiated neurons3> (Supplementary Fig. 2c, d).
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To correlate gene expression changes during HN differentia-
tion with the respective chromatin accessibility and conformation
profiles at each stage, we defined the relationship with open
chromatin regions (OCRs) using ATAC-seq. We identified a total
of 404,691 OCRs in at least one stage. The OCRs were
disproportionately located in promoters (—1500/4-500bp TSS)
and first introns (Supplementary Fig. 3a), which is characteristic
of regulatory elements3°. We intersected this list with promoter
contacts called in our Capture C data (442,779 promoter contacts
called in ESCs, 347,919 called in HPs, and 366,062 called in HNs).
We then grouped the OCRs into three categories (Fig. 2¢): (1)
OCRs located within promoter regions annotated as “promoter
OCRs”; (2) OCRs with direct promoter contacts determined by
Capture C, annotated as “promoter-interacting region (PIR)-
OCRs”; and (3) OCRs that could not be assigned to a gene
because they did not fit either criterion, annotated as “non-PIR-
OCRs”. Because they could be annotated to a gene, we considered
the sets of 50,952 promoter OCRs and 87,170 PIR-OCRs as
putative cREs.

Both the number of cREs per gene (median of three PIR-OCRs
in each cell type) and the mean distance between the cRE and the
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Fig. 2 Changes in gene expression and chromatin architecture underlying hypothalamic neuron differentiation. a Heatmap of the scaled expression
values (z-score) of each RNA-seq sample of ESC, HP, and HN for the 15,808 genes with differential expression in at least one stage of differentiation. Red
indicates higher relative expression, while blue indicates lower relative expression. From hierarchical clustering, the genes were assigned to six groups
based on their expression pattern pointed to being either specifically enriched or depleted in one condition (blue, orange, pink, green, yellow, gray bars).
The log-transformed condition-wise max TPM value for each gene is plotted where white indicates lower expression and orange indicates higher
expression compared to other genes. b The global average of expression values (TPM) of the genes in each cluster. The central line of each boxplot
represents the median, with edges representing the 25 and 75 percentiles, and whiskers represent the 5 and 95 percentiles. ¢ Sets of OCRs were assigned
based on location: promoter OCRs (solid), PIR-OCRs (hashed), and non-PIR-OCRs the remaining OCRs that were not annotated to a gene (promoter OCR-
ESCs: 9796, HPs: 12,962, HNs: 10,241; PIR-OCR- ESCs: 46,968, HPs: 43,860, HNs: 39,942; non-PIR-OCR ESC: 228,747, HP: 208,763, HN: 165,860).
Bottom: the distribution of number OCRs annotated to each set per cell type. d Volcano plot depicting the global genome-wide significant differentially
accessible OCRs in the transition from ESC to HP (left) and HP to HN (right). e Distribution of chromatin accessibility fold change of cRE annotated to DE
gene clusters (a).

promoter were decreased in HPs compared to ESCs or HNs
(Supplementary Fig. 3b, c), reflecting fewer long-range interac-
tions detected at this stage (Supplementary Fig. 3d, e). We also
observed a trend for genes with higher expression interacting with
more cREs (Kruskal-Wallis test: P value <2.2 x 10~16) (Supple-
mentary Fig. 3f), which is in line with reports for other neuronal3’
and immune cells?3.

We then compared chromatin accessibility across the three
stages, and identified 87,761 differentially accessible regions from
ESCs to HPs (43,170 more closed; 44,591 more open) and 48,522
differentially accessible regions from HPs to HNs (33,642 more
closed; 14,880 more open) (Fig. 2d and Supplementary Fig. 3d).
The genome-wide decrease in open chromatin as cells advanced
in differentiation occurs in other developing tissues38, The subset
of cREs contacting differentially expressed genes showed a net

increase in accessibility as ESCs differentiated into HPs, and
subsequently decreased as HPs advanced to HNs, regardless of
the gene expression pattern defined by our clustering analysis
(Fig. 2e, a). This trend suggests that regulatory elements driving
the gene expression changes specifying undifferentiated progeni-
tors to a hypothalamic cell fate in this cellular model are primarily
first established by opening of selected cREs followed by a more
global pruning of contacts upon differentiation to neurons.

To provide context on some of the open accessible regions, we
compared the set of gene-connected cRE in HN to a previous
epigenomic study that compared the enhancer landscape (ATAC-
seq and H3K27ac ChIP-seq) of sorted leptin positive and negative
hypothalamic neurons from mice3®. We found an enriched
overlap of the mouse hypothalamic neuron ATAC-seq and
H3K27ac peaks with the HN cRE (Supplementary Fig. 4a). In
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addition, we intersected our PIR-OCRs with the set of H3K27ac
peaks found in leptin receptor-positive neurons. Approximately
29% of the H3K27ac peaks that were enriched in the leptin
receptor-positive neurons overlapped with an HN cRE (Supple-
mentary Fig. 4b). We found 634 genes expressed in HNs
connected to these regions after excluding genes bait to bait
interactions, including the POMC neuron-associated transcrip-
tion factor ISLI (Supplementary Fig. 4c).

Predicting transcription factors controlling ESC-derived HN
development from spatial gene regulatory architecture. TFs
regulate gene expression by binding to specific DNA sequences
such as enhancers and silencers. Local chromatin accessibility is a
critical determinant of where and when TFs bind to DNA*L. To
identify TFs that may bind to cREs, we leveraged PIQ, which uses
chromatin accessibility profiles to improve motif score-based
matching®2. We identified putative binding sites in each stage of
differentiation and observed that more binding sites were detected
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in HNs compared to ESCs or HPs (Fig. 3a). After grouping TFs by
family, we detected more binding sites for Homeodomain TF
factors in HNs compared to ESCs or HPs (Fig. 3b). This result was
expected, as neuronal identity is refined by the expression of
multiple patterning genes*3. We also observed fewer AP-1 family
binding sites in HNs compared to ESCs and HPs; these TFs reg-
ulate the cell cycle in early cellular development#4.

Next, we checked for TF enrichment in cREs in each cell type
to identify which TFs could mediate these promoter contacts
(Fig. 2c). We compared the three stages of differentiation for
enriched binding in the cREs compared to non-PIR OCRs. This
approach generated a set of potentially relevant TFs involved in
HN differentiation. We found 474 enriched TFs in ESCs, 122 in
HPs, and 134 in HNs (Fig. 3c-e and Supplementary Data 2).
While some TFs involved in DNA looping, such as MAZ and
CTCF, were enriched in all three cell types, we also observed
differences in expression of the top enriched TFs in each
comparison such as ZBTB6, EBF2, EGR1, and ZIC/MYC family
members (Supplementary Fig. 5).
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Proportion of genes from our variant-to-gene mapping located in each DE cluster (Fig. 2a) or non-DE genes (black). € Comparison of genes implicated in
our variant-to-gene mapping analysis for each GWAS. Dots and lines indicate the intersect of the set of genes found in each GWAS. Top: the number of
genes in different overlapping sets. Right: the number of SNPs detected in each GWAS. d FEZFT genomic locus with interactions connecting to a distal cRE.
The SNP is located in a putative NRF1 motif. @ Genome track for the BDNF locus. Multiple proxies in open regions are shown. Two proxies located in

putative TF motifs for CUX1/2 and MAF::NFE2 are shown.

GWAS loci enriched in ESC-derived HN cREs. We hypothe-
sized that cREs in our hypothalamic model are enriched for
genetic variants associated with traits that are at least partly
governed by the hypothalamus. We used Partitioned Linkage
Disequilibrium Score Regression (LDSR)** to identify sig-
nificantly enriched traits for associated loci falling into ESC-
derived hypothalamic cREs. We assembled GWAS summary
statistics from several recent studies examining metabolic, circa-
dian, neuropsychiatric, and puberty-relevant phenotypes, and
tested whether cREs were enriched for GWAS loci in at least one
stage of differentiation (Fig. 4a). We detected significantly enri-
ched signals with BMI, adult height, age at menarche (AAM),
major depressive disorder (MDD), bipolar disorder, several
measures of sleep (Fig. 4a and Supplementary Data 3). The

enrichment of GWAS loci for these hypothalamus-related traits
in the cREs identified in the ESC-derived hypothalamic cell types
highlights their utility as a model for gaining insight into the
target effector genes and regulatory elements functionally related
to these traits and diseases.

Variant-to-gene mapping identifies target effector genes at
GWAS-implicated loci. Guided by the results of the partitioned
LDSR analyses, we performed variant-to-gene mapping for those
traits that displayed significant heritability enrichment in at least
one of the three cellular differentiation stages. We began with all
genome-wide significant loci in the most recent large-scale
GWAS for each respective trait and queried for proxy SNPs in LD
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Table 1 Summary of variant-to-gene mapping results of GWAS signals for each trait.

Trait GWAS In reference panel Unique Open proxies with cis-  Sentinels with cis- Contacted Unique contacted
signals proxies interactions? interactions? genes? genes?

Height 3290 3254 165039 1081, 1098, 1073 594, 562, 564 543, 439, 507 981

BMI 941 928 63148 619, 474, 575 271, 211, 248 800, 526, 802 1126

AAM 499 463 13040 242,194, 258 109, 105, 114 365, 267, 268 452

Sleep 459 445 26445 313, 223, 305 98, 84, 99 361, 212, 319 461

MDD 44 42 3059 22,18, 17 1,10, 8 15, 16, 16 24

BP 39 30 1697 1,11 1,11 2,0, M 12

number of contacted genes from all cell types.
3ESCs, HPs, and HNs, respectively.
bExpressed at TPM > 1.

GWAS signals: independent lead SNPs were used as sentinel SNPs. Proxies: total SNPs in LD (R2 > 0.6) of lead SNPs. Open proxies with cis-interactions: SNPs located in cRE contacting a gene promoter.
The number of sentinels with cis-interactions indicates the number of independent GWAS signals with an open proxy in a cis-interaction. The number of contacted genes per cell type, and the unique

with each sentinel SNP. We overlapped this set of SNPs with the
open chromatin regions identified by ATAC-seq, and queried our
promoter-focused Capture C data to determine the genes in
physical contact with open proxy SNPs in each of the three cell
states. Finally, we filtered by expression from our RNA-seq data
to limit subsequent analyses to genes expressed in at least one
stage of differentiation (TPM > 1) (Table 1).

For each trait, we noticed that multiple contacted genes also
have previously characterized relevant monogenic disease muta-
tions, suggesting that our approach can identify genes with
known mechanistic links to the queried traits (Supplementary
Data 4). For BMI, we detected genes that are known to influence
monogenic forms of extreme body weight, including ABCC8%,
BDNF¥, and PPARG*S. From an AAM locus, we observed
FEZF1, known to harbor monogenic mutations that cause
delayed/absent puberty®®. Finally, among sleep traits, our data
implicated PER2, which encodes a factor that plays a role in
advanced sleep-phase syndrome>?. Many additional putative
effector genes also have plausible biological links to each trait,
while others represent novel findings in the context of these
phenotypes (Supplementary Data 5).

As the cREs identified in HPs and HNs may be shared with
other types of neurons, we are unable to directly identify
hypothalamic-specific cREs that may be impacted by GWAS
variants without chromatin accessibility and conformation data
from multiple neuronal cell types. To partially address what
proportion of the implicated genes may act in a hypothalamic
context, we compared our results to previously published cRE
maps from IPS-derived cortical neurons that were also generated
in our lab from different donors®!. Globally ~40% OCRs
overlapped between HNs and iPSC-derived cortical-like neurons,
with slightly more shared OCRs at promoters and less in PIR-
OCRs (Supplementary Fig. 6a). We compared the expressed
genes implicated by proxies located in PIR-OCRs and observed
relatively little overlap for most of the six traits, with more regions
associated with BMI and Height in the HN (Supplementary
Fig. 6b, c). These results suggest that V2G mapping in ESC-
derived hypothalamic neurons identifies distinct targets from
other pluripotent stem cell-derived neurons.

Variant contacted genes in ESC-derived HN development. To
identify variants that may impact differentiation in our model
HN differentiation, we compared our contacted SNPs with the set
of cREs connected to specific genes for each trait and found that
250% of the SNP contacted genes were differentially expressed
during HN differentiation (Fig. 4b). To identify biological func-
tions associated with these genes, we tested for GO term
enrichment specific to either HP or HNs. HPs were enriched for
ERK1/ERK2 cascade and phospho-inositol 3 lipid signaling

(Supplementary Data 6), which are known regulators of neural
stem cell proliferation®->4, HNs were enriched for clathrin-
dependent endocytosis and IREl-mediated unfolded protein
response (Supplementary Data 6). Endocytosis is critical for
neuronal vesicle recycling at synapses and endoplasmic reticulum
stress affects the response of the hypothalamus to external stimuli
in obesity®. Thus, pathway analysis confirms that the implicated
effector genes are likely to be important for hypothalamic
development and function.

Colocalization of loci associated with multiple traits. Next, we
identified contacted genes implicated in the context of multiple
GWAS traits. Although most implicated genes were specific to
individual traits, we identified multiple genes that were shared,
suggesting a degree of overlap in the regulatory mechanisms
controlling these traits (Fig. 4c and Supplementary Data 7). In
particular, two loci contacted four genes (BSN/FAM2I2A and
FEZF1 /|FEZF1-AS1) which were identified in our scans of BMI,
height, AAM, and sleep. To determine whether these overlaps
represent likely shared regulatory regions, we performed
Hypothesis Prioritization in multi-trait Colocalization (HyPrCo-
loc) analysis for several regions. Our results highlighted both
shared and distinct regulatory architectures across traits that
varied by locus. For example, the FEZFI region colocalized
among BMI, height, and AAM (regional posterior probability
(PP)=0.91), indicating a likely shared regulatory region
impacting each trait (Fig. 4d). Interestingly, the proxy of the
FEZF1 signal was located in a putative NRF1-binding site,
although the SNP was only predicted to have a modest effect on
binding (Fig. 4d and Supplementary Data 8). In contrast to the
FEZF1 locus, although the well-known known BDNF was
implicated as an effector gene for AAM, BMI, and sleep, these
three signals appeared to be distinct (PP =0), suggesting a
complex regulatory architecture for this region that differs by trait
(Fig. 4e).

Colocalization of target effector genes with eQTLs—cumula-
tive evidence. Multiple data sources can contribute orthogonal
evidence for effector genes at GWAS loci®®. The GTEx
consortium3! has characterized hypothalamic tissue eQTLs, so we
performed colocalization analyses to assess how many gene-SNP
connections agreed with the physical variant-to-gene mapping
approach in our specific cellular settings. For AAM, 13 genes
colocalized with eQTLs, with two adjacent genes supported by
our variant-to-gene mapping approach, RPS26 (PP =0.951) and
SUOX (PP =0.942). For BMI, we observed 12 colocalized genes,
with one gene supported by our variant-to-gene mapping
approach, DHRSI1 (PP = 0.822). Of the 29 genes colocalized with
eQTLs for height, three were supported by our data: NMTI
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(PP =0.94), RFT1 (PP = 0.85) and RPS9 (PP = 0.75). There was
only one eQTL colocalized for sleep but was not detected by our
approach. For MDD and bipolar disorder, no genes colocalized
with the eQTL data, which may be due to the relatively few
signals detected in the eQTL analysis.

Discussion

We used an established in vitro HN model in order to both
understand its genomic architecture and to gain insight into
mechanisms by which noncoding GWAS loci associated with
hypothalamic-regulated traits could mediate their effects. Given
the challenge in acquiring primary human hypothalamic tissue
and the organ’s complex makeup of cell and neuronal types®’, we
leveraged RNA-seq, ATAC-seq, and promoter-focused Capture C
to identify aggregation of potentially relevant cis-regulatory
regions in ESC-derived HNs. Importantly, we verified that HNs
exhibited temporal transcriptional profiles that are congruent
with in vivo hypothalamic molecular expression signatures and
functional networks28,

By integrating both transcriptomics and chromatin structure at
three developmental time points across hypothalamic differ-
entiation, we defined a group of dynamic and stable promoter
contacting cREs mediating gene expression changes during
hypothalamic differentiation. A limitation of our study is that the
HNs represent a mixed population of ARC-type neurons, so we
were unable to distinguish cREs from constituent sub-nuclei.
While the molecular diversity of hypothalamic neurons is
beginning to be addressed in the field by single-cell tran-
scriptomic atlases of mature and developing hypothalamus in
mice®’*® and humans®?, it is currently not feasible to generate
chromatin conformation capture data on sorted hypothalamic
neurons due to the relatively high number of cells required to
achieve sufficient library diversity for this approach. This lim-
itation led us to focus on identifying temporally dynamic cREs, as
changes in chromatin accessibility and conformation are thought
to be critical for the differentiation of a multitude of cell
types®%6l. Directly linking gene expression changes during
development with cREs provides a global view of gene regulation
during HN differentiation.

To identify transcriptional regulators that may bind to hypo-
thalamic cREs, we performed TF footprinting analysis using PIQ.
While we did not observe a strong correlation between predicted
TF enrichment from our global analysis and score may reflect
limitations of motif analysis with this analysis on heterogeneous
cells, or may reflect that many of the TFs activity is regulated
post-transcriptionally.

We mapped common GWAS variants associated with AAM,
BMI, height, bipolar disorder, sleep, and MDD to putative
effector genes via their likely cREs. This approach identified both
known and novel genes. For example, FEZF] mutations cause
hypogonadotropic hypogonadism with anosmia®. FEZFI is a
zinc finger transcriptional repressor that is critical for hypotha-
lamus development®2. The proxy contacting the FEZF] promoter
is located in a binding site for NRFI, a transcription factor that
regulates the expression of several genes involved in mitochon-
drial biosynthesis and respiration, but is also important for
neuronal differentiation and axogenesis®>. FEZFI mutations
impair puberty by disrupting the migration of gonadotropin-
releasing hormone neurons, which are necessary to initiate pub-
erty, from the olfactory bulb placode to the hypothalamus during
fetal development*®. In contrast to FEZFI, while BDNF was
implicated in three traits, we observed distinct GWAS association
landscapes, with different sentinels pointing to different proxies
that consistently contacted the BDNF promoter. Thus, BDNF
appears to have an intricate regulatory architecture and harbors

multiple trait-associated variants that likely act in cell-type and
temporally specific contexts. Finally, among sleep traits, our data
implicated PER2, which encodes a factor that plays a role in
advanced sleep-phase syndrome>’.

To uncover genes implicated by multiple analytic approaches,
we also performed colocalization analyses of the implicated traits
with hypothalamic eQTLs. Both eQTL and variant-to-gene
mapping approaches identified DHRSII for BMI. The overlap
between the two approaches was low, possibly due to differences
between ex vivo tissue samples and stem cell-derived cells.
Methods like eQTL analyses and chromatin conformation cap-
ture often map genetic variants to multiple candidate effector
genes. While eQTL associates effector genes by associating gen-
otype and gene expression, it commonly suffers from low statis-
tical power. On the other hand, the chromatin conformation map
only demonstrates physical contact but fails to indicate the reg-
ulatory consequence of specific allele on gene expression. As such
these putative connections represent a first step in uncovering the
effector genes at GWAS loci, and warrant further functional
follow-up. A confluence of evidence is critical for distinguishing
true effector genes from the many “bystander genes” identified in
eQTL studies;°® our physical variant-to-gene mapping pipeline
represents one such approach.

In addition to the molecular heterogeneity of the hypothala-
mus, there are several limitations to our study. While the hypo-
thalamus is known to exhibit sex-specific differences in cell
composition and activity, our cells were derived from the female
HO09 ESC cell line prevents this analysis. Another limitation in our
experimental design is that we only examined neurons generated
to resemble a single brain region, which limits our ability to
distinguish cREs that may be shared across cell types or specific to
a hypothalamic context. Due to this limitation, it is likely that
some GWAS associations intersecting HP/HN cREs may be
common to neural progenitors/young neurons from multiple
brain regions or not represented in vivo hypothalamic neurons.

In addition, HNs do not directly correspond to fully mature
neurons found in the adult hypothalamus and display expression
of markers associated with prenatal mouse neurons?3. Reaching
advanced stages of differentiation remains a challenge in both
iPSC and organoid models®%; however, these HNs are functionally
active and respond to hormones such as leptin and insulin, and
thus represent an accessible human hypothalamus model?8. As a
result of the limitation on neuronal maturity, some of our results
are likely specifically relevant to prenatal neurons. Exposure to
maternal obesity or gestational diabetes is associated with future
weight gain via alternations to the hypothalamus®, suggesting
that different stages of hypothalamic development might be
particularly relevant in the context of BMI. Further improve-
ments to neuronal differentiation and organoid protocols may
allow later stages of differentiation to be reached, which would
facilitate comparisons between young and more mature neurons.

Here, we report aspects of the genomic architecture of a stem
cell-based model of human hypothalamic development. We relate
this architecture to the cellular ontogenesis of the human hypo-
thalamus, and to the regulation of genes that influence complex
phenotypes. Application of these strategies enables specific gene
attributions for noncoding SNPs implicated in relevant common
traits by GWAS efforts. These integrated datasets, therefore, offer
valuable insight for prioritizing candidate genes that drive the
molecular mechanisms by which the hypothalamus contributes to
the pathogenesis of relevant complex traits.

Methods

Human ESC-derived hypothalamic neuron differentiation. The HN differ-
entiation protocol was described previously?S. Briefly, the human ESC H9 line was
seeded on Matrigel plates (16 million cells/148 cm?; 5 x 148 cm? Corning dishes) in
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ESC medium (KnockOut DMEM supplemented with 15% knockout serum
replacement, 0.1 mM MEM non-essential amino acids, 2 mM GlutaMAX, 0.06 mM
2-mercaptoethanol) with FGF-basic (AA 1-155), (20 ng/ml media) and 10 uM
Y-27632. Upon confluency (day 1), cells were cultured in ESC medium without
FGF-basic and Y-27632, but supplemented with Shh (100 ng/ml), purmorphamine
(2 uM), 10 uM SB431542, and 2.5 uM LDN193289. From days 5 to 8, ESC medium
was gradually replaced with neuroprogenitor medium (DMEM/F-12 supplemented
with 0.1 mM MEM non-essential amino acids, N-2 Supplement, 0.2 uM ascorbic
acid, 0.16% glucose). On day 9, cells were switched into neuronal differentiation
medium (DMEM/F-12 supplemented with 0.1 mM MEM non-essential amino
acids, N-2 supplement, B-27 supplement minus vitamin A, 0.2 uM ascorbic acid,
0.16% glucose containing 10 uM DAPT). On day 12, cells were collected with
TrypLE Express Enzyme at 37 °C for 7 min and washed twice including filtration
through pre-wetted 40-um Corning sterile cell strainer. The hypothalamic pro-
genitor cell pellet was then resuspended with neuronal differentiation medium
containing 10 uM Y-27632 for plating on 148-cm? dishes coated with poly-L-
ornithine solution (0.01%) and laminin (4 ug/ml) at a seeding density of 16 million
cells/148 cm?. After 4 h, the medium was changed to neuronal differentiation
medium supplemented with 10 uM DAPT. On day 15, the neuronal differentiation
medium was supplemented with 20 ng/ml BDNF until collection on day 27.

Immunocytochemistry and imaging of human ESC-derived hypothalamic
neurons. The human ESC H9 line was differentiated using the protocol above, the
only distinction being that they were re-plated on day 12 into 24-well plates
(Thermo Scientific Nunc) at a seeding density of 200,000 cells per well.

Differentiated hypothalamic neurons were fixed in 4% paraformaldehyde, PBS
for 20 min at room temperature (RT), followed by two washes with PBS. They were
incubated (to permeabilize and block) for 1h at RT with buffer containing 10%
normal donkey serum, 0.1% Triton X-100, PBS. Primary antibodies (goat
polyclonal to POMC, ab32893, 1:200; rabbit polyclonal to tubulin beta 3 (TUBB3),
Biolegend 802001, 1:1000) were diluted in this buffer. Cells were incubated with
primary antibody solution overnight at 4 °C. After two washes with 0.1% Triton X-
100, PBS incubation with secondary antibodies (anti-rabbit 488 Alexa at 1:1000,
anti-goat 555 Alexa at 1:1000) and the nuclear marker Hoechst (1:5000) was
performed in PBS for 2 h at RT. After two washes with PBS, cells were stored in
PBS at 4 °C until imaging.

Images were taken using an Olympus IX73 inverted microscope (x40 objective).

ATAC-seq, RNA-seq, Capture C library generation, processing, peak calling
ATAC-seq library generation. A total of 50,000 cells were centrifuged at 550 x g for
5min at 4 °C. The cell pellet was washed with cold PBS and resuspended in 50 pL
cold lysis buffer (10 mM Tris-HCI, pH 7.4, 10 mM NaCl, 3 mM MgCl,, 0.1% NP-
40/IGEPAL CA-630) and immediately centrifuged at 550 x g for 10 min at 4 °C.
Nuclei were resuspended in the Nextera transposition reaction mix (25 pL 2x TD
Buffer, 2.5 pL Nextera Tn5 transposase, and 22.5 uL nuclease-free H20) on ice,
then incubated for 45 min at 37 °C. The tagmented DNA was then purified using
the Qiagen MinElute kit and eluted in 10.5 uL elution buffer (EB). Ten microliters
of purified tagmented DNA were PCR amplified using the Nextera Indexing Kit for
12 cycles to generate each library. The PCR reaction was subsequently purified
using 1.8x AMPure XP beads, and concentrations were measured by Qubit Fluo-
rometer. The quality of completed libraries was assessed on a Bioanalyzer 2100
high sensitivity DNA Chip. Libraries were paired-end sequenced at the Center for
Spatial and Functional Genomics on the Novaseq 6000 platform (51 bp read
length).

ATAC-seq analysis and peak calling. The number reads from the hypothalamic
neurons were downsampled to make the sequencing depth comparable between
conditions using sambamba. Open chromatin regions were called using the
ENCODE ATAC-seq pipeline. Pair-end reads from all replicates for each cell type
were aligned to the hgl9 genome using bowtie2, and duplicate reads were removed
from the alignment. Aligned tags were generated by modifying the reads alignment
by offsetting -+4 bp for all the reads aligned to the forward strand, and —5 bp for all
the reads aligned to the reverse strand. Narrow peaks were called independently for
pooled replicates for each cell type using macs2 (-p 0.01 --nomodel --shift -75
--extsize 150 -B --SPMR --keep-dup all --call-summits) and ENCODE blacklist
regions were removed from called peaks. We then merged peaks with at least 1 bp
overlap between replicates to generate a consensus set of peaks. The consensus set
peaks were filtered to those which were reproducible in at least half the ATAC-seq
replicates using bedtools intersect!. For analyses involving cell-type-specific sets of
peaks, we considered the set of consensus peaks with mean FPKM value greater
than 1 to be “open” in that cell type.

For TF analysis replicated, de-duplicated ATAC-seq bam files were merged and
downsampled to consistent read count for each stage of differentiation to calculate
purity scores for each TF.

Differential analysis of chromatin accessibility. To identify differentially accessible
OCRs between ESCs, HPs, and HNs, we used the R package csaw, which uses the
de-duplicated read counts for the consensus OCRs for each replicate to normalized
against background (10 K bins of the genome). OCRs with the median value of less

than 1.2 CPM (~10-50 reads per OCR) across all replicates were removed from the
further differential analysis. Similar to RNA-seq differential analysis, accessibility
differential analysis of the consensus OCRs was performed using glmQLFit
approach, fitting cell type in edgeR, but using the csaw normalization scaling
factors. Differential OCRs between cell types were identified with thresholds of
FDR < 0.05 and absolute log2 fold change >1. FPKM values were calculated for all
OCRs in the consensus list.

RNA-seq library generation and analysis

RNA-seq library generation. RNA was isolated from each cell type in triplicate
using TRIzol Reagent. RNA was then purified using the Direct-zol RNA Miniprep
Kit and depleted of contaminating genomic DNA using DNAse I. Purified RNA
was then checked for quality on the Bioanalyzer 2100 using the Nano RNA Chip,
and samples with a RIN number above 7 were used for RNA-seq library synthesis.
RNA samples were depleted of rRNA using the QIAseq FastSelect RNA Removal
Kit then processed into libraries using the NEBNext Ultra II Directional RNA
Library Prep Kit for Illumina according to the manufacturer’s instructions. The
quality and quantity of the libraries were measured using the Bioanalyzer 2100
DNA chip and Qubit Fluorometer. Completed libraries were pooled and sequenced
on the NovaSeq 6000 platform using paired-end 51 bp reads at the Center for
Spatial and Functional Genomics at CHOP.

RNA-seq processing and differential expression analysis. Sequencing data were
demultiplexed and FastQ files were generated using Illumina bcl2fastq2 conversion.
Paired-end Fastq files for each replicate were mapped to the reference genome
using STAR. Gene features were assigned to a curated annotation consisting of
GencodeV19 with lincRNA and sno/miRNA annotation from the UCSC Table
Browser. The raw read count for each gene feature was calculated using HTSeq-
count. with parameter settings -f bam -r pos -s reverse -t exon -m intersect. The
genes located on chrM or annotated as ribosomal RNAs were removed before
further processing.

Differential analysis was performed in R using the edgeR package. Briefly, the
raw reads per genes features were converted to read Counts Per Million mapped
reads (CPM). The gene features with the median value of less than 0.7 CPM (10-18
reads per gene feature) across all samples were filtered. Normalization scaling
factors were calculated using the trimmed mean of the M-values method.
Differentially expressed genes between ESCs, HPs, and HNs were identified with
thresholds of FDR < 0.05 and absolute log,FC > 1. Expression values are reported as
transcript per million mapped reads (TPM). We clustered standardized TPM
values of differentially expressed genes using the R function hclust. Genes
expression values were standardized using the R function, scale. Following this, the
top six branches were cut to define the clusters used in subsequent comparisons.

Capture C library generation and analysis

3C library generation. We used standard methods for 3C library generation®. For
each library, 107 fixed cells were thawed at 37 °C, followed by centrifugation at RT
for 5min at 1845 x g. The cell pellet was resuspended in 1 mL of dH,O supple-
mented with 5 pL 200x protease inhibitor cocktail, incubated on ice for 10 min,
then centrifuged. The cell pellet was resuspended to a total volume of 650 uL in
dH20. In total, 50 uL of cell suspension was set aside for pre-digestion QC, and the
remaining sample was divided into three tubes. Both pre-digestion controls and
samples underwent a pre-digestion incubation with the addition of 0.3% SDS, 1x
NEBuffer Dpnll, and dH,O for 1h at 37°C in a Thermomixer shaking at

1000 rpm. A 1.7% solution of Triton X-100 was added to each tube, and shaking
was continued for another hour. After the pre-digestion incubation, 10 puL of DpnII
was added only to each sample tube, and continued shaking along with the pre-
digestion control until the end of the day. An additional 10 pL of DpnII was added
to each digestion reaction and digestion continued overnight. The next day,
another additional 10 pL of DpnlI was added and the incubation continued for
another 2-3 h. In total,100 uL of each digestion reaction was then removed, pooled
into one 1.5-mL tube, and set aside for digestion efficiency QC. The remaining
samples were heat-inactivated at 65 °C for 20 min at 1000 rpm in a Thermomixer
and cooled on ice for 20 additional minutes. Digested samples were ligated with
8 uL of T4 DNA ligase and 1x ligase buffer at 1000 rpm overnight at 16 °C in a
Thermomixer. The next day, an additional 2 uL of T4 DNA ligase was spiked into
each sample and incubated for another few hours. The ligated samples were then
de-crosslinked overnight at 65 °C with Proteinase K along with the pre-digestion
and digestion controls. The following morning, both controls and ligated samples
were incubated for 30 min at 37 °C with RNase A, followed by phenol/chloroform/
isoamyl alcohol (Fisher Cat # BP17521400) extraction and ethanol precipitation at
—20°C. The 3C libraries were centrifuged at 1000xg for 45 min at 4 °C, while the
controls were centrifuged at 1845xg, to pellet the samples. DNA pellets were
resuspended in 70% ethanol and again centrifuged as described above. The 3C
library pellets and control pellets were resuspended in 300 pL and 20 pL dH,O,
respectively, and stored at —20 °C. Sample concentrations were measured by Qubit
Fluorometer. Digestion and ligation efficiencies were assessed by gel electrophoresis
on a 0.9% agarose gel and quantitative PCR (Brilliant IIT SYBR qPCR Master Mix,
VWR Cat # 97066-528).
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Promoter capture library generation. We followed our same protocols as previously
published?’. Isolated DNA from 3C libraries was quantified using a Qubit Fluo-
rometer, and 10 pg of each library was sheared in dH,O using a QSonica Q800R to
an average fragment size of 350 bp. QSonica settings used were 60% amplitude, 30 s
on, 30 s off, 2 min intervals, for a total of five intervals at 4 °C. After shearing, DNA
was purified using AMPure XP beads. DNA size was assessed on a Bioanalyzer
2100 using a DNA 1000 Chip and DNA concentration was checked via Qubit
Fluorometer. SureSelect XT library prep kits were used to repair DNA ends and for
adaptor ligation following the manufacturer’s protocol. Excess adaptors were
removed using AMPure XP beads. Size and concentration were checked again by
Bioanalyzer 2100 using a DNA 1000 Chip and by Qubit Fluorometer before
hybridization. One microgram of the adaptor-ligated library was used as input for
the SureSelect XT capture kit using manufacturer protocol and our custom-
designed 41 K promoter Capture-C probe set. The quantity and quality of the
captured libraries were assessed by Bioanalyzer using a high sensitivity DNA Chip
and by Qubit Fluorometer. SureSelect XT libraries were then paired-end sequenced
on Illumina NovaSeq 6000 platform (51 bp read length) at the Center for Spatial
and Functional Genomics at CHOP.

Analysis of Capture C. Paired-end reads from three replicates from ESCs, HPs, and
HNs were pre-processed using the HICUP pipeline with the default parameters.
Reads were aligned to hgl9 using bowtie2. We called call significant promoter
interactions using the read count from promoters included in our reference bait. As
previously reported?’, significant interactions were called using CHICAGO with
default parameters except for bin-size set to 2500. In addition to our analysis per
individual DpnlI fragment (1frag), we also called interactions by binning four
fragments, which improves detection of long-distance interactions. Significant
interactions at 4-DpnlI fragment resolution were also called using CHiCAGO.
Interactions with a CHICAGO score >5 in at least one cell type in either 1-fragment
or 4-fragment resolution were considered significant.

Quality control metrics. Reproducibility between ATAC-seq and RNA-seq sam-
ples was determined by principal component analysis and pairwise Pearson cor-
relation coefficients between samples. Median expression values were downloaded
from GTeX (v7). The spearman rank correlation of the genes with expression level
pass a threshold of TPM > 5 in at least one cell/tissue type (16,953 genes) were
calculated using Spearman’s Correlation Coefficient (cor function in R). Cell-
specific enrichment analysis was conducted using the CSEA tool webserver (http://
genetics.wustl.edu/jdlab/csea-tool-2/)33. For ATAC-seq fragment distribution plots
were examined for the presence of mono-nucleosome and di-nucleosome peaks to
verify successful Tn5 transposition.

Genomic annotations: Promoters were defined as 1500 kb upstream and 500 kb
downstream of the TSS (Genecode V19). Overlapping annotations were assigned to
genomic features based on a hierarchy of (1) Promoter, (2) 5UTR, (3) CDS, (4)
3’UTR, (5) first intron, (6) other introns, or (7) intergenic. The percentage of OCRs
overlapping with each feature was visualized as pie charts using ggplot2. All
coordinates refer to hgl9 as the reference genome. Genome tracks were visualized
using the python package pyGenomeTracks version 3.0.

Variant-to-gene mapping. Sentinel SNPs were collected from the most recent
large-scale GWAS studies. Proxies for each sentinel were queried using SNiPa
using the following parameters: Genome assembly GRCh37; Variant set 1000
Genomes, Phase 3 v5; Population European; Genome annotation Ensembl 87 and
2> 0.6. Intersection as done previously?). We identified proxies located in open
chromatin and fragments interacting with a bait using bedtools intersect. We
considered all interactions with a proxy SNP located in a distal interaction frag-
ment and those falling within OCRs located in baits. Putative target effector genes
were then filtered by expression in each respective cell state (TPM > 1). The same
parameters were used for variant-to-gene mapping hypothalamic traits with pre-
viously published IPS-derived neuron dataset®!. These genes were functionally
annotated by the DAVID functional annotation tool.

Gene set enrichment. GO and REACTOME datasets annotated in MSigDB (v7.0)
were used for gene set enrichment analyses. Statistical significance of gene set
enrichment was determined using the hypergeometric test, implemented in the R
phyper function.

Transcription factor analysis. PIQ, which integrates TF motif scanning with TF
footprinting using DNAase or ATAC-seq data, was used to predict TF-binding
sites*2. We scanned JASPAR2020 core®” PWMs against hgl9, with ENCODE
blacklist regions excluded using the default settings. For downstream analyses we
considered TF-binding sites passing the default cutoff of purity >0.7. We identified
TF motifs enriched in cREs compared the set of non-PIR-OCRs using the R
package BiFET (v 1.4.0), with a cutoff of FDR < 0.05,

Partitioned LD score regression. Partitioned heritability was measured using LD
Score Regression v1.0.0%°. Partitioned LDSR requires the GWAS summary statistics
and a feature annotation. ESC, HP, and HN annotations were generated using bed

files containing positions of the cRE (promoter OCRs + PIR-OCRs) with + /—500
bp extension as previously performed#>. We selected a set of traits related to
metabolic, endocrine, and neuropsychiatric traits with available GWAS summary
statistics (see Supplementary Methods).

Comparison with mouse hypothalamic epigenetic data. We retrieved the pro-
cessed data from GEO (accession GSE112125). We used liftover to convert mm9
coordinates to hgl9 with the similarity cutoff -minMatch=0.1. We excluded the

top 1% longest peaks for both H3K27ac ChIP-seq and ATAC-seq data. We used
the R package regioneR (version regioneR 1.22.0). To perform permutation tests to
determine if the accessible regions with H3K27ac+ were enriched in the dataset

(10,000), we tested for overlap between the set of HN cREs and set of H3K27ac+
peaks that were significantly enriched in LepR+ neurons across conditions

(FDR < 0.05).

GWAS colocalization. Summary statistics for six regions with overlapping asso-
ciations for 3-4 input traits were imputed using FIZI. Common variants (MAF 2
0.01) from the European ancestry 1000 Genomes Project v3 samples were used as a
reference panel for the imputation. Default parameters were used with the
exception that the minimum proportion parameter was lowered to 0.01. Standard
errors and betas for the imputed SNPs were estimated using the method from
https://github.com/zkutalik/ssimp_software/blob/master/extra/
transform_z_to_b.R. Subsequently, HyPrColoc was used to test for colocalization
across all input traits simultaneously. Separately, we tested for colocalization for
each input trait genome-wide against GTEx v.7 hypothalamic eQTLs using coloc®.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Further information and requests for reagents should be directed to and will be fulfilled
by the lead contacts, Struan F.A. Grant and Diana L. Cousminer. All reagents and
software used are listed in Supplementary Data 9. The raw and processed ATAC-seq,
Capture C, and RNA-seq data described in this study are deposited in the gene
expression omnibus (GEO) with the accession number GSE152098. Public datasets
accessed and used in the study: JASPAR2020: http://jaspar.genereg.net/downloads/;
GTEX v7: https://gtexportal.org/home/datasets; Mouse Sorted Hypothalamic ATAC-seq
and H3K27ac Chip-seq datasets: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE112125; LD reference panels: https://github.com/bulik/ldsc; Molecular
Signatures Database (MSigDB) v7: https://www.gsea-msigdb.org/gsea/msigdb/index.jsp.
We accessed publicly available GWAS summary stats: age at Menarche: https://
www.reprogen.org/data_download.html; anorexia: https://www.med.unc.edu/pgc/
download-results/; bipolar disorder: https://www.med.unc.edu/pgc/download-results/;
body mass index: https://portals.broadinstitute.org/collaboration/giant/index.php/
GIANT_consortium_data_files; chronotype: http://www.t2diabetesgenes.org/data/;
height: https://portals.broadinstitute.org/collaboration/giant/index.php/
GIANT_consortium_data_files; major depressive disorder: https://www.med.unc.edu/
pgc/download-results/; post-traumatic stress disorder: https://www.med.unc.edu/pgc/
download-results/; pubertal growth: https://egg-consortium.org/; self-reported sleep:
http://kp4cd.org/datasets/sleep; accelerometer-associated sleep traits: http://
www.t2diabetesgenes.org/data/; type II diabetes: https://cnsgenomics.com/content/data.

Code availability

Publicly available analysis software and code were used as described in “Methods”.
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