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Abstract

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that can be activated by structurally diverse
compounds arising from the environment and the microbiota and host metabolism. Expanding evidence has been shown that
the modulation of the canonical pathway of AHR occurs during several chronic diseases and that its abrogation might be of
clinical interest for metabolic and inflammatory pathological processes. However, most of the evidence on the pharmacologi-
cal abrogation of the AHR-CYP1A1 axis has been reported in vitro, and therefore, guidance for in vivo studies is needed.
In this review, we cover the state-of-the-art of the pharmacodynamic and pharmacokinetic properties of AHR antagonists
and CYP1AL1 inhibitors in different in vivo rodent (mouse or rat) models of disease. This review will serve as a road map
for those researchers embracing this emerging therapeutic area targeting the AHR. Moreover, it is a timely opportunity as

the first AHR antagonists have recently entered the clinical stage of drug development.
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Introductory note to the aryl hydrocarbon
receptor (AHR)

The aryl hydrocarbon receptor (AHR) is a ligand-activated
transcription factor that belongs to the basic helix-loop-
helix/Per-Arnt-Sim (bHLH/PAS) family with important
functions in sensing and incorporating environmental and
outer stimuli (light—dark, O, alterations, xenobiotic expo-
sure, and microbiota metabolites) into cellular adaptive
responses (reviewed by [1]). Other members of this family
are the CLOCK-BMAL1 (key components of the circadian
clock), the hypoxia-inducible factors (HIFs), and the aryl
hydrocarbon receptor translocator (ARNT, also named
HIF-18), and interesting evidence on the cross-play among
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them have been reported (reviewed by [2]). In the present
review, a brief introduction will be given to the AHR-
CYPI1A1 axis, but we would like to invite the reader to find
more information about these druggable targets in the excel-
lent reviews suggested throughout this introductory note.

As a cytosolic protein, the AHR exists in an inactive state
bound to the chaperones heat shock protein 90 (HSP90),
HSP90-associated co-chaperone p23, AHR-interacting
protein (AIP), also called hepatitis B virus X-associated
protein 2 (XAP2), and tyrosine kinase c-Src. This chaper-
one complex maintains the proper folding and assures the
ligand-binding competency and, overall, the transcriptional
effectiveness of AHR (reviewed by [3, 4]).

AHR ligands come from the environment and from the
microbiota and cellular metabolism. There is a wide variety of
compounds with different chemical properties, structure, and
binding affinities, which have been recognized as AHR ligands.

Among the exogenous compounds, it may be referred envi-
ronmental contaminants including the halogenated aromatic
hydrocarbons (HAH), such as 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD), 2,3,7,8-tetrachlorodibenzofuran (TCDF), and
3.4,3',4,'5-pentachlorobiphenyl (PCB), and the polycyclic aro-
matic hydrocarbons (PAH), such as benzo[a]pyrene (B[a]P)
and 3-methylcholanthrene (3-MC). In addition, some dietary
substances have been also described including polyphenols
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(quercetin, resveratrol, curcumin, indole-3-carbinol) (reviewed
by [5, 61).

Among the endogenous ligands, some ultraviolet pho-
toproducts of tryptophan have been described as the
6-formylindolo[3,2-b]carbazole (FICZ); the indigoids
indigo and indirubin; the kynurenine (Kyn) and its metabo-
lites including kynurenic acid; the metabolites of arachi-
donic acid like lipoxin 4A, prostaglandin G2, and hydrox-
yeicosatetraenoic acid; and cystine [7] and the tetrapyrroles
derived from heme, biliverdin, and bilirubin (reviewed by [8,
9]). This vast ligand promiscuity converges in the fact that
according to the ligand, AHR might be activated in a diverse
manner and in a cell- and tissue-dependent way [3, 5].

AHR has long been associated with an adaptive response
to environmental contaminants, most of which are man-
made and not related to human physiology. This response
activates the AHR canonical or adaptive pathway, which
involves AHR-ARNT heterodimer binding DNA at xeno-
biotic response elements (XRE), including xenobiotic
enzymes and transporters that allow environmental con-
taminants detoxification (reviewed by [4, 10, 11]). The
CYP1ALl expression is a sensitive marker of the activation
of this route [12]. Moreover, a negative regulatory feedback
mechanism is present, with the induction of AHR repressor
(AHRR) gene, capable of competing with AHR for ARNT,
originating a transcriptionally inactive heterodimer and thus
repressing AHR transcriptional activity [13]. Alternatively,
several exogenous ligands (e.g., polyphenols as resveratrol
or quercetin) activate the AHR alternative pathway, trigger-
ing the expression of the antioxidant and anti-inflammatory
paraoxonase 1 (PON-1) [11]. Besides ARNT, the AHR also
has non-canonical dimerization partners that will activate
the transcription of non-consensus xenobiotic response ele-
ments (NC-XRE). One of these novel proteins is the tumor
suppressor Kruppel-like factor 6 (KLF6) that is involved in
the regulation of cellular differentiation, proliferation, and
apoptosis [14]. Also, the AHR can interplay with other pro-
teins, most notably with NF-kB subunits and ERa. At final
steps, the AHR undergoes proteasomal degradation (Fig. 1).

To add more complexity, several lines of research have
documented ligand-independent AHR activation, namely
modulation by cAMP [15], oxidized LDL [16], vascular
shear stress [17], or even reactive oxygen species (ROS) [18].

The mechanism by which AHR ligands affect physi-
ological processes appears to involve multiple interactions
between AHR and other signaling pathways (reviewed
extensively by [3, 4, 10, 11]) or may be a consequence of
a change in the activity of metabolic enzymes and trans-
porters, which are AHR target genes that modify the avail-
ability and disposition of endogenous metabolites (e.g.,
estrogen, arachidonic acid, melatonin) [19-21]. AHR target
genes include several drug-metabolizing enzymes belong-
ing to the cytochrome P450, like cytochrome P450, family
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1, subfamily A, polypeptide 1 (CYP1A1), CYP1A2 and
CYP1Bl1, aldehyde dehydrogenase 3 (ALDH3), and UDP
glucuronosyltransferase family 1 member A1 (UGT1A1)
[22-24] and transporters such as the ATP binding cassette
subfamily B member 1 (ABCB1) [25].

Pharmacological targeting of AHR-CYP1A1
axis in vivo

In this review, we aim to compile the state-of-the-art con-
cerning AHR antagonists and CYP1A1 inhibitors, seeking
consensus for their use in pharmacological in vivo studies.
The role of the AHR axis in pathophysiology is expanding
fast; however, many of these compounds are non-selective,
and their pharmacology is poorly characterized. We summa-
rized the pharmacodynamic and pharmacokinetic character-
istics of AHR antagonists and CYP1A1 inhibitors that were
tested in mouse (Mus musculus) and rat (Rattus norvegicus),
which represent fundamental animal models of disease in
translational research studies. While the blockade of AHR
has been consistently described in cardiovascular diseases
[30, 31], it must be mentioned that in other fields, includ-
ing cancer, the AHR signaling is dichotomous (i.e., whereas
in some type of cancer, the activity of AHR contributes to
growth and progression, in other types of tumors, it may
suppress them) [32].

For the accomplishment of this review, a search in Pub-
Med was performed using the following keywords: aryl
hydrocarbon receptor antagonist; AHR antagonist; CYP1A1
inhibitor; mice; rat; rodents; and in vivo until the end of June
of 2021. Herein, for the sake of a better characterization for
in vivo usage, we included all studies that reported any phar-
macological effect of these drugs, even without a detailed
description on the role of AHR-CYP1A1 in the underlying
mechanism of disease. For all eligible studies, we provided a
summing up of the conclusion in the main text of the manu-
script and reserved the details on experimental approach and
outcomes for Tables 1 and 2.

AHR antagonists

AHR might activate different signaling pathways (Fig. 1).
Herein, we will focus on the main one, the canonical
AHR-CYPI1A1 axis, and particularly on the putative phar-
macological properties of compounds that abrogate its
ligand-dependent activation. These compounds have been
evaluated in several models of disease. We annotated the
animal species (strain, sex, and age) and the chemical or
biological agents used as model of disease, together with
the pharmacological properties of these compounds: drug
administration route, frequency and duration of the treat-
ment, pharmacokinetic properties, effects on the AHR axis
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Fig. 1 Representations of ligand-dependent AHR activation path-
ways. Inactive AHR is localized at the cytoplasm complexed to some
chaperones and other elements (HSP90, XAP2, p23, c-Src). Upon
ligand binding, conformational changes allow AHR to translocate
to the nucleus, where it dissociates from its chaperone complex.
Depending on the ligand, AHR can follow either ARNT-dependent
or ARNT-independent pathways. In the ARNT-dependent pathways,
the AHR-ligand complex dimerizes with its binding partner ARNT.
The ligand-AHR-ARNT complex will activate or repress the expres-
sion of different genes depending on the type of ligand. Canonical
pathway (left side). AHR binding to Kyn, HAH (e.g., dioxin), or PAH
(e.g., B[a]P) activates the canonical pathway; the dimer AHR-ARNT
binds to xenobiotic response elements (XRE) and drives the expres-
sion of xenobiotic metabolizing enzymes such as CYP1Al, the pro-
totypical target gene of AHR. The AHR-ARNT complex promotes
gene expression by recruiting several components of the transcrip-
tional machinery and fulfilled this function; AHR activity ends by
the dissociation of the complex from the DRE to be exported from
the nucleus, where it enrolls in ubiquitin-mediated proteasomal deg-
radation [26]. Moreover, a negative regulatory feedback mechanism
is present, with the induction of AHR repressor (AHRR) gene, capa-
ble of competing with AHR for ARNT, originating a transcription-
ally inactive heterodimer, thus repressing AHR transcriptional activ-
ity [13]. Alternative pathway (center). AHR binding to polyphenols
such as resveratrol or quercetin activates the alternative pathway by

related genes (AHR, CYP1A1, ARNT, AHRR), and drug
response observed in the animal model investigated. The
details on the eligible studies of the AHR antagonists are
presented at Table 1. In vitro competitive binding assays,
using labeled TCDD or labeled PAL (2-azido-3-[(125)
IJiodo-7,8-dibromodibenzo-p-dioxin) as AHR agonists,
proved that most molecules target directly the AhR and the
ICy, values are presented in Table 1. Despite the same phar-
macological target, AHR antagonists are compounds with

binding to alternative xenobiotic response elements such as the anti-
oxidant and anti-inflammatory paraoxonase 1 (PON-1). Other non-
canonical pathways (right side) include alternative REs of alternative
AHR-ARNT related transcriptional responses also observed in tyros-
ine hydroxylase [27], a precursor enzyme in the synthesis of dopa-
mine and catecholamines, Bax, an apoptosis regulator gene [28], and
in TGF-p [29]. Also, the AHR can bind to other non-ARNT binding
partners, like the Kruppel-like factor 6 (KLF6) or the NF-kB subu-
nits RelA or RelB. ALHD3, aldehyde dehydrogenase 3; AHR, aryl
hydrocarbon receptor; AHRE, aryl hydrocarbon response element;
AHRR, AHR repressor; ARNT, aryl hydrocarbon receptor nuclear
translocator; B[a]P, Benzo[a]pyrene; CYP1Al, cytochrome P450,
family 1, subfamily A, polypeptide 1; CYP1A2, cytochrome P450,
family 1, subfamily A, polypeptide 2; CYPIBI1, cytochrome P450,
family 1, subfamily B, polypeptide 1; GST, glutathione S-transferase;
HAH, halogenated aromatic hydrocarbon; HSP90, heat shock protein
90; KLF6, Kruppel-like factor 6; Kyn, kynurenine; NC-XRE, non-
consensus xenobiotic responsive element; p2lcipl, cyclin-dependent
kinase inhibitor 1; p23, HSP90-associated co-chaperone; PAI-1, plas-
minogen activator inhibitor 1; PAH, polycyclic aromatic hydrocar-
bon; PON1, paraoxonase 1; RelA, nuclear factor NF-kappa-B P65
subunit; RelB, RELB proto-oncogene, NF-kB subunit; TH, tyrosine
hydroxylase; XAP2, hepatitis B virus X-associated protein 2 or aryl
hydrocarbon receptor-interacting protein (AIP); XRE, xenobiotic
responsive element

diverse chemical structures (Fig. 2A), which in addition to
different pharmacokinetic profiles (e.g., organ disposition)
may account for pharmacodynamic differences. The mostly
used and best described AHR antagonist is the CH-223191,
which is considered a pure AHR antagonist [33]. Other AHR
antagonists might present organ-dependent responses [34]
or reduce AHR activation through a partial agonist effect
[34-36]. Other compounds, which is the case of resveratrol,
have the capability to abrogate the canonical pathway and
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Fig.2 AHR antagonists and
CYPI1AL1 inhibitors used

in vivo. Chemical structures
of AHR antagonists (A) and
non-selective CYP1A1 inhibi-
tors (B)
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allow the activation of the alternative pathway (Fig. 1), for
which the AHR target gene is the paraoxonase 1 (PON-1)

[37].

CYP1A1 inhibitors

Cytochrome P450, family 1, subfamily A, polypeptide 1
(CYP1A1) is a xenobiotic metabolizing enzyme involved in
the phase I metabolism of several exogenous (e.g., Sudan I,
caffeine, B[a]P) and endogenous (estrogens, estradiol, pro-
gesterone, testosterone, pregnenolone, melatonin arachidonic

@ Springer

acid) compounds [38, 39]. CYP1AL1 is responsible for ROS
production (e.g., superoxide anion, hydrogen peroxide, and
hydroxyl radical derived from the oxygen and electron trans-
fers that occur during the CYP reaction cycle) [40] and for the
metabolic activation of procarcinogens (e.g., B[a]P, estrogens)
[41-45]. AHR signaling is constitutively activated, and the
expression of CYP1AL1 gene is almost exclusively regulated
by AHR [46], allowing this gene to be considered the hall-
mark of its activation. Thus, CYP1A1 gene is a good indicator
to associate AHR pathway to disease state and to evaluate the
efficacy of the AHR antagonists abrogating this pathway. In
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addition, CYP1A1 inhibitors (Fig. 2B) represent important
tools to clarify the deleterious effects of an increased activa-
tion of AHR-adaptive/canonical pathway. Unfortunately, there
are no selective inhibitors for this CYP450 isoenzyme up to
date. Importantly, most of the presented compounds were
classified as CYP1A1 inhibitors in vitro, particularly using
the ethoxyresorufin-O-deethylation (EROD) assay (meas-
ures CYP1A1/A2 activity) with recombinant CYP1A1 and
NADPH fractions [47] (ICs, values in Table 2). However,
when tested in vivo, some of these compounds revealed AHR
agonist activity, acting as CYP1A1 inducers and allowing an
increase in CYP1AI1 transcription and activity. This is the
case of rutaecarpine (see section of CYP1A1 inhibitors). A
plausible explanation is that not all in vitro models are suitable
to study enzyme induction [48, 49]; EROD activity does not
measure only CYP1A1 activity [49]; and most of the com-
pounds are not highly selective for CYP1A1 (see section of
CYPI1AL inhibitors). Moreover, enzyme inhibition effects by
direct binding to the enzyme are more rapid and short than
induction effects. Induction effects take longer to be observed
and are long lasting compared to enzyme inhibition. Another
possibility relies on the fact that some CYP1A1 substrates
(like FICZ) can also be AHR ligands. As such, the inhibi-
tion of the metabolism of CYP1A1 can lead to an increase of
the concentrations of these compounds and, therefore, to an
increase in AHR-mediated CYP1A1 activation. This may be
also dependent on the dose and the number of doses adminis-
tered and might justify differences among studies. Thus, with
increased evidence that is becoming available, it is plausible
that some compounds are, in fact, not direct AHR ligands
but indirect AHR modulators (e.g., CYP1Al inhibitors). We
decided to include the compounds that have been classified
in vitro as CYP1A1 inhibitors and to discuss in vitro/in vivo
controversies in literature, highlighting the need for more
in vivo evidence and particularly to understand the under-
lying mechanisms of AHR-CYP1A1 modulation in vivo by
CYP1A1 inhibitors.

Pharmacological effects of the antagonists
of AHR canonical pathway

3’-methoxy-4'-nitroflavone

3’-methoxy-4'-nitroflavone (3'M4'NF) impairs AHR nuclear
translocation, plausibly by hindering the dissociation of
HSP90 from the chaperone complex [50]. Nazarenko and col-
laborators (2001) used transgenic C57Bl/6 J male mice that
express [-galactosidase in response to AHR agonists (DRE-
lacZ mice) and showed that TCDD-induced AHR activation
was abrogated by 3'M4'NF at the liver but not at the lung,
highlighting an organ-specific difference in 3'M4'NF effects.
In addition, CYP1A1 protein levels at the lungs showed a
moderate increase in mice treated exclusively with 3'M4'NF,

which might be suggestive of a partial agonist action for this
compound [34]. This compound has been used in vivo to
investigate the relation of AHR to genotoxicity by environ-
mental pollutants [51, 52] and ultraviolet radiation-induced
immunosuppression [53] (Table 1).

a-Naphthoflavone

a-Naphthoflavone (a-NF), also known as 7,8-benzoflavone
or 2-phenyl-4H-benzo[h]chromen-4-one, is a synthetic fla-
vone considered a putative chemopreventive agent due to its
non-selective activities as inhibitor of aromatase (CYP19A1
[54]) and also as modulator of AHR and of several CYP450
enzymes [35, 55]. a-NF has been described as a partial ago-
nist/antagonist of AHR [36] and as a competitive inhibitor
of CYP1 family, namely of CYP1A1 [56], CYP1A2 [57]
and CYPIBI1 [58], rendering its common use in xenobiotic
biotransformation studies. Moreover, a-NF is an allosteric
activator of CYP3A4 [59]. The preventive effect of this
compound was investigated on chemical exposure (ovotox-
icity and teratogenicity) [60, 61], metabolic (obesity and
non-alcoholic fatty liver disease) [62—-64], and autoimmune
diseases (psoriasis) [65] (Table 1).

Cardiometabolic diseases

Evidence suggested dose- and sex-dependent effects of a-NF
in obesity-related features (liver status and fat mass) [62—64]
(Table 1).

A preventive protocol showed that a-NF (3 mg/kg/day)
impacted high-fat diet (HFD)-induced obesity in male mice
[62]: it reduced the gain/increase in body mass, fat mass,
triglycerides, and polyunsaturated fatty acids. In addition,
o-NF ameliorated liver steatosis (assessed by a histologic
decrease in fat vesicles) but caused hepatomegaly.

A higher dose of a-NF (90 mg/kg/day) was administered
to male and female mice of two strains, the C57B1/6 B6 and
the C57B1/6.D2, which express a ligand-binding domain of
AHR with higher and lower affinity, respectively. In addition
to dose-dependent effects, it was possible to observe sex-
and AHR genotype-dependent differences with long-term
a-NF administration. Both AHR genotypes and sexes pre-
sented better fat mat-related outcomes upon o-NF treatment,
although there were differences in the degree of response,
dependent on the strain and sex [63]. a-NF has also reduced
steatosis in both sexes and genotypes. However, hepatomeg-
aly was present in all o-NF mice treated independently of the
diet, especially in the female groups [63].

In addition, in male mice on a HFD-induced non-alcoholic
fatty liver disease (NAFLD), the administration of a-NF
reduced liver damage, attenuated oxidative stress, and dimin-
ished insulin resistance in a dose- and AHR-dependent man-
ner [64].

@ Springer
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Autoimmune diseases

Using a mice model of skin inflammation (Aldara-induced
psoriasis), Kyoreva and colleagues (2021) investigated the
o-NF effects and observed decreased CYP1A1 activity,
epidermis thickness, and levels of several proinflammatory
mediators, together with an increase in keratinocyte differ-
entiation markers [65].

CB7993113

Parks and collaborators (2014) discovered CB7993113
(2-((2-(5-bromofuran-2-yl)-4-oxo-4H-chromen-3-yl)oxy)
acetamide) by ligand shape—based virtual modeling tech-
niques. The compound showed no partial AHR agonist
effect [66]. CB7993113 is a competitive antagonist of AHR
(upon activation by -naphthoflavone (BNF) or TCDD) and
prevents AHR nuclear translocation as its primary mech-
anism of action. This compound is slightly less effective
than CH-223191 (see CH-223191) in blocking the AHR-
CYP1ALl activation in the liver by TCDD [66].

CB7993113 prevented bone marrow cell ablation
(Table 1), in 7,12-dimetilbenz[a]antraceno (DMBA)-induced
myelosuppression in mice [66].

In pharmacokinetic experiments in mice, CB79993113
was administered intraperitoneally or orally (single dose of
50 mg/kg), and serum was collected 4, 8, and 16 h after
treatment. Pharmacokinetic analyses revealed that this
antagonist was readily absorbed 1 h after both oral and
intraperitoneal administration. However, serum concentra-
tions were twice higher 1 h after intraperitoneal than oral
administration, revealing a high oral first-pass effect. The
compound presented a half-life of 4 h [66].

CH-223191

CH-223191 (1-methyl-N-[2-methyl-4-[2-(2-methylphenyl)
diazenyl]phenyl-1H-pyrazole-5-carboxamide) is the most
well-known AHR antagonist [33], and its effects have been
widely investigated in diverse models of disease (Table 1),
including interstitial cystitis [67]. CH-223191 does not
stimulate AHR-dependent transcription even at higher
doses, thus being described as a pure antagonist. This com-
pound also displays no affinity for the estrogen receptor, as
some other AHR antagonists do, and displays no cytotoxic
properties [68]. Like CB7993113, this compound prevented
DMBA-induced bone marrow cell ablation [66].
CH-223191 preferentially avoids AHR activation by
TCDD and other related HAHs than BNF, PAHs, flavonoids,
or indirubin. Other CH-223191 derivatives presented simi-
lar antagonistic properties at blocking TCDD-induced AHR
nuclear translocation and similar affinity to AHR, but no
other pharmacological properties for these derivatives were

@ Springer

evaluated [69]. To the best of our knowledge, there are no
pharmacokinetic studies of CH-223191 in wild-type animals
nor in models of disease. Moreover, long-term studies using
CH-223191 are also limited, plausibly due to the elevated
cost of this drug as referred elsewhere [62].

Gastrointestinal tract diseases

Gastrointestinal toxicity of CH-223191 might be anticipated
[70]. In fact, CH-223191 worsened the intestinal fibrosis
induced by trinitrobenzene-sulfonic acid (TNBS) [70].
CH-223191 administration promoted an upregulation of the
fibrosis markers collagen 1A1 (CollAl) and 3A1 (Col3A1)
and alpha smooth muscle actin (ac-SMA), in opposition to
the effect of the administration of the AHR agonist FICZ.
These results suggest the role of AHR activation as a nega-
tive regulator of profibrotic signals in the gut [70].
Accordingly, other studies have shown that CH-223191
might worsen colitis in a murine model. Ulcerative coli-
tis was induced in mice by drinking dextran sulfate sodium
(DSS), whereas the AHR agonist baicalein displayed an
effective anti-colitis effect. This effect was associated with
an anti-inflammatory effect promoted by regulatory T cells
(Treg) cell differentiation and Type 17 T helper—Th17/Treg
balance. CH-223191 administration avoided the ameliora-
tion of symptoms of colitis associated with baicalein and
abrogated the baicalein-dependent restoration in the balance
between Th17 and Treg cells. Moreover, CH-223191 pre-
vented the anti-inflammatory effect of AHR activation by
precluding the decrease of the proinflammatory cytokines
tumor necrosis factor a (TNF-a) and interleukins 6 (I1-6) and
17 (1l-17) and the increase of anti-inflammatory cytokines
(transforming growth facto—TGF-f and IL-10) [71].

Cardiometabolic diseases

In vivo studies showed CH-223191 pharmacodynamic prop-
erties in models of ischemic stroke [72, 73], obesity [62, 63],
and arterial hypertension related to obstructive sleep apnea
[30], among others (Table 1).

The cardiovascular and neuroprotective effects of
CH-223191 were shown in an ischemic stroke model of
middle cerebral artery occlusion. Upon this procedure,
mice presented increased activation of the AHR-CYP1Al1
axis and increased AHR protein in neurons of the damaged
area. Intraperitoneal administration of the AHR antagonist
CH-223191 (10 mg/kg) decreased infarct size and neuro-
logic damage severity [72]. Similar results were obtained
in a more recent study. Administration of CH223191 (intra-
peritoneal, 10 mg/kg) 1 h before middle cerebral artery
occlusion prevented AHR and CYP1A1 overexpression in
brain cortex and striatum (mRNA levels). Moreover, neu-
roinflammation was decreased, namely by suppressing the



Journal of Molecular Medicine (2022) 100:215-243

231

upregulation of TNF-a, IL-1p, and cyclooxygenase 2 (COX-
2) in those tissues. Lipid peroxidation was also reduced in
the cortex (thiobarbituric acid-reactive substance assay).
Consequently, CH-223191 reduced vasogenic edema, infarct
size, and neurological severity [73].

Using a model of obesity induced by a HFD (same study
presented in “Cardiometabolic diseases” [62]), CH-223191
reduced body mass gain and fat mass and ameliorated liver
steatosis (as assessed by a histologic decrease in fat vesi-
cles). Importantly, and in contrast to a-NF, animals treated
with CH-223191 showed no hepatomegaly [62]. Diet-
induced obesity was also prevented by the use of the same
dose of CH-223191 in female mice [63].

Coelho and his team (2020) established a mechanistic
link between AHR and systemic hypertension induced by
chronic intermittent hypoxia. Chronic intermittent hypoxia is
a pivotal clinical feature present in obstructive sleep apnea,
being responsible for most of its comorbidities, namely arte-
rial hypertension that is often resistant among these patients.
Using a moderate paradigm of chronic intermittent hypoxia
mimicking mild obstructive sleep apnea, the authors found
an increased activation of AHR-CYP1A1 axis (increased
Ahr and Cyplal mRNA), particularly in kidney when hyper-
tension was already established. Moreover, AHR pharmaco-
logical blockade by CH-223191 (5 mg/kg) was able not only
to prevent, but specially to revert fully established hyperten-
sion [30].

Lung diseases

This AHR antagonist has been studied in pulmonary dis-
eases as well. Oral administration of CH-223191 (8 mg/kg)
to Wistar rats reversed pulmonary hypertension induced
by the combination of a vascular endothelial growth fac-
tor receptor antagonist and AHR agonist (Sugen 5416) and
chronic sustained hypoxia, without effects in systemic blood
pressure and heart rate [74]. CH-223191 totally reverted
the increase in ARNT levels in diseased lungs and partly
reverted AHR and CYP1A1 pulmonary overexpression [74],
pointing to AHR inhibition as a potential pulmonary hyper-
tension treatment (Table 1).

It is widely known that cigarette smoking contains AHR
ligands [75], making its link plausible with exacerbated
inflammatory responses associated with smoking. However,
AHR activation seems to attenuate smoke-induced pulmo-
nary inflammatory responses, in particular neutrophilia.
When mice were exposed to cigarette smoke, the group
of animals receiving CH-223191 intraperitoneally (50 pg)
contained an increased number of total cells and particu-
larly neutrophils in the bronchoalveolar fluid, compared to
the vehicle (DMSO) group. This pattern was also observed
when exposing AHR ™~ mice to cigarette smoke, thus high-
lighting that AHR activation by smoking is important to

limit smoke-induced neutrophilia. Nevertheless, most of
the cytokines produced by neutrophils, macrophages, and
lymphocytes were increased upon exposure to the cigarette
smoking, although no significant differences between the
group treated with CH-223191 and the vehicle group were
observed, meaning an independent effect of AHR activa-
tion occurring in the increased cytokine production of the
bronchoalveolar fluid [76].

Immune-mediated diseases

The role of the AHR in inflammatory and autoimmune dis-
eases, such as rheumatological diseases, has been increas-
ingly studied, in particular using CH-223191 as a proof-
of-concept antagonist (Table 1). Undesirable effects of
CH-223191 in the bone tissue might be anticipated. In a
collagen-induced arthritis model in rats, the AHR agonists
tetrandrine and 3,3’'-diindolylmetheane (DIM) inhibited
osteoclastogenesis and bone destruction. AHR blocking by
CH-223191 (oral, 5 mg/kg) almost abolished the protective
effect of these AHR ligands, thus emphasizing the need of
more studies to better characterize the pharmacology of
AHR antagonists in bone [77].

Systemic sclerosis is an autoimmune disease charac-
terized by the presence of fibrosis in several organs for
which there is no effective treatment. AHR signaling has
been implicated in fibrotic processes in multiple tissues,
such as liver, dermis, and vascular structures, although the
exact extent of this implication is yet unclear [78, 79]. In a
murine model of skin sclerosis induced with bleomycin, the
administration of the AHR agonist FICZ reduced collagen
induction (a-SMA protein) and dermal thickness. These pro-
tective effects were inhibited by CH-223191 subcutaneous
administration (10 pg), hence showing that AHR signaling
controls scleroderma fibrosis [80].

Another group employed the indole DIM, a dietary ligand
of AHR, and CH-223191 to assess immunomodulatory
functions of the AHR in a murine model of experimental
autoimmune encephalomyelitis (EAE). DIM improved the
clinical scores of EAE and suppressed the production of pro-
inflammatory cytokines, whereas CH-223191 (intravenous)
abolished that effect, aggravating the clinical score when
compared to DIM-treated animals, and promoting the pro-
duction of TNF-a, IL-6, IL-1f, IL-17A and IFN-y cytokines,
while decreasing IL-10 and TGF-f. Animals treated with
CH-223191 also showed a great proportion of Th17 and Type
1 T helper (Th1) cells, suggesting an immunomodulatory
effect AHR-dependent on regulatory T cells [81].

The modulatory effect of AHR over T cells, namely
CD4 +T cells, may rely on redox homeostasis. Mice were
treated with FICZ, buthionine sulfoximine (BSO), an
inhibitor of the synthesis of the antioxidant glutathione,
N-acetylcysteine, an antioxidant, or CH-223191. The
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expression of redox-related genes was assessed in sple-
nocytes. FICZ and BSO increased the mRNA expression
of several redox-related genes, such as heme oxygenase
1 (HO-1), glutamate-cysteine ligase catalytic subunit
(GCLC), and glutamate-cysteine ligase modifier subunit
(GCLM), whereas CH-223191 + FICZ co-treatment or
NAC prevented those overexpressions. The AHR agonist
FICZ increased the total CD4 + cells count and Th1 cells,
while a dose-dependent decrease in Treg cells was deter-
mined. Nevertheless, the simultaneous administration of
FICZ + CH-223191 4+ NAC was responsible for enhancing
Treg production, together with Th1 and Th17 cells with a
high dose, and for decreasing Treg and increasing Th2 and
Th17 cells in a lower dose. Replacing NAC for BSO in the
latter scenario increased Th1 and Th17 cells. Such results
led to the conclusion that AHR activation interferes with
the fate of T cells, influenced by redox alterations [82].

Hormonal disorders

A recent work by a Japanese group aimed to study how the
relationship between endoplasmic reticulum stress in granu-
losa cells from the ovary and AHR could contribute to poly-
cystic ovary syndrome (PCOS). Using a murine model of
PCOS induced by dehydroepiandrosterone (DHEA), they
observed no cyclicity in the estrous cycle and alteration in
ovarian morphology. CH-223191 (10 mg/kg) subcutane-
ous administration restored the loss of cyclicity and ovarian
morphology with a decrease in atretic antral follicles, which
occurred simultaneously with a downregulation in the AHR-
CYPI1BI axis in the granulosa cells [83].

Brain injury

Apart from the aforementioned applications of CH-223191
in the context of ischemic stroke, this antagonist has also
been used to investigate mechanisms of brain diseases
and neurotoxicity. To assess how 3,4-methylenedioxym-
ethamphetamine (MDMA), a psychostimulant drug used
for recreational purposes, could interfere with Kyn and
AHR activity and hence impact on serotonergic neuro-
toxicity, a group of investigators treated rats with MDMA
and CH-223191. MDMA was able to increase Kyn levels
and AHR activity, in the short term, in the hippocampus.
CH-223191 (10 mg/kg) intraperitoneal treatment poten-
tiated the MDMA-induced serotonergic neurotoxicity as
shown by a lower density of serotonin transporter in the co-
treated group (MDMA + CH-223191), while DIM (AHR
agonist) treatment showed an opposite scenario of partial
prevention on the MDMA-associated serotonergic damage.
Therefore, it appears that AHR and Kyn may play a role
dampening MDMA-induced neurotoxicity [84].
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Infectious diseases

The multiplicity of actions attributed to CH-223191 treat-
ment involves microbial diseases as well. Host defenses
against fungal infections like paracoccidioidomycosis
(PCM) rely on the immunoprotective Th1l and Th17 cells,
while Th2/Th9 cell predominance is implicated in infec-
tion’s progression [85]. Among several players impli-
cated in this immune network, AHR is gaining prominent
attention, namely due to its influence on Th17 and Treg
cells [86]. In fact, in a murine model of PCM induced by
intratracheal infection of the fungus Paracoccidioides bra-
siliensis, administration of AHR agonists, either FICZ or
Kyn, decreased pulmonary and hepatic fungal loads and the
number of activated lung myeloid cells (CD11c+). How-
ever, CH-223191 treatment showed the opposite scenario,
increasing fungal load (only in the lungs) and the number of
the pulmonary CD11c + cells, both at short and long term
after infection (96 h and 2 weeks). In addition, CH-223191
led to a reduced number of CD11c+cells expressing intra-
cellular cytokines (IL-12, IL-1p, IL-6, and TGF-p) and also
indoleamine 2, 3-dioxygenase 1 (IDO-1) and AHR, together
with an increase in cells expressing TNF-a. The number of
CD11c + cells expressing membrane (IAb, CD80, CD86)
markers was also increased. CH-223191 also augmented
the migration of myeloid dendritic cells to the lungs and
promoted the expansion of Th17 lymphocytes associated
with concomitant reduction of Treg cells, Th1, and Th22
[87, 88]. The results strongly suggest that fungal infections
can be modulated by AHR signaling, unveiling new perspec-
tives to treat these infections.

The implications of CH-223191 and AHR pathway are
also seen in viral diseases. A study concerning Zika virus
classified AHR as a host-enabling replication factor for the
virus. Indeed, AHR signaling is activated upon Zika virus
infection, via Kyn production. SJL pregnant mice were
infected with Zika, whose consequences mimic several fea-
tures of congenital Zika, especially microcephaly and corti-
cal brain lesions. CH-223191 (5 mg/kg) was administered,
via intraperitoneal, in a nanoliposomal formulation, enabling
an increase in its solubility and biodistribution. The antago-
nist suppressed AHR signaling, decreasing CYP1B1 expres-
sion. CH-223191 ameliorated fetal intrauterine growth
restriction, microcephaly, and reduced fetal brain pathology
(thicker cortical plates and reduced ventricle sizes) while
reducing brain and splenic viral load. Sustaining these struc-
tural observations, molecular analysis using RNA sequenc-
ing and polymerase chain reaction (PCR) analysis observed a
decrease in genes associated with apoptosis, tissue damage,
and autophagy upon CH-223191 treatment, simultaneously
with an upregulation of inflammatory pathways like NF-kB
and IFN-1, suggesting that AHR blocking in the context of
Zika virus enhances immune and inflammatory mechanisms
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to control viral replication and pathogenesis and unraveling
a potential antiviral approach [89].

The effectiveness of the antiviral effect of CH-223191 has
also been investigated in COVID-19 (coronavirus disease
2019), the pandemic disease caused by the severe acute res-
piratory syndrome coronavirus 2 (SARS-CoV-2). AHR was
activated by either IFN-p or IFN-y, in an IDO-Kyn fashion,
in the presence of SARS-CoV-2 infection. Consequently,
mucins were upregulated in alveolar pulmonary epithe-
lial cells, promoting a pro-hypoxic state, thus aggravating
COVID-19-associated respiratory disease. The intratra-
cheal administration of CH-223191 ameliorated the IFN-
induced impairment of respiratory function and prevented
the expression of mucins in the lungs of IFN-treated mice.
Furthermore, upon infection of a transgenic murine line
(human angiotensin-converting enzyme 2—hACE?2 trans-
genic) with SARS-CoV-2, CH-223191 intravenous treatment
reduced the expression of several types of mucins and the
disease severity in the lungs, highlighting the potential of
CH-223191 as an effective strategy against COVID-19 [90].

GNF-351

GNF-351 (N-(2-(3H-Indol-3-yl)ethyl)-9-isopropyl-2-(5-
methyl-3-pyridyl)-7H-purin-6-amine) is an AHR antago-
nist without partial agonist activity that has been used to
characterize AHR signaling and AHR tissue specificities
in vitro [91]. While no studies addressing its pharmacologi-
cal actions in in vivo models of disease could be found, we
herein included an in vivo study dedicated to GNF-351 phar-
macokinetics [92]. Upon oral administration in mice (5 mg/kg
of body weight), GNF-351 was detected in serum at several
time points up to 6 h after drug administration. At 24 h post-
administration, the compound was found in feces, but not in
urine. Reduced intestinal absorption and extensive intestinal
biotransformation of GNF-351 were supported by several
phase I metabolites of GNF-351 exclusively detected in feces.
Accordingly, this drug prevented the AHR-agonist BNF-
induced mRNA expression of Cyplal at the ileum and colon,
but not at the liver. These results emphasize the relevance of
in vivo studies to better understand absorption, tissue distri-
bution, and impact of AHR-CYP1A1 activation in different
tissues. Likewise, this study suggests that GNF-351 might be
a useful inhibitor of the AHR signaling in the distal intestinal
tract [92] with a minor systemic impact. However, GNF-351
effects remain to be investigated in a disease model.

Resveratrol
Resveratrol (3,4',5-trihydroxy-trans-stilbene) is a natu-

rally occurring polyphenol, commonly found in the skin of
grapes, with antioxidant activity and free-radical scavenging

properties (reviewed by [93]). Many mechanisms of action
independent of AHR-CYP1A1 axis [94, 95] have been
reported for resveratrol and several review papers were dedi-
cated to the broad applications of resveratrol in pre-clinical
and clinical contexts. For the sake of the scope of this review,
we considered those studies that linked the pharmacologi-
cal effects of resveratrol with the AHR canonical pathway.
Although resveratrol inhibits the adaptive pathway of AHR,
it also allows its nuclear localization and the binding to
alternative xenobiotic response elements. The activation of
this alternative pathway of AHR by resveratrol upregulates
another set of genes associated with anti-inflammatory and
antioxidant properties [37] (Fig. 1). In addition, resveratrol
has also been described as a weak CYP1A1 inhibitor [96].

Resveratrol has been reported to protect from toxic effects
on lung [97], thymus [98], testis [99—-102], prostate [103],
and pancreas [104, 105] related to environmental contami-
nants that are AHR activators. Resveratrol effect in drug
iatrogenic effects [106], female related diseases [107, 108],
kidney [109], liver [110], and bone disease [111, 112] was
also evaluated (Table 1).

Regarding the pharmacokinetic properties (reviewed by
Wenzel and Somoza [113]), resveratrol undergoes rapid
first-pass metabolism, and it is mainly metabolized to its
glucuronide and sulfate metabolites [114].

Cardiometabolic diseases

Polychlorinated biphenyls (PCBs) are persistent organic pol-
lutants that have been associated with the development of
type 2 diabetes. In vivo studies have demonstrated that PCBs
accumulate in adipose tissue leading to its inflammation and
impaired glucose homeostasis [115]. Resveratrol supple-
mentation in the diet was able to prevent PCB-77-induced
impairment of glucose and insulin tolerance in adipose tis-
sue of mice. Additionally, resveratrol increased the mRNA
expression of NAD(P)H quinone dehydrogenase 1 (NQO1)
and restored insulin-stimulated levels of phosphorylated pro-
tein kinase B (Akt) in adipose tissue [116].

Female pregnant Sprague—Dawley rats were given the
AHR activators dexamethasone (from gestational day 16 to
22) and/or TCDD (on gestational day 14 and 21 and postnatal
day 7 and 14). When resveratrol was administered during
pregnancy and lactation periods, the adult male offspring had
a reduction in systolic blood pressure (SBP) of 20 mmHg at
16 weeks of age, compared with the TCDD and dexametha-
sone maternal exposure groups. This effect was accompa-
nied by less oxidative damage in the kidney and a decrease
in renal AHRR expression. In addition, a blockade of renal
renin-angiotensin system (RAS) was observed, including a
decrease in expression of renin (Ren), angiotensin-converting
enzyme (Ace), and angiotensin II receptor type la (Agtria)
as well as increased nitric oxide (NO) bioavailability [117].
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Other studies have been investigating the beneficial
effects of resveratrol in models of obesity [118] and arte-
rial hypertension programmed by maternal exposure
[119]. Hsu and his team investigated the ability of res-
veratrol to prevent arterial hypertension programmed by
maternal exposure to bisphenol A (BPA) with or with-
out high-fat high-sucrose diet during the entire period
of pregnancy. Resveratrol reduced SBP (10 mmHg) in
the groups that also received BPA with and without
high-fat high-sucrose diet. Immunohistochemistry stain-
ing 8-hydroxydeoxyguanosine in the kidney, used as an
index of oxidative stress-derived DNA damage, showed
that resveratrol therapy prevented the synergistic effect
of high-fat high-sucrose diet and BPA exposure on oxi-
dative stress damage. This compound also restored nitric
oxide (NO) bioavailability through the increase of plas-
matic L-arginine levels and protein levels of endothelial
NO synthase (eNOS) and neuronal NO synthase (nNOS).
Additionally, resveratrol decreased renal mRNA expres-
sion of Ahrr, Cyplal, and Arnt in the group receiving
high-fat high-sucrose diet plus BPA [119].

6,2',4'-trimethoxyflavone (TMF)

TMF (6,2',4'-trimethoxyflavone) has been described as a
pure and selective AHR antagonist that effectively competes
with TCDD [120]. Although there are several in vitro stud-
ies about the pharmacodynamic properties of TMF, its use
in vivo is much less frequent (Table 1).

Cardiometabolic and cardiovascular diseases

TMEF was used in a mice model of stroke induced by mid-
dle cerebral artery occlusion (same model described with
CH-223191 [72]). TMF shared with CH-223191 neu-
roprotective properties but allowed a more pronounced
reduction in infarct size and neurological severity in
comparison with CH-223191. More recently, Chen and
collaborators (2019), using the same mice model of
ischemic stroke, showed that AHR inactivation, through
either TMF or conditional AHR knockout, reduced brain
infarction. Similar effects were observed between TMF or
AHR knockout: a decrease in astrogliosis and increase in
neural progenitor cells. TMF reduced brain inflammatory
markers after stroke (IL-1p, IL-6 and IFN-y) and ame-
liorated animal’s sensorimotor deficits and nonspatial
working memory [121]. Later, Kwon and collaborators
(2020) investigated the neuroprotective effects of TMF
on cerebral ischemia—-reperfusion injury. TMF was admin-
istered 10 or 50 min after ischemia but before reperfu-
sion in a rat model of stroke induced by transient middle
cerebral artery occlusion and reperfusion. At 24 h after
ischemia, neuronal lesion was lower in the ischemic core
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and peri-infarct region (higher relative apparent diffusion
coefficient and lower relative T2 values measured with
magnetic resonance imaging) in the group that received
TMF 10 min after ischemia. TMF administered 10 and
50 min after ischemia also reduced total infarct volume
(magnetic resonance imaging) and the number of apoptotic
cells (TUNEL staining). Immunofluorescence showed that
TMEF groups had lower AHR activity in the peri-infarct
region [122].

Novel AHR antagonists

As the involvement of the AHR in the mechanism of a mul-
tiplicity of diseases has been increasingly advocated, the
search for novel AHR antagonists has emerged as a hot
topic. In fact, other compounds have been recently evaluated
for their potential to antagonize the AHR signaling pathway
(Table 1).

The flavonoids 5,7,30,40,50-pentahydroxy flavanone
and barleriside A were recently evaluated in a CKD model.
Both compounds decreased Ahr, Cyplal, and Cypla2
mRNA levels in the kidney and reduced serum creatinine,
urea, and proteinuria besides reducing fibronectin, vimen-
tin, and FSPI levels and increasing E-cadherin levels in
the kidney [123].

HP163 is a monoalkylated amide of CB7993113. The
intraperitoneal administration of HP163 (2.5 mg/kg) was
evaluated against Zika infection. Similarly, to the observed
results with CH-223191, HP1763 reduced viral replication
of Zika virus in mice, together with an amelioration in sev-
eral clinical features associated with this infection, namely
a reduction in microcephaly, in ventricular dilation and in
cortical thinning [89].

Clofazimine is an antimycobacterial drug that showed
anti-AHR activity in vitro (luciferase AHR reporter cell
assay) [124]. The drug was tested in mice models of mul-
tiple myeloma. After tumor development, clofazimine
(10 mg/kg, daily intraperitoneal injections) reduced tumor
growth in a similar way as the antineoplastic drug bort-
ezomib (1 mg/kg, biweekly intraperitoneal injections).
Moreover, clofazimine decreased CYP1A1 protein levels
in the tumor tissue [124].

KYN-101 (IC50 of 22 nM in human HepG2 DRE-
luciferase reporter assay) was tested in a melanoma
model with physiological levels of IDO and tryptophan
2,3 dioxygenase (TDO) (B16WT) or overexpressing IDO
(B16IDO) or TDO (B16TDO) and a colorectal cancer
model overexpressing IDO in mice (CT26). KYN-101 (3
or 10 mg/kg) led to tumor growth inhibition in B16IDO,
B16TDO, and CT26 models but not in the BI6WT model.
Interestingly, similar results were obtained with the AHR
antagonists CH-223191 (50 mg/mg) and clofazimine (IP,
10 mg/kg) [125].
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Pharmacological effects of CYP1A1
antagonists

Alizarin

The anthraquinone derivative alizarin (1,2-dihydroxyanth-
raquinone) is a food pigment described as a strong competi-
tive inhibitor of CYP1A1 and CYP1A2 in vitro [126]. Aliza-
rin also inhibits CYP1BI1 and to a lesser extent CYP2A6 and
CYP2EI in vitro [126]. The antioxidant activity of alizarin
was tested in a mice model of hepatotoxicity induced by bro-
mobenzene. Pre-treatment with alizarin reduced the hepatic
lipid peroxidation (thiobarbituric acid reactive substances
(TBARS) assay) and serum aspartate aminotransferase
(AST) levels [127]. CYP1A1 was not investigated.

Takahashi and collaborators (2007) evaluated the pre-
ventive effect of alizarin on MelQx (amine 2-Amino-
3,8-dimethylimidazo[4,5-f]quinoxaline)-induced DNA
adducts. C57BL/6 N male mice (5-weeks-old) were
administered with the anthraquinone for 3 days followed
by MelQx alone or in combination with alizarin for 3 days.
Pre-treatment with alizarin showed only a marginal reduc-
tion in the amount of adducts present in the lung and kid-
ney. Moreover, the EROD assay (CYP1A activity) remained
unchanged [128].

Cardiometabolic and cardiovascular diseases

Although the association with CYP1A1 was not investi-
gated, Xu and co-workers (2019) showed that alizarin sig-
nificantly decreased the levels of blood glucose, ameliorated
lipid metabolism abnormalities, and decreased oxidative
stress in a diabetic mice model upon administration of aliza-
rin to male Kunming mice for 10 days [129].

Ellipticine

Ellipticine (5,11-dimethyl-6H-pyrido[4,3-b] carbazole) is a
polyaromatic alkaloid that inhibits DNA topoisomerase II
and forms covalent adducts with DNA. Ellipticine has been
associated with anti-tumoral activity in vitro [130]. Ellip-
ticine is metabolized mainly by CYP1A1/2 and CYP3A4
in vitro [131]. Although in vitro studies classify ellipticine as
an inhibitor of CYP1A1, CYP2B, and CYP3A [132], in vivo
evidence shifts to different conclusions. In a dose-response
study, where male and female Wistar rats were treated with
a single dose of 4, 40, or 80 mg/kg of ellipticine, Aimova
and collaborators (2007) found sex differences in CYP1A1
content in the liver upon ellipticine administration, with
males being more responsive to this compound. The lowest
dose of ellipticine (4 mg/kg) originated a 26-fold increase

in CYP1A1 induction in males, differently to the moderate
fivefold induction observed in females. Also, while in males,
CYP1A1 induction correlated positively with ellipticine
dose, in females, the maximum induction of CYP1A1 was
attained with the intermediate dose (40 mg/kg). CYP1A1
protein and mRNA levels and activity were assessed in the
lung, liver, and kidney of male rats, showing a clear induc-
tion of CYP1ALI in these organs. The middle dose induced
the highest increase of mRNA levels in the lung (24-fold),
followed by the kidney (tenfold) and the liver (fivefold)
[133]. The effects of ellipticine on CYP1A1 activity were
also evaluated in a time-response study. Animals were given
a single dose of 80 mg/kg of ellipticine and sacrificed at four
time points (2-224 days). CYP1A1 protein levels achieved
their peak at day 2, returned to basal levels at day 14, and
remained low until the end of follow-up [133].

More studies are needed to evaluate the effects of single
and multiple dose administration of ellipticine on CYP1A1
in vivo. It also remains to be understood the mechanism
by which ellipticine might induce CYP1A1 despite being
described as a CYP1AL inhibitor in vitro.

Cancer

Ellipticine reduced the tumor size and demonstrated its
activity against cell proliferation in a model of non-small
cell lung cancer [134] (Table 2).

Infection

Ellipticine effectively prevented inflammation in the endo-
toxic shock mouse model: there was a time-dependent reduc-
tion in the levels of TNF-a and IL-6 [135] (Table 2).

Pterostilbene

Pterostilbene is a cell-permeable stilbenoid, analog of res-
veratrol, originally derived from Pterocarpus marsupium.
This compound has antioxidant, anti-proliferative, anti-
inflammatory, and hypoglycemic effects and is a very potent
inhibitor of CYP1A1 in vitro [136]. Pterostilbene also inhib-
its CYP2C8 and UGT1A6 enzyme activities in vitro [137].

Inflammation

Pterostilbene prevented edema and inflammatory markers
in a carrageenan-induced inflammation mice model [138].

Purpurin

Like alizarin, purpurin is an anthraquinone derivative and a
food supplement inhibitor of CYP1A1 and CYP1A2 in vitro
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[126]. Purpurin also inhibits CYP1B1 and to a lesser extent
CYP2A6 and CYP2EL in vitro [126].

Using a mice model of hepatotoxicity induced by bro-
mobenzene (see Alizarin and Table 2), purpurin showed a
time-dependent decrease in the activity of CYP1A1 and the
formation of MelQx-DNA adducts at the lungs, kidney, and
marginally at the liver. Purpurin displayed a stronger inhibi-
tory capacity for CYP1A1 than alizarin [128].

Cardiometabolic and cardiovascular diseases

Although CYP1AL activity was not evaluated, an anti-obesity
effect has been described for this compound: a dose-dependent
reduction in weight gain [139].

Rhapontigenin

Rhapontigenin (3, 3’, 5-trihydroxy-4'-methoxy-stilbene) is a
hydroxystilbene derivative, with similar structure to resvera-
trol, derived from the roots of Rheum undulatum [140]. This
compound proved to be a mechanistic based inhibitor of the
human CYPI1A1 in vitro [141]. Rhapontigenin also inhibits
CYP3A4 and CYP2C9 [142]. Pharmacokinetic investigation
in rats showed that rhapontigenin has a half-life of 3 h and
is extensively glucuronidated and predominantly cleared by
the liver [143, 144].

Cardiometabolic and cardiovascular diseases

While no relation with AHR signaling was investigated, rha-
pontigenin was associated with cardioprotective effects in
a model of isoproterenol-induced myocardial infarction in
male Sprague—Dawley rats [145]. Rhapontigenin pretreat-
ment ameliorated infarct size and heart weight and reduced
protein expression of cardiac markers such as creatine kinase
(CK), cardiac troponin-T (CTT), and lactate dehydrogenase
(LD). It also reduced protein expression of superoxide dis-
mutase (SOD) and malonaldehyde (MD), IL-6, p38, induc-
ible NO synthase (iNOS), and TNF-« [145].

Rutaecarpine

Rutaecarpine is a quinazolinocarboline alkaloid extracted
from the fruit Evodia rutaecarpa and commonly found
in herbal products [146]. Rutaecarpine is an example of
a compound whose impact on CYP1A1 activation has
been described with conflicting results in different stud-
ies. In vitro studies described the compound as a selective
CYP1A1 inhibitor [147]. However, most of the in vivo evi-
dence shows that rutaecarpine activates the AHR-CYP1A1
axis [148—151]. For instance, rutaecarpine increased EROD
activity in the mice liver (sixfold) and hepatic CYP1Al
(western blot). This effect was not observed in the kidney,
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denoting organ differences in rutaecarpine modulation of
CYPI1AI [148].

Cardiometabolic and cardiovascular diseases

The effects of rutaecarpine in vitro and in vivo that support
its putative cardiovascular protective effect are reviewed else-
where [152]. Rutaecarpine was investigated in in vivo models
of myocardial ischemia—-reperfusion injury [153], hypoxia-
induced right ventricular remodeling [154], arterial hyper-
tension [155-158], atherosclerosis [159], arterial remodeling
[160], obesity [161], and renal ischemia—reperfusion injury
[162]. Despite the beneficial cardiovascular effects observed,
none of these works linked rutaecarpine action to the AHR-
CYP1A1 axis (Table 2).

Overview of in vivo models’ data

This review highlights the paucity of in vivo data on the
effects of AHR antagonists and CYP1A1 inhibitors in rodent
models of disease, namely the compound’s pharmacody-
namics and tissue specificities for the mechanism of action;
dose—effect dependence, AHR target genes, long term, and
toxicity use.

The experimental design of these studies relied mostly
on prevention protocols. Most studies administered the
compound orally, but pharmacokinetic properties and
dose-response relationship were barely evaluated. The
age of animals varied from infant to young adult ages (3
to 12 weeks for mice and 6 to 16 weeks for rats), and there
was no study in elderly. Sex differences were also under-
represented, as only 40% of the studies with the AHR
antagonists and 10% of studies with CYP1A1 inhibitors
were performed in female animals. The mean time of drug
administration was 3.6 +0.73 and 3.2 +0.44 weeks for mice
and rats, respectively. The longer period of administration
was investigated for a-NF, an AHR antagonist, that was used
for 26 weeks in a mice model of obesity (Tables 1 and 2).

Clinical trials of AHR antagonists
Cancer

AHR is a prognostic marker for aggressive cancer progres-
sion. High AHR levels have been found in many solid cancer
types, including glioblastoma, ovarian cancer, and lung can-
cer. AHR might also have a direct effect on cancer at vari-
ous stages: cell proliferation, tissue invasion, angiogenesis,
inflammation, and metastasis. Blocking AHR is a promising
approach to cancer immunotherapy (reviewed in [163—165]).
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BAY2416964

BAY2416964 represents an orally active antagonist of
AHR with ICs, of 341 nM. An ongoing clinical trial
with this small molecule is being conducted in patients
with advanced cancer. By blocking AHR, it is expected
that the oral administration of this small molecule will
activate immune response against the tumor cells. This
open-label, phase 1, first-in-human, dose-escalation, and
dose-expansion study will evaluate the safety, tolerabil-
ity, maximum tolerated or administered dose, pharma-
cokinetics, pharmacodynamics, and tumor response pro-
file in patients with non-small cell lung cancer (NSCLC),
head and neck squamous cell carcinoma (HNSCC), and
colorectal cancer microsatellite stable (MSS). The com-
pound was extracted from patent WO2018146010A1, and
the study started in August 2019 and is at the recruiting
phase [166].

1K-175

A phase 1, open-label, dose-escalation, and dose-expansion
study of IK-175 is being conducted in patients with locally
advanced or metastatic solid tumors and urothelial carcinoma.

This oral antagonist of AHR will be investigated in adult
subjects diagnosed with any form of an advanced or meta-
static solid tumor especially in patients who do not fully
benefit from standard-of-care, including the checkpoint
inhibitors.

Safety and tolerability of IK-175, to determine the rec-
ommended phase 2 dose, will be assessed in addition to
pharmacokinetics, pharmacodynamics, and biomarkers of
response [167].

Duchenne muscular dystrophy
Ezutromid

Ezutromid is a clinical stage compound for Duchenne mus-
cular dystrophy patients. This compound was developed
aiming at an increased expression of utrophin to mimic
the missing dystrophin in this condition [168]. Ezutromid
is an orally administered antagonist of AHR [169]. The
drug undergoes extensive first-pass metabolism leading to
low oral bioavailability. Drug absorption increased with
lipid-rich diet when compared with fasted conditions and
the absorption profile manifested secondary peaks in some
patients. Ezutromid followed a biphasic elimination [170].
Ezutromid was discontinued in 2018 after failing to show
any benefit as a modifying disease drug in phase II trial
[171].

Conclusions

Over the past few years, a multiplicity of important functions
of AHR has been found, surpassing its original role as a
xenobiotic sensor and regulator of xenobiotic detoxification.
In fact, AHR has been confirmed as an important signaling
molecule regulating and maintaining homeostasis in differ-
ent cells, tissues, and organs. Novel data highlights AHR-
CYP1AL1 axis activation in the mechanisms of disease, jus-
tifying the putative value of its therapeutic blockade. Thus,
it is timely to investigate and better characterize the pharma-
cological properties of blockers of the AHR-CYP1A1 axis.
AHR-CYP1A1 blockers might be useful in the treatment
of chronic diseases including diabetes, hypertension, skel-
etal muscle disorders, and cancer, diseases known for being
poorly controlled with the currently available drugs. For that,
compiling evidence of pre-clinical pilot studies performed so
far with AHR-CYP1A1 blockers is needed. Notably, many
drugs identified in vitro demonstrated to be auto-inducers
of its own metabolism in vivo, and this effect was tissue/
organ specific. Most of the tested compounds ameliorated
the disease although some potential adverse reactions might
be also anticipated. Summing up, we believe the information
herein compiled will be helpful to guide researchers when
planning experiments with AHR-CYP1A1 blockers. Finally,
and in view of the ongoing clinical studies using three AHR
antagonists, we reinforce a call for further evidence on the
pharmacological properties of AHR-CYP1A1 blockers.
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