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Dynamic recurrence risk and adjuvant
chemotherapy benefit prediction by ctDNA in
resected NSCLC
Bin Qiu1,2,4, Wei Guo 1,2,4, Fan Zhang1, Fang Lv1, Ying Ji1, Yue Peng1, Xiaoxi Chen3, Hua Bao 3, Yang Xu3,

Yang Shao 3, Fengwei Tan1,2, Qi Xue1,2, Shugeng Gao 1,2✉ & Jie He 1

Accurately evaluating minimal residual disease (MRD) could facilitate early intervention and

personalized adjuvant therapies. Here, using ultradeep targeted next-generation sequencing

(NGS), we evaluate the clinical utility of circulating tumor DNA (ctDNA) for dynamic

recurrence risk and adjuvant chemotherapy (ACT) benefit prediction in resected non-small

cell lung cancer (NSCLC). Both postsurgical and post-ACT ctDNA positivity are significantly

associated with worse recurrence-free survival. In stage II-III patients, the postsurgical ctDNA

positive group benefit from ACT, while ctDNA negative patients have a low risk of relapse

regardless of whether or not ACT is administered. During disease surveillance, ctDNA

positivity precedes radiological recurrence by a median of 88 days. Using joint modeling of

longitudinal ctDNA analysis and time-to-recurrence, we accurately predict patients’ post-

surgical 12-month and 15-month recurrence status. Our findings reveal longitudinal ctDNA

analysis as a promising tool to detect MRD in NSCLC, and we show pioneering work of using

postsurgical ctDNA status to guide ACT and applying joint modeling to dynamically predict

recurrence risk, although the results need to be further confirmed in future studies.
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Lung cancer is one of the most common malignancies and the
leading cause of cancer-related deaths worldwide1. Non-
small cell lung cancer (NSCLC) accounts for ~85% of lung

cancer cases2, and surgical resection is a preferred curative
treatment for ~30% of NSCLC with stage I–IIIA disease3,4. After
completion of definitive treatment, routine post-treatment sur-
veillance with regular clinical assessments and radiological ima-
ging is recommended to detect recurrent disease or metastasis.
However, patients may harbor minimal residual disease
(MRD)5,6, a potential source for subsequent early recurrence and
metastasis, which cannot be reliably detected by traditional
radiological imaging due to its limited resolution.

Adjuvant chemotherapy (ACT) after surgery could potentially
eliminate MRD and improve survival7 and is recommended for
patients with resected stage II and III NSCLC3,4; however, recent
meta-analyses suggested only minimal benefit of adjuvant che-
motherapy on 5-year survival, overall survival, and disease-free
survival after complete resection in patients with early-stage
NSCLC7,8. Nevertheless, drug toxicity has been one of the major
concerns of adjuvant chemotherapy, and NSCLC patients usually
suffered from several grades III and IV side effects after adjuvant
chemotherapy, such as neutropenia, anemia, asthenia, nausea,
vomiting, and treatment-related deaths9. Therefore, to reduce
futile toxicities due to overtreatment, identifying reliable bio-
markers to select appropriate patients for adjuvant chemotherapy
is of paramount importance.

Circulating tumor DNA (ctDNA) is a promising biomarker for
non-invasive molecular profiling and its ability to identify MRD
and monitor recurrence has been shown in breast cancer10,11,
colorectal cancer12, gastric cancer13, and urothelial bladder
carcinoma14. In lung cancer, recent studies utilizing personalized
mutation detection panels or CAPP-Seq have demonstrated the
potential of ctDNA for MRD detection and early detection of
recurrence for patients after surgery with or without
chemotherapy15,16 and for patients with long-term responses to
PD-L1 blockade17. Nevertheless, given that these lung cancer
studies mainly focused on landmark time points and binary
ctDNA detection status, the utility of using serial ctDNA changes

during disease surveillance for dynamically predicting patients’
recurrence risk has not been well characterized. Furthermore,
previous studies only focused on the MRD detection after the
completion of adjuvant therapy to evaluate its efficacy, whereas
whether ctDNA-defined MRD status could guide the adminis-
tration of ACT in lung cancer patients is still unclear.

In recent years, joint modeling of longitudinal and time-to-event
data has exhibited its promising utility in clinical trial studies18,19.
Specifically, the joint modeling brings longitudinal data (e.g., circu-
lating tumor cells or ctDNA status) and time-to-event data (e.g.,
recurrence-free survival or overall survival) simultaneously into a
single model to improve inference for dependence and association
between the longitudinal biomarker and time-to-event20,21, which
could be potentially used for dynamic postoperative recurrence risk
prediction to further improve disease surveillance.

In this study, we sought to evaluate the utility of ultradeep
targeted next-generation sequencing (NGS) on serial longitudinal
ctDNA sampling post-surgery in resected NSCLC patients for
MRD detection and ACT treatment decision-making, as well as
dynamic risk prediction of recurrence during post-surgical and
post-ACT disease surveillance.

Results
Patient characteristics and sample genomic profiling. A total of
116 NSCLC patients who received surgical resection were
enrolled in the study, 13 of whom discontinued due to various
reasons and were thus excluded from subsequent analyses
(Fig. 1). The clinicopathological characteristics of the remaining
103 patients were summarized in Table 1 with details presented in
Supplementary Data 1. Seventy-one of 103 (68.9%) patients
received ACT, including 69 patients with chemotherapy and 2
patients with chemoradiotherapy, and the median duration of
ACT was 73 days (range: 5–153 days) (Supplementary Data 1).
Seven EGFR-positive patients received either adjuvant targeted
therapy or chemotherapy plus targeted therapy, while 25 patients
did not receive any adjuvant treatment after surgery (Supple-
mentary Data 1). The resected tumor tissue samples and serial

116 Patients with resectable 
NSCLC

13 Patients excluded
6 Lost to follow up
5 Withdrew consent
1 Confirmed as SCLC
1 Noncancer causes of death

103 Patients with tumor tissue 
and plasma samples for 
targeted NGS

91 Patients with tumor-specific mutation(s)  
identified for ctDNA analysis

12 Patients excluded
    No mutation detected in tumor

Baseline analysis

3 Patients excluded
No pretreatment 
plasma sample

88 Patients 

Post-surgery analysis

6 Patients excluded
No plasma sample 
after surgery

85 Patients 

Post-ACT analysis

27 Patients excluded
26 Did not receive ACT 
1 No post-ACT plasma 

sample

64 Patients 

Longitudinal ctDNA 
analysis

89 Patients 

2 Patients excluded
No plasma sample 
after first post-surgery 
blood collection

Fig. 1 Patient enrollment flowchart. Of the 116 lung cancer patients enrolled in our study, 103 of them had their tumor and plasma samples sequenced. After
excluding patients who had no detectable tumor mutations, tumor and plasma data from 91 patients were subjected to further analyses, including 88 patients
with pretreatment plasma samples, 85 with postsurgical plasma samples, 64 with post-ACT plasma samples, and 89 with serial plasma samples.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27022-z

2 NATURE COMMUNICATIONS |         (2021) 12:6770 | https://doi.org/10.1038/s41467-021-27022-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


plasma samples at various time points during disease surveillance
were collected and analyzed, with the detailed sample collection
procedure described in the “Methods” section and Supplementary
Fig. 1.

Genomic DNA from tumor tissues and ctDNA from plasma
samples were prepared and analyzed by targeted NGS using a
pre-designed lung cancer tracking panel (139 critical lung cancer-
related genes) to a mean coverage depth of ~850× for tumor
tissues and ~30,000× deep sequencing for ctDNA samples,
followed by somatic variants analysis using Automated Triple
Groom Sequencing (ATG-Seq) technology (see “Methods”).
Genomic DNA from the white blood cells of the buffy coat after
plasma separation was also analyzed as the normal control sample
for germline variants and clonal hematopoiesis mutation filtering.
ctDNA positivity was defined by accessing the presence of one or
more plasma mutations that were also identified in the matched
tumor sample.

Mutational profile of tumor tissues and pretreatment ctDNA
shedding. Somatic mutations were detected in 91 of the 103
patients’ tumor specimens, with a median of 2 mutations per
patient (range: 1–8 mutations) (Supplementary Fig. 2). TP53 (67/

91, 73.6%) was the most frequently mutated gene in all these
NSCLC patients, which was mutated in 100% (32/32) of squa-
mous cell carcinoma (SqCC) patients compared to 60.7% (34/56)
in adenocarcinoma (AD). EGFR, KRAS mutations, and ALK
fusions were detected in 55.4%, 16.1%, and 8.9% of AD, respec-
tively, but not in SqCC patients, whereas CDKN2A (34.4% vs
5.4%), KEAP1 (31.3% vs 3.6%), RB1 (15.6% vs 0%), and NFE2L2
(12.5% vs 0%) alterations were more enriched in SqCC patients.
These mutational profiles are consistent with the previously
reported somatic mutation landscape in East Asian NSCLC
patients22.

The pretreatment plasma samples of 88 out of the 91 patients
with tumor somatic mutations detected (three patients did not
have pretreatment plasma samples) were further analyzed to
identify potential clinicopathological determinants of ctDNA
shedding in NSCLC patients. 69.3% (61/88) of patients had
detectable somatic mutations in their pretreatment plasma
samples, with a median maximum variant allele frequency
(VAF) of 0.34% (Supplementary Data 2). As expected, pretreat-
ment ctDNA shedding was associated with the pTMN stage, and
ctDNA detection rate in stage I/II and stage III cases was 61.0%
(25/41) and 76.1% (35/46), respectively (Supplementary Fig. 3a).
ctDNA shedding was also associated with histological subtype.
Except for AD patients whose ctDNA-positive rate was only
49.1% (26/53 patients), 100% of patients (n= 35) with other
NSCLC subtypes, including SqCC patients (n= 32), had
detectable somatic mutations in the pretreatment plasma samples
(Supplementary Fig. 3b). Although different histology (SqCC vs
AD) showed no difference in relapse-free survival (p= 0.52),
when only considering pretreatment ctDNA positive patients,
SqCC patients shown significantly better RFS than those of AD
patients (HR: 0.45; 95% CI: 0.2–0.99; p < 0.05).

ctDNA positivity at landmark time points for prognosis. To
assess whether ctDNA positivity after surgery correlated with
disease recurrence, ctDNA analysis was performed on post-
surgical plasma samples (collected within 1-month post-surgery
and before the start of ACT). Among the 85 patients who had
available postsurgical plasma samples, 18 of them (21.2%; 18/85)
still had detectable ctDNA with a median maximum VAF of
0.02%. Although different histology subtypes have distinct ctDNA
detection rates in presurgical plasma samples (Supplementary
Fig. 3b), there was no difference (p= 1.0) in the postsurgical
ctDNA positive rate between AD (19.2%; 10 out of all the 52 AD
patients) and SqCC (19.4%, 6 out of all the 31 SqCC patients).
Intriguingly, these ctDNA positive patients had a significantly
reduced RFS compared with ctDNA negative patients (HR: 4.0;
95% CI: 2.0–8.0; p < 0.001; Fig. 2a). Other risk factors, such as
baseline TP53 status (mutant vs wild type; HR: 3.3; 95% CI:
1.2–9.4; p < 0.05) and T stage (T4 vs T1-3; HR: 2.7; 95% CI:
1.1–6.5; p < 0.05), were also significantly associated with RFS
(Supplementary Fig. 4 and Supplementary Table 1). We further
performed survival analysis in patients with AD (Supplementary
Fig. 5a) or SqCC (Supplementary Fig. 5b) separately, and their
postsurgical ctDNA-positive status was still associated with worse
RFS for both AD and SqCC with similar HR (8.33 and 8.56,
respectively). When including postsurgical ctDNA status, histol-
ogy, baseline TP53 status, and T stage in a multivariate Cox
regression analysis, postsurgical ctDNA status still had the
strongest independent association with RFS (p < 0.001; Supple-
mentary Table 1). Remarkably, postsurgical ctDNA positivity
remained to have a significant association with worse RFS in
patients with or without ACT (Supplementary Fig. 6), implying
that the prognostic value of postsurgical ctDNA was independent
of the administration of adjuvant therapy.

Table 1 Patient clinical characteristics.

Characteristics All patients (N= 103)

Age (years)
Median (range) 64 (38–82)
Gender (%)
Male 67 (65%)
Female 36 (35%)
Smoking status (%)
Yes 61 (59%)
No 42 (41%)
Differentiation (%)
Info available 19 (18%)
Not available 84 (82%)
Histology (%)
Adenocarcinoma 60 (58%)
Squamous cell carcinoma 38 (37%)
Atypical carcinoid 1 (1%)
Adenosquamous carcinoma 1 (1%)
Large cell neuroendocrine carcinoma 3 (3%)
pTMN stage (%)
I 12 (10%)
IIb 41 (40%)
IIIa 48 (47%)
IV 2 (2%)
T stage (%)
T1–T3 95 (92%)
T4 8 (8%)
N stage (%)
N0–N1 68 (66%)
N2 35 (34%)
Adjuvant therapy (%)
Chemotherapy 72 (70%)
Chemoradiotherapy 1 (1%)
Targeted therapy 5 (5%)
Chemotherapy+ targeted therapy 2 (2%)
No 23 (22%)
Recurrence (%)
No recurrence 66 (64%)
Locoregional recurrence 11 (10%)
Lymph mode 8 (8%)
lung 7 (7%)
Brain 3 (3%)
Other 8 (8%)
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We further explored whether ctDNA positivity after comple-
tion of ACT was associated with treatment outcome. Of the
patients treated with ACT, 64 patients had their post-ACT
plasma samples collected within 4 months of treatment comple-
tion and 8 (12.5%) of them were ctDNA positive with a median
maximum VAF of 0.11%. Consistent with the results of
postsurgical ctDNA, post-ACT ctDNA positivity was also
significantly associated with worse RFS as tested by Kaplan–Meier
analysis (HR, 3.2; 95% CI, 1.3–8.2; p < 0.05; Fig. 2b) and
multivariate Cox regression analysis (p < 0.05; Supplementary
Table 2), suggesting that ctDNA status may have potential clinical
values in evaluating the effectiveness of ACT. A similar trend was
observed when analyzing AD and SqCC patients separately
(Supplementary Fig. 5c, d), although the results did not reach
statistical significance likely due to the small sample size after
stratifying patients based on the tumor types. Taken together,
these results demonstrate that MRD detected by plasma ctDNA
after definitive therapy is a promising prognostic biomarker for
resectable NSCLC patients.

Potential of using postsurgical ctDNA status to guide ACT
decision-making. Currently, decision-making for ACT treatment
is mainly based on risk stratification of stage and other clinical

factors. In the current clinical settings, stage II-III resectable
NSCLC patients are considered high-risk population and are
recommended for adjuvant therapy3,4. However, a significant
proportion of these patients who received ACT still developed
recurrence. We hypothesized that those patients who were
clinically defined as high-risk populations but had no detectable
postsurgical ctDNA may not benefit from additional ACT treat-
ment. We therefore aimed to investigate whether postsurgical
ctDNA status could identify patients who were truly benefit from
ACT treatment and help guide ACT treatment in resectable lung
cancer in order to improve patients’ outcomes and life quality by
avoiding the toxicity of ineffective ACT treatment.

In this study, the majority of stage II–III patients (84.6%; 66/
78) in our cohort had ACT after surgery, except for 12 patients
who did not receive ACT due to their personal unwillingness
(n= 11) or past medical history (1 patient previously diagnosed
with cerebral infarction). Within 12 non-ACT patients, all 7
patients with positive postsurgical ctDNA relapsed within one
year, and 3 out of 5 patients with no detectable MRD remained
recurrence-free (Supplementary Fig. 7). We stratified all the stage
II-III clinical high-risk patients based on whether they received
ACT treatment or whether they had detectable postsurgical
ctDNA (Fig. 2c). Consistent with our hypothesis, ctDNA-positive
patients had a significantly higher risk of recurrence compared to
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Fig. 2 ctDNA positivity could potentially serve as a prognostic marker and guide ACT treatment. a Kaplan–Meier curve of recurrence-free survival (RFS)
in patients stratified by postsurgical ctDNA status. p-value was calculated by the log-rank test. b Kaplan–Meier curve of RFS in patients stratified by post-
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ctDNA-negative patients within either ACT group (p < 0.05) or
non-ACT group (p < 0.05). ctDNA-negative patients have a
similar low risk of relapsing, independent of whether or not
ACT was administered (p= 0.46). In contrast, ctDNA-positive
patients who were treated with ACT had a significantly improved
RFS than ctDNA-positive patients without ACT (p < 0.05).
Similar results were observed when analyzed in AD and SqCC
datasets separately (Supplementary Fig. 8). Therefore, postsurgi-
cal ctDNA status could potentially stratify these clinically high-
risk NSCLC patients into two groups, the ctDNA-positive
patients who could more likely benefit from ACT treatment,
and the ctDNA-negative group where ACT seems to be
unnecessary with a minimal improvement in reducing their
relapse risk.

Longitudinal ctDNA analysis for disease monitoring and
relapse prediction. We next investigated whether using long-
itudinal ctDNA analysis approach during the postsurgical disease
surveillance can serve as a dynamic biomarker for more accurate
recurrence monitoring. 79% (27/34) of relapsed patients detected
at least one positive ctDNA during disease surveillance, compared
with only 41% (14/34) with positive postsurgical ctDNA. This
indicated that longitudinal ctDNA monitors identified more
relapsed patients and are necessary for disease surveillance. Our
results showed that patients with detectable ctDNA at any time
point(s) during posttreatment surveillance had significantly lower
DFS than those who always had negative ctDNA detection after
surgery (HR, 8.5; 95% CI, 3.7–20; p < 0.001; Fig. 2d). In contrast,
postsurgical ctDNA positivity was associated with worse RFS than
negativity with a lower hazard ratio (HR: 4.0; 95% CI: 2.0–8.0;
p < 0.001; Fig. 2a). Similar results were obtained in both AD and
SqCC subgroups with similar HR (8.33 and 8.56, respectively;
Supplementary Fig. 5e, f). Consistent with these results, long-
itudinal ctDNA status was maintained a significant association
with RFS in multivariable Cox proportional hazards regression
analysis along with other clinicopathological variables (HR, 7.4;
95% CI, 3.1–18; p < 0.001; Supplementary Table 3).

Of patients with radiological recurrence, ctDNA analysis was
positive at or before relapse in 82.1% (23/28) of patients with
detectable pretreatment ctDNA shedding and in 60% (3/5) of
patients without pretreatment ctDNA shedding (Fig. 3a). The
median lead time from ctDNA-positive detection to radiological
recurrence was 88 days (Wilcoxon signed-rank test; p < 0.001;
Fig. 3b). As an example, patient P017’s CT scan 4 was considered
negative for recurrence, who eventually developed bone metas-
tasis as shown in CT scan 5 (Fig. 3c). However, ctDNA analysis
has already shown as positive at CT scan 4, which was 189 days
prior to the clinical imaging confirmation. Patient P072 was
initially considered to be radiological recurrence at scan 4–5, but
the diagnosis was corrected as no disease relapse at scan 6
(Fig. 3d, upper panel). Interestingly, the ctDNA analysis of the
patient P072 stayed negative since surgery (Fig. 3d, lower panel).
These results suggest that longitudinal ctDNA analysis could
potentially help clarify equivocal radiological diagnosis and be a
useful complement for routine clinical imaging.

Serial ctDNA monitoring for personalized dynamic recurrence
risk prediction. When evaluating the longitudinal changes of
VAFs of detected ctDNA mutations in serial plasma samples
during disease surveillance, we observed a correlative trend
between the ctDNA VAF changes and times to radiological
recurrence in patients with ctDNA positivity at multiple time
points (Supplementary Fig. 9), suggesting that the changes of
ctDNA level in plasma may correlate to the risk of MRD to
macroscopic (radiological) recurrence. Therefore, we sought to

explore whether dynamic changes in ctDNA level can be used to
predict the risk of recurrence in real-time during postsurgical
surveillance of resected NSCLC.

The joint modeling is a sophisticated framework to analyze
datasets when repeated measurements and time-to-event out-
comes are strongly correlated20. It comprises two linked sub-
models, one for the longitudinal process (a linear mixed sub-
model of repeated measurements of ctDNA) and one for the
time-to-relapse data (a Cox sub-model with baseline covariates)
(Fig. 4a). It exploits the full information of collected data during
follow-up up to landmark time point and takes into account the
sporadic measurement error of the longitudinal data23. In
contrast, the traditional landmark Cox model for dynamic risk
prediction24–26 applies a survival model based solely on the last
observed value of the biomarker at the landmark time and obtains
survival probabilities from a Cox model fitting to the patients who
are still at risk at the time point of interest. Previous studies
showed that hazard rates peaked at ~9 months after surgery in
NSCLC patients, so we chose the closest time spot in our study
(i.e., 8 months post-surgery) as one of the landmark time points,
which corresponds to the time of completion of the third post-
surgery blood collection. In order to evaluate which model has the
best prognostic performance, we constructed both the joint model
and the landmark Cox model using the information up to the
landmark time and predicted the probabilities of recurrence
occurring at 12 months and 15 months post-surgery. A static Cox
model, which allows the prediction of event probabilities at the
same time point from a fixed baseline (postsurgical ctDNA
status), was also constructed for comparison. To assess the model
predictive performance, we examined the discrimination power
and calibration using time-dependent areas under the receiver-
operating characteristics curves (AUROC) and prediction error
(PE), respectively, as proposed by Rizopoulos et al26. A repeated
fivefold cross-validation was conducted to avoid overestimation
of the predictive performance.

Our results indicated that the joint model has a superior ability
to predict recurrence status at 12 months (Wilcoxon rank test,
p < 0.001; AUROC= 0.89) and 15 months (Wilcoxon rank test,
p < 0.001; AUROC= 0.83) post-surgery, comparing with the
static Cox model using only postsurgical ctDNA status, or the
landmarking ctDNA status Cox model (Fig. 4b; Supplementary
Fig. 10; Supplementary Table 4). Furthermore, the prediction
errors of the joint model were significantly lower than those of
both the landmark Cox model and static Cox model at 12 months
(Fig. 4b). For 15 months, the joint model had a similar prediction
error with the landmark Cox model, but significantly lower
prediction errors than the static Cox model. To further estimate
the calibration of the model, we constructed the joint model and
landmark Cox model using the leave-one-out cross-validation
method and evaluated the calibration by reliability diagrams
using Hosmer-Lemeshow (H-L) test27. As shown in Supplemen-
tary Fig. 11, the joint model outperformed the landmarking Cox
model with larger P values and smaller H-L C-statistic values at
both 12- and 15-month periods. In addition, joint modeling of
the survival data of ADC patients alone also behaved better than
the Cox method (Supplementary Fig. 12), although its predictive
ability remained undetermined in SqCC patients due to the small
sample size.

Dynamic recurrence risk prediction for representative patients
was shown in Fig. 4c, d with personalized prediction results of
other patients with two or more blood collection time points
post-surgery were shown in Supplementary Fig. 13. For patient
P057 (Fig. 4c), the recurrence-free probability curve did not show
significant changes due to her ctDNA levels were low and stable
across the three time points. In contrast, patient P017 had a faster
rate of growth in the ctDNA level and had a dramatic decline in

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27022-z ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6770 | https://doi.org/10.1038/s41467-021-27022-z | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


the recurrence-free probability, especially after the third time
point (Fig. 4d), suggesting that she was continually at increased
risk of recurrence and indeed relapsed shortly after the last
plasma follow-up. Taken together, these results indicated that the
joint model outperforms the traditional Cox methods in disease
recurrence risk prediction and could accurately estimate perso-
nalized recurrence risks for resectable NSCLC patients post-
surgery using longitudinal ctDNA surveillance.

Discussion
ctDNA monitoring has emerged as a promising approach for
early diagnosis, prognosis prediction, and postsurgical surveil-
lance. Multiple studies have demonstrated that ctDNA positivity

after surgical resection was correlated with poor patients out-
comes in lung cancer15,16,28. In this prospective cohort study, we
examined 103 NSCLC patients treated with surgical resection
with or without adjuvant therapy to evaluate the utility of ctDNA
in disease monitoring and treatment determination.

The detection rate of pretreatment ctDNA in our study was
similar to that of previous studies16,29, and a persistent correla-
tion between ctDNA status of the serial plasma samples and the
clinical disease course was observed, suggesting the reliability of
our ctDNA detection technique. As for patients who had no
recurrence despite having detectable ctDNA, three of them had
positive ctDNA before or during ACT and the other two had
positive ctDNA at last several time points which indicated that
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they may still be at risk of recurrence and needed to keep under
careful observation (Supplementary Fig. 14). By contrast, 79.4%
(27/34) of relapsed patients had detected ctDNA during the
surveillance, which is similar to two other studies that focused on

surgical patients29,30. Without clinical intervention, almost all of
the serial samples persisted positive, except for one postsurgical
sample (P081) that was collected 3 days after surgery considering
a late clearance of ctDNA. A total of seven relapsed patients were
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negative for plasma ctDNA before recurrence. One patient (P038)
only had brain metastasis upon recurrence. Considering that the
blood–brain barrier may potentially prevent the release of its
ctDNA into the blood circulation31 and our ctDNA samples were
solely collected from the peripheral blood, it may explain why
patient P038 had negative ctDNA detection. Patients P024 and
P079 had no detectable ctDNA even at baseline, and the VAF of
pretreatment ctDNA in patient P037 was as low as 0.04%, sug-
gesting that the tumors in these patients may not actively release
ctDNA. Another reason for a negative ctDNA detection could be
the heterogeneity of the primary tumor. That is, the seeding
clones of the relapsed tumor might not be included in the
sequenced region of the tumor biopsy and the mutated genes of
the relapsed tumor were not covered by our testing panel. Also,
there was no significant difference in coverage depth and related
genes of tumor-specific mutations in relapsed patients where
ctDNA was detected compared to those ctDNA that were not
detected.

We showed that longitudinal posttreatment ctDNA status
could identify NSCLC patients with a higher risk for recurrence
and preceded radiological recurrence by a median of 88 days.
Although most of the previous NSCLC studies demonstrated that
ctDNA detection preceded radiological recurrence, the lead times
were not consistent among these studies. The specific clinical
characteristics in each study cohort (e.g., pathological stage and
treatment strategy) may influence the power of ctDNA preceding
radiological recurrence. Abbosh et al. reported a median lead time
of 70 days of ctDNA in resected NSCLC in TRACERx study16

with a three-month repeated blood collection period, which was
similar to both the blood collection period (3 months) and
median lead time (88 days) in our study, and they updated their
data in the year 2020 with the median ctDNA lead time of
151 days29. In contrast, Chen et al. conducted another resected
NSCLC study and they reported a longer median lead time of
165 days30. However, in Chen et al.’s study, 65.4% of patients
were stage III or above, compared with that of 49% in our cohort,
and their cohort size was relatively small (n= 26). Unfortunately,
our study was also partially affected by the COVID-19 pandemic.
A total of 11 patients in our cohort were delayed on their
arranged blood drawn time point, and therefore had their blood
samples collected right before or at the time of recurrence. As a
result, the lead times in these patients may be largely under-
estimated. In gastric cancer, ctDNA helped clarify equivocal
imaging and CEA findings13. We observed similar cases (Fig. 3c)
in our study, suggesting that ctDNA can be a great adjunct to
radiologic imaging for disease monitor.

Previous studies have demonstrated the potential of MRD
detection using only tumor-specific mutations. This approach is
mainly limited by tumor heterogeneity. A tumor agnostic
approach, which overcomes tumor heterogeneity and can reduce
the cost of sequencing, has been proposed. However, its utility is
mainly limited by clonal hematopoiesis32–35, that is, a large frac-
tion of plasma mutations come from clonal hematopoiesis, which
lowers the signal-to-noise ratio of the assay. To avoid this short-
age, ultradeep sequencing should be also applied to the normal
control samples in order to filter out clonal hematopoiesis-related
mutations. Another approach using multiplex PCR-based NGS of
patient-specific mutations (i.e., 16 mutations selected based on
whole-exome sequencing) can track more mutations. Abbosh et al.
used a patient-specific anchored-multiplex PCR method which
tracked a median of 196 clonal and sub-clonal variants per patient
and underlined the capability of ctDNA in both detecting MRD
following surgery and defining the clonality of relapsing disease29.
However, this approach has relatively high costs and is time-
consuming, which makes it unsuitable for fast decision-making of
clinical applications such as ACT.

ctDNA has been used to guide different treatments. For
example, blood tumor mutational burden (bTMB), which was
estimated using ctDNA, can be used to stratify NSCLC patients
for immunotherapy36,37. Moding et al. proposed that personali-
zation of consolidation immune checkpoint inhibitors (ICI) based
on the presence of ctDNA after CRT could be a powerful
approach for rational therapy selection. Also, Osimertinib showed
favorable outcomes in NSCLC patients harboring the EGFR
T790M mutation, which was also detected from ctDNA38. Other
therapeutic strategies for lung cancer, such as neoadjuvant che-
motherapy or adjuvant immunotherapy, have shown their
potential to improve the survival of patients and have prompted
substantial interest. The methodologies used in this study,
including deep next-generation sequencing and joint modeling,
can be easily expanded to neoadjuvant settings in future studies.

In this study, we focused on the potential of ctDNA in ACT
treatment after surgery. Taieb et al. have underlined the prog-
nostic value and relation with adjuvant treatment duration of
ctDNA in colon cancer39. But currently, decision-making for
ACT treatment is based on stage and clinical risk factors in lung
cancer. A previous meta-analysis of 26 trials of ACT after surgery
in NSCLC demonstrated a ∼4% absolute survival benefit at 5
years7, meaning a significant subset of patients enrolled in these
trials were cured by surgery and thus may not benefit from
adjuvant therapy. In our cohort, although postsurgical ctDNA
positivity was significantly associated with worse RFS regardless
of ACT treatment, the adjuvant treatment showed a beneficial
effect in patients with positive postsurgical ctDNA status. Hence,
our study suggests the potential to use ctDNA MRD to stratify a
subgroup of ctDNA positive patients who are more likely to
benefit from ACT and avoid the overtreatment for ctDNA
negative patients. This postsurgical ctDNA negative group could
be monitored by ctDNA-based surveillance instead of ACT.
However, as the result was based on stage II–III patients, the
application on patients who were not recommended for ACT in
current clinical settings requires further studies. In addition,
although plasma samples were collected prospectively for ctDNA
profiling, our analyses were retrospective and patients were not
randomly assigned to treatment cohorts. Randomized studies are
required to definitively test the clinical utility of ctDNA to guide
ACT treatment after surgery.

In this study, we preliminarily demonstrated that joint mod-
eling of longitudinal ctDNA level and time-to-recurrence data
can predict the time of recurrence with relatively high accuracy in
a cohort of resected NSCLC patients and also illustrated the use of
the joint model for individualized dynamic recurrence prediction.
Based on the longitudinal measures of ctDNA, the risk of
recurrence was calculated and updated when more measurements
became available. This approach can guide the personalized
assessment frequency and facilitate earlier diagnoses, thus
enhancing prognostication and improving the timing to inter-
vention with a disease-modifying agent once available. Further
clinical trials need to be done to investigate the effect of the
longitudinal outcome on time to event and construct a more
accurate relationship between ctDNA change and recurrent
progression.

There are potential limitations in our study. We could not
collect or test some blood samples based on the schedule due to
the COVID-19 pandemic, so the lead time of ctDNA may be
underestimated and the overall performance of joint models
could not be evaluated and the model may not reach its best
performance for personalized dynamic risk prediction. Further-
more, as only internal validation was used to validate the per-
formance of the joint modeling, an independent patient cohort is
warranted to further validate the joint model in the future.
Although our cohort size is larger than previous studies15,16, our
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analyses of investigating the potential of using postsurgical
ctDNA to guide ACT and using joint modeling of longitudinal
ctDNA to predict recurrence risk may be limited by the modest
sample size of subcohorts.

In summary, we demonstrated that ctDNA serves as a robust
biomarker for postsurgical and post-ACT risk stratification and
early detection of recurrence in NSCLC. Moreover, our data
suggest that postsurgical ctDNA analysis could guide ACT
treatment decisions and avoid overtreatment in patients who
were less likely to benefit from ACT. We also explored the
potential of joint modeling of serial ctDNA and time-to-event
data for individualized dynamic risk prediction and demonstrated
its superiority over the traditional landmark Cox model. These
findings can provide a framework for future clinical trials to
investigate the clinical benefits of ctDNA-guided treatment
decisions.

Methods
Study design. This was a prospective cohort study of patients with resectable non-
small cell lung cancer (NSCLC) enrolled at the Cancer Hospital of Chinese
Academy of Medical Sciences from 2018 to 2020. Eligible patients underwent
tumor resection with curative intent, followed by adjuvant therapy when indicated
by the standard of clinical guidelines. Tumor tissue collected at surgery and pre-
treatment peripheral blood samples collected before surgery were used for pre-
surgical mutational profiling. Plasma samples were prepared within 2 h of blood
collection for ctDNA extraction, while the white blood cells from the buffy coat
after plasma preparation were also collected from the same patient at baseline and
sequenced as normal controls to identify germline mutations and mutations due to
clonal hematopoiesis. The mean sequencing coverage depth of the white blood cells
was ~300×. The postsurgical blood samples were collected within 30 days after
surgery. Patients were then scheduled to be followed every 3 months with com-
puted tomography (CT) scan and blood collections until recurrences determined
by CT scan results. The genetic tests were performed in a centralized clinical testing
center (Nanjing Geneseeq Technology Inc., China; Certified to CAP, CLIA and
ISO15189) according to protocols reviewed. The study was approved by the Ethics
Committee of Cancer Hospital, Chinese Academy of Medical Sciences and Peking
Union Medical College. All patients provided oral and written informed consent to
participate and publication. This study was registered at Chinese Clinical Trial
Registry (ChiCTR) (ChiCTR1900024656; data of registration 20/07/2019).

Development of lung cancer tracking panel and ATG-seq technology. A tar-
geted next-generation sequencing panel (Nanjing Geneseeq Technology Inc.)
covering 139 critical lung cancer-related genes (Supplementary Table 5) with a
total genomic region of 130 kb was used for both tumor tissue and plasma ctDNA
specimens. The lung cancer tracking panel was developed based on somatic
mutational profiles of more than 8000 Chinese NSCLC tumor specimens and ~500
LUAD and LUSC samples from The Cancer Genome Atlas (TCGA; http://
cancergenome.nih.gov) database. Hotspot exons/regions, including all known
actionable variants in lung cancer, were included aiming to cover the maximum
patients with the minimum panel size for optimal cost-effectiveness. The resulted
panel can identify somatic mutations in over 95% of patients in the total database,
and over 98% of Chinese lung cancer patients.

To sensitively and specifically detect low-abundance mutations in circulating
cell-free DNA (cfDNA), a customized library preparation with bi-barcoding system
and ultradeep sequencing approach called Automated Triple Groom Sequencing
(ATG-Seq) developed by Nanjing Geneseeq Technology Inc. was applied to cfDNA
samples. To minimize the errors from PCR, hybridization, damaging, sequencing,
and contamination, and avoid mutations from non-tumor sources in cfDNA, we
conducted the following procedures: (i) we sequenced the cfDNA fragment at a
depth of ~30,000×, which produced redundant DNA molecules; (ii) mapping
positions and a bi-barcode system were used to maximize the representative power
of unique DNA molecules; (iii) a duplex assisted decoder system was used to filter
mapping and sequencing artifacts;

We also constructed a bioinformatics polishing pipeline by sequencing a pool of
plasma samples collected from over 100 healthy donors. Briefly, we performed
ATG-seq on plasma samples of healthy individuals to assemble a position- and
base substitution-specific background error database based on allele frequency and
distinct supporting reads throughout the panel. An alternation was considered as
sequencing noise if its allele frequency and distinct supporting reads were not
significantly higher than the corresponding background errors in the database. The
limit of detection (LOD) on variant allele frequency (VAF) was 0.01%, as tested
with ~30,000× deep sequencing of DNA mixtures of two reference human DNA
samples (NA19240 and NA18535).

Library preparation and sequencing. The plasma was separated by centrifugation
at 3000 × g for 10 min. Cell-free DNA (cfDNA) from the plasma was extracted

using QIAmp Circulating Nucleic Acid Kit (Qiagen). FFPE tumor samples were
de-paraffinized with xylene, and genomic DNA was extracted using QIAamp DNA
FFPE Tissue Kit (Qiagen). Genomic DNA of the white blood cells were extracted
using DNeasy Blood & Tissue kit (Qiagen). Purified genomic DNA was qualified by
Nanodrop2000 for A260/280 and A260/A230 ratios (Thermo Fisher Scientific). All
DNA samples were quantified by Qubit 3.0 using the dsDNA HS Assay Kit (Life
Technologies) according to the manufacturer’s recommendations.

Sequencing libraries were prepared using KAPA Hyper Prep kit (Roche) with
an optimized manufacturer’s protocol. In brief, for tumor tissue and normal
control samples, 1–2 μg of genomic DNA, which was sheared into ~350 bp
fragments using Covaris M220 instrument (Covaris), underwent end-repairing,
A-tailing and ligation with indexed sequencing adapters sequentially, followed by
size selection using Agencourt AMPure XP beads (Beckman Coulter). For plasma
samples, up to 50 ng of cfDNA, underwent end-repairing, A-tailing, ligation with
customized adapter containing unique molecular index (UMI), PCR amplifying
with primers containing demultiplexing indices sequentially, followed by
purification of cfDNA libraries using Agencourt AMPure XP beads (Beckman
Coulter). Finally, libraries were amplified by PCR and purified using Agencourt
AMPure XP beads.

Different libraries with unique indices were pooled together in desirable ratios
for up to 2 μg of total library input. Human cot-1 DNA (Life Technologies) and
xGen Universal blocking oligos (Integrated DNA Technologies) were added as
blocking reagents. Customized xGen lockdown probes (Integrated DNA
Technologies) targeting 139 lung cancer-relevant genes were used for hybridization
enrichment. The capture reaction was performed with Dynabeads M-270 (Life
Technologies) and xGen Lockdown hybridization and wash kit (Integrated DNA
Technologies) according to the manufacturers’ protocols. Captured libraries were
on-beads PCR amplified with Illumina p5 (5′ AAT GAT ACG GCG ACC ACC GA
3′) and p7 primers (5′ CAA GCA GAA GAC GGC ATA CGA GAT 3′) in KAPA
HiFi HotStart ReadyMix (KAPA Biosystems), followed by purification using
Agencourt AMPure XP beads. Libraries were quantified by qPCR using KAPA
Library Quantification kit (KAPA Biosystems). Library fragment size was
determined by Bioanalyzer 2100 (Agilent Technologies). The target-enriched
library was then sequenced on HiSeq4000 NGS platforms (Illumina) according to
the manufacturer’s instructions.

Mutation calling. Trimmomatic40 was used for FASTQ file quality control, lead-
ing/trailing low quality (quality reading below 30) or N bases were removed.
Qualified reads were then mapped to reference human genome (hg19) using
Burrows-Wheeler Aligner41. PCR duplicates were removed by Picard (Broad
Institute, MA, USA) after local realignment around known indels and base quality
recalibration using Genome Analysis Toolkit (GATK 3.4.0). For tissue specimens,
Single-nucleotide variations (SNVs) and insertion/deletion were detected using
VarScan242 with default parameters. Genomic fusions were identified by
FACTERA43 with default parameters. Mutations that were observed in ≥20 cancer
cases reported in the COSMIC database were defined as hotspots. a minimum
variant allele frequency of 1% or 2% and minimum variant supporting reads of 5 or
6, for hotspot mutations or other mutations, respectively.

For cfDNA samples, single-stranded consensus sequences (SSCS) were
generated by collecting all read pairs with the same mapping positions and
grouping them into different SSCS families with the same UMI barcode sequences
at both ends. Here, we required that a consensus read was supported by at least two
reads. After the construction of the SSCS sequence, two SSCS read pairs with
transposed UMI barcode sequences and the same mapping position were merged
into one DCS, whenever possible. The mean coverage of the single-stranded
consensus read was ~6796× (Supplementary Data 3). Hereafter, a local
bioinformatics polishing pipeline was used to identify somatic variants in ctDNA
after filtering out germline variants using normal control DNA. Mutations
identified in the matched tumor DNA, which were supported by a minimum of one
unique consensus mutant allele read and passed the polishing criteria were
regarded as being present. ctDNA positivity was defined by accessing the presence
of one or more mutations identified in the matched tumor sample in ctDNA.

Joint model construction and evaluation. To construct the joint model, we
combined a linear mixed-effect sub-model to describe the change of ctDNA during
the serial measurements and a Cox proportional hazards sub-model for the risk of
relapse. The ctDNA variant allele frequency (VAF) at each time point was calcu-
lated by averaging the somatic allele frequency for all mutations used for detection
calling. Natural cubic splines with two degrees of freedom were used for both the
fixed- and random-effects parts of the mixed model based on the investigation of
the shapes of the log VAF. In the Cox proportional hazards sub-model, we con-
trolled for T stage and TP53 status as baseline covariates (Fig. S4). The joint model
was represented as

hi tð Þ ¼ h0 tð Þexpfγ1TP53i þ γ2Tstagei þ α1ηiðtÞg ð1Þ
The hazard function was denoted as hi tð Þ, and h0 tð Þ was the baseline hazard

function. An association parameter α1 linked the two-component sub-models,
assuming the hazard at time t was dependent on the true longitudinal trajectory,
ηiðtÞ, through its value at time t. In addition, we compare the performance of
current value with two other assumptions of association two sub-models, (i)
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current value+ current rate of change with hazard function

hi tð Þ ¼ h0 tð Þexpfγ1TP53i þ γ2Tstagei þ α1ηi tð Þ þ α2η
0
i tð Þg ð2Þ

and (iii) current value+ cumulative effect (area under the curve) of ctDNA with
hazard function

hi tð Þ ¼ h0 tð Þexp γ1TP53i þ γ2Tstagei þ α1ηi tð Þ þ α3

Z t

0
ηi sð Þds

� �
ð3Þ

The best performance was achieved by the joint model that used the current
value and cumulative effect (area under curve) as association parameters
(Supplementary Fig. 15) and was used as the final joint model.

We adopted a Bayesian approach for model inference and for making
predictions using an R package JMbayes44. To assess the model predictive
performance of the joint model, we examined the discrimination power and
calibration. Discrimination power is the ability to separate patients who will relapse
early from those who will relapse late or not at all. Calibration measures accurately
the model’s predictions match overall observed event rates. We estimated the
discrimination power and calibration using AUROC and PE, respectively, as
proposed by Rizopoulos and calculated them using Jmbayes package. For
comparison, the landmark Cox model was fitted using ctDNA detection status and
baseline covariates, including T stage and TP53 status. Static Cox model was also
fitted using postsurgical ctDNA status and the same baseline covariate. A repeated
(20 times) five-fold cross validation was conducted to avoid overestimation of the
predictive performance of the markers. Briefly, all patients were randomly split into
five subgroups of equal size. The analysis was repeated five times with one
subgroup as the test set and the other subgroups together as the training set.
Models were fitted with the training set and then applied to the test set. Prediction
performance was calculated by averaging the result of these five analyses.

We also constructed the joint model and the landmarking cox model using
leave-one-out cross-validation method and evaluated the calibration by reliability
diagrams using the Hosmer-Lemeshow test27, a statistical test for goodness of fit.
The data are divided into a number of groups, where each group contains
approximately the same number of patients. The observed and expected number of
cases in each group is calculated and a Chi-squared statistic is calculated (C-
statistic). To account for censoring, we calculated the observed event probability by
the Kaplan–Meier method.

Statistical analyses. Recurrence-free survival (RFS) was measured from the date
of surgery to the verified first radiographic recurrence (local or distant). Cox
proportional hazards regression analysis and Kaplan–Meier estimate were used to
assess the association of ctDNA and clinical variables. Multivariate analysis was
performed with clinical variables that were statistically significant in univariate
analysis. Wilcoxon signed-rank test was used to test the significance of lead time
from ctDNA detection to radiographic recurrence and AUROC and PE of joint
model and cox models. All P values were based on two-sided testing, and differ-
ences were considered significant at P < 0.05. Statistical analysis was performed
using R software, version 4.0.2.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All raw targeted DNA-sequencing data have been deposited in the National Genomics
Data Center (NGDC) under the accession code HRA001346. The deposited and publicly
available data are compliant with the regulations of the Ministry of Science and
Technology of the People’s Republic of China. The raw sequencing data contain
information unique to individuals and are available under controlled access. Access to
the data can be requested by completing the application form via GSA-Human System
and is granted by the corresponding Data Access Committee. Additional guidance can be
found at the GSA-Human System website [https://ngdc.cncb.ac.cn/gsa-human/
document/GSA-Human_Request_Guide_for_Users_us.pdf]. Data used for survival
analysis and joint model construction and evaluation are publicly available at https://
github.com/cancer-oncogenomics/ctDNA-dynamic-prediction-lung-cancer. All specific
mutation genomic locations and allele frequencies are available in Supplementary
Data 2. Source data are provided with this paper.

Code availability
All analyses were performed using R version 4.0.2. R package survival (version 3.2-10)
was used for survival analysis. R package JMbayes (version 0.8-85) was used for the
construction and evaluation of joint models and cox models. Reference scripts to
reproduce the results of this study is available at https://github.com/cancer-
oncogenomics/ctDNA-dynamic-prediction-lung-cancer.
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