Table 2.
Study, Country, Year | Study Design | Sample Size (DM)(n) | Age (Year) of DM | Type of Diabetes Population | Sex (%)Male | Diabetic Duration | Outcome evaluated* | SAF(AU) | MINORCriteria |
---|---|---|---|---|---|---|---|---|---|
Osawa, Japan, 2016 [11] | |||||||||
Cross-sectional | 105 | 37.4 ± 12.4 | DM1 | 32.4 | 21.9 ± 9.2 | Age, diabetic duration, BMI, HbA1c, max-IMT | 2.07 ± 0.5 | 18 | |
Škrha Jr, Czech Republic, 2013 [12] | |||||||||
Cross-sectional | DM1:47 DM2:41 |
DM1:54.79±39.57 DM2:58±28.17 |
3.4%DM1 46.6%DM2 |
DM1:57 DM2:61 |
DM1:50.49±103.67 DM2:28.51±54.34 |
Age, diabetic duration, HbA1c | DM1: 2.39±0.54 DM2: 2.63±0.73 |
18 | |
Hu, China, 2012 [13] | |||||||||
Cross-sectional | 195 | 58.44 ± 3.74 | DM | 56.92 | 7.26 ± 1.45 | Age, BMI, diabetic duration, HbA1c, DFU | 2.35 ± 0.17 | 12 | |
Cho, Australia, 2016 [15] | |||||||||
Cross-sectional | 135 | 15.6 ± 2.1 | DM1 | 51 | 8.7 ± 3.5 | DR, Age, diabetic duration, HbA1c | 1.23 ± 0.27 | 13 | |
Wan, China, 2019 [16] | |||||||||
Cross-sectional | 820 | 60.72 ± 10.23 | DM2 | 52.43 | 12.77 ± 8.08 | DPN | 2.35 ± 0.25 | 12 | |
Liu, China, 2015 [17] | |||||||||
Cross-sectional | 118 | 64.6 ± 9.1 | 98.3% DM2 | 72.9 | 14.7 ± 7.5 | Age, BMI, diabetic duration, HbA1c | 2.8 ± 0.2 | 11 | |
Uruska, Poland, 2019 # [20] | |||||||||
Cross-sectional | 476 | 44.53 ± 16.09 | DM1 | 48.1 | 26.38 ± 10.8 | Age, BMI, diabetic duration, HbA1c | 2.37 ± 0.54 | 13 | |
Li, China, 2017 [21] | |||||||||
Cross-sectional | 362 | 50.5 ± 8.3 | DM2 | 49.44 | NA | BMI, HbA1c, | 2.72 ± 1.46 | 18 | |
Vélayoudom Céphise, France, 2016 [22] | |||||||||
Prospective1 | 243 | 51.2 ± 16.7 | DM1 | 58.9 | 21.4 ± 13.8 | DNP, D-MVE, | 2.13± 0.58 | 11 | |
Vouillarmet, France, 2013 [23] | |||||||||
Prospective2 | 150 | 63.3 ± 11.9 | 85% DM2 | 68 | 17 ± 12.4 | DFU | 3.03 ± 0.14 | 11 | |
Stirban, Germany & Romania, 2018 [24] | |||||||||
Cross-sectional | 497 | 61.08 ± 8.31 | 93.36% DM2 | 48.7 | 9 ± 5.93 | Age, BMI, HbA1c | 2.51 ± 0.06 | 10 | |
Januszewski, Australia, 2011 [25] | |||||||||
Cross-sectional | 69 | 36.47 ± 4.02 | DM1 | 55.07 | DM:20.13 ± 6.7 | Age, diabetic duration, HbA1c | 2.01 ± 0.04 | 16 | |
Monami, Italy, 2008 [26] | |||||||||
Cross-sectional | 92 | 69.1 ± 12.4 | DM2 | 60.9 | 12.3 ± 10.7 | Age, BMI, HbA1c | 2.5 ± 0.9 | 10 | |
Sugisawa, Japan, 2013 [27] | |||||||||
Cross-sectional | 241 | 36.7 ± 10.5 | DM1 | 54.77 | 18.2 ± 10.4 | Age, BMI, diabetic duration, HbA1c | 2.31 ± 0.5 | 17 | |
Hangai, Japan, 2016 [28] | |||||||||
Cross-sectional | 122 | 61 ± 13 | DM2 | 59 | 10.7 ± 9.3 | Age, diabetic duration, BMI, HbA1c, max-IMT | 2.42 ± 0.417 | 13 | |
Hirano, Japan, 2013 [29] | |||||||||
Cross-sectional | 138 | 63.7 ± 12.2 | DM2 | 44.2 | DM:13.2 ± 9.9 | Age | 2.48 ± 0.48 | 11 | |
Osawa, Japan, 2018 [30] | |||||||||
Cross-sectional | 193 | 61.1 ± 12.3 | DM2 | 55.4 | DM:13.7 ± 10.3 | DR, DPN, DNP, D-MVE, age, BMI, diabetic duration, HbA1c, max-IMT | 2.57±0.47 | 19 | |
Tanaka, Japan, 2011 [31] | |||||||||
Cross-sectional | 130 | 67.13 ± 12.72 | DM2 | 39.2 | 9.1 ± 7.64 | DR, DPN, DNP, D-MVE, age, BMI | 2.16 ± 0.49 | 12 | |
Temma, Japan, 2015 [32] | |||||||||
Cross-sectional | 61 | 66.6 ± 9.2 | DM2 | 62.29 | 10.4 ± 7.3 | Max-IMT, Age, diabetic duration, BMI, HbA1c, | 2.5 ± 0.5 | 12 | |
Yasuda, Japan, 2014 [33] | |||||||||
Cross-sectional | 67 | 61 ± 8.9 | DM2 | 56.71 | 13.42 ± 2.38 | Age | 2.5 ± 0.3 | 20 | |
Yoshioka, Japan, 2018 [34] | |||||||||
Cross-sectional | 162 | 61.2 ± 11.2 | DM2 | 55 | 14.6 ± 10 | Age, diabetic duration, HbA1c | 2.53 ± 0.45 | 19 | |
Gerrits, The Netherland, 2008 [35] | |||||||||
Prospective3 | 881 | 66 ± 11 | DM2 | 46 | 5.86 ± 6.07 | DR, DPN, DNP, diabetic any microvascular complication, D-MVE | 2.74 ± 0.7 | 10 | |
Ahdi, The Netherland, 2015 [36] | |||||||||
Cross-sectional | 810 | 59.67 ± 10.9 | DM2 | 52 | 14.17 ± 12.03 | DR,DPN,diabetic any microvascular complication, D-MVE, age, diabetic duration | 2.94 ± 0.68 | 12 | |
van der Heyden, The Netherland, 2018 [37] | |||||||||
Retrospective | 77 | 15.3 ± 2.52 | DM1 | 49.35 | DM: 6.53 ± 4.45 | Age, diabetic duration, HbA1c | 1.38 ± 0.23 | 16 | |
Banser, The Netherland, 2015 [38] | |||||||||
Cross-sectional | 144 | 12.2 ± 3.8 | DM1 | 56.94 | 4.1 ± 3.7 | Age, diabetic duration, HbA1c | 1.33 ± 0.36 | 11 | |
Yozgatli, The Netherland, 2018 [39] | |||||||||
Prospective4 | 514 | 65.01 ± 11.35 | DM2 | 48.4 | 14.12 ± 8.03 | diabetic any microvascular complication, D-MVE | 2.86 ± 0.65 | 11 | |
Furst, USA, 2016 [40] | |||||||||
Cross-sectional | 16 | 65.4 ± 2.4 | DM2 | NA | 14.3 ± 2 | HbA1c | 2.8 ± 0.1 | 10 | |
Llaurado, Spain, 2014 [41] | |||||||||
Cross-sectional | 68 | 35.3 ± 10.1 | DM1 | 50 | DM:13.1 ± 8.67 | Age, BMI, HbA1c | 2.05 ± 0.37 | 18 | |
Rigalleau, France,2015 [42] | |||||||||
Cross-sectional | 418 | 61.8 ± 10.3 | DM2 | 59.3 | 13.33 ± 9.78 | D-MVE | 2.53 ± 0.62 | 11 |
# This study was conducted at the same center of Araszkiewicz et al, study [43]. One hundred and forty DM patients were included in the later study, therefore only the odd ratio evaluations for SAF and DR, DPN, DNP and diabetic any microvascular complications were extracted from Araszkiewicz et al, study.
*SAF correlation was analyzed for age, BMI, diabetic duration, HbA1c, max-IMT. Odd ratio was measured for SAF (independent variable) and each of DR, DPN, DNP, diabetic microvascular complication, D-MVE, and DFU. In Yozgatli et al. study HR was estimated for SAF and diabetic vascular complications relation.
1 prospective study with 4 years follow-up. 2two months follow-up.
3follow-up for 3.1 years. 4A media follow-up for 5.1 years.
Abbreviations: SAF, skin autofluorescence; AU, Arbitrary unit; MINOR, Methodological Index for Non-Randomized Studies; DM, Diabetes Mellitus; BMI, Body Mass Index; max-IMT, max carotid Intima Media Thickness; NA, Not Available; DR, Diabetic Retinopathy; DPN, Diabetic Peripheral Neuropathy; DNP, Diabetic Nephropathy; D-MVE, Diabetic Macrovascular Event; DFU, Diabetic Foot Ulcer.