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Abstract

Background: The global spread of COVID-19 has shown that reliable forecasting of public health related outcomes
is important but lacking.

Methods: We report the results of the first large-scale, long-term experiment in crowd-forecasting of infectious-
disease outbreaks, where a total of 562 volunteer participants competed over 15 months to make forecasts on 61
questions with a total of 217 possible answers regarding 19 diseases.

Results: Consistent with the “wisdom of crowds” phenomenon, we found that crowd forecasts aggregated using
best-practice adaptive algorithms are well-calibrated, accurate, timely, and outperform all individual forecasters.

Conclusions: Crowd forecasting efforts in public health may be a useful addition to traditional disease surveillance,
modeling, and other approaches to evidence-based decision making for infectious disease outbreaks.
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Background
Early warning, situational awareness, and predictive in-
formation are all important for public health officials
during infectious disease outbreaks. Traditional sources
of infectious disease surveillance, such as sentinel sur-
veillance, laboratory reporting, and case identification
provide critical information for outbreak response, man-
agement, and decision-making. However, real-time and
predictive outbreak information is often limited and can
make it difficult for practitioners to respond effectively
before an outbreak has reached its peak [1, 2]. In many
cases, data collected through traditional surveillance
methods often lags days or weeks behind an unfolding

epidemic due to delays in collecting, reporting and ana-
lyzing data. Moreover, surveillance data may be abun-
dant and timely for some epidemics or regions of the
world, and poor and time-lagged for others, making it
difficult to respond effectively across hazards and geog-
raphies. Given these and other challenges with trad-
itional disease surveillance, it may be helpful to explore
complementary approaches that have the potential to
augment disease reporting and provide more forward-
looking or predictive outbreak information. If early de-
tection, tracking, and prediction of the course of an out-
break can be improved, public health practitioners and
policy makers would be better able to respond to an out-
break and mitigate its effects on public health [3].
Crowd forecasting offers one possible approach to

augmenting traditional infectious disease surveillance
data to provide information on likely outcomes, as well
as on uncertainty. A number of analytic modeling and
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crowd-sourced forecasting methods have emerged that
could be applied to infectious diseases. Prediction mar-
kets, in which forecasters can buy and sell contracts re-
lated to outcomes, were first used for educational
purposes at the University of Iowa beginning in 1988
[4–7]. Originally used to forecast political outcomes,
currency prices, movie box office returns, and book
sales, electronic markets have also been tested in fore-
casting health-related events [8, 9]. These markets aimed
to aggregate diverse opinions and expertise in public
health, medicine, and related fields, which would provide
information that could improve response to infectious
disease emergencies. In a pilot study on influenza pre-
diction, participating health care professionals forecasted
accurate levels of influenza activity 2–4 weeks prior to
traditional, official surveillance reports [8]. Prediction
markets focused on infectious disease have also been
used to predict dengue outcomes in the United States
and internationally [10].
One practical limitation of prediction markets is that

many potential participants lack a background in com-
modities trading and, as a result, have difficulty express-
ing their forecasts. An alternative method of
crowdsourcing forecasts for infectious disease surveil-
lance is the use of prediction polls that aggregate indi-
vidual forecasts statistically using recency-based
subsetting, differential weighting based on past perform-
ance, and recalibration [11]. This method allows fore-
casters to make predictions using a more intuitive
format in which they express beliefs by providing prob-
abilities for potential outcomes. Outcomes are eventually
resolved using ground truth and forecasters are scored
on both accuracy and timeliness. In large-scale head-to-
head comparisons of geopolitical forecasts, such predic-
tion polls have proven to be as accurate as prediction
markets [11]. Prediction polls are conducted to generate
forecasts about future outcomes of interest and differ
from classic “opinion polling.” Using prediction polling
methods, the population of forecasters is not designed
or expected to be representative of any specific
population.
To test the utility of crowd-sourced knowledge for dis-

ease surveillance, the authors fielded a bespoke online
forecasting tool that allowed a diverse set of experts to
predict infectious disease outcomes. This research evalu-
ated the types of disease outcomes, questions, and situa-
tions that would result in accurate forecasts. The
ultimate goal was to develop an evidence base for the
use of crowd-sourced forecasting to confidently provide
information to decision makers that can supplement
traditional surveillance and modeling efforts and im-
prove response to infectious disease emergencies. Here
we describe the development process for an online pre-
diction polling platform and forecasting community as

well as findings about the reliability, accuracy, and time-
liness of the aggregated crowd forecasts.

Methods
Recruiting participants
Recruitment primarily targeted public health experts,
medical professionals, epidemiologists, modelers, risk as-
sessment experts, vector control officials, microbiolo-
gists, individuals with on-the-ground understanding of
conditions surrounding disease outbreaks, public health
graduate students, and others who were interested in in-
fectious disease outbreaks. However, forecasting was
open to any interested participant. The research team
coordinated with ProMED-mail, an infectious disease
reporting newsletter that reaches over 80,000 subscribers
in at least 185 countries, as well as other infectious dis-
ease newsletters, professional networks, and public
health groups [12]. Skilled prediction traders recruited
and vetted by Hypermind over several years of participa-
tion in its geopolitical and business prediction market
were also invited to join the project on a voluntary basis
[13, 14]. Thirty one percent (31%) of the participants
were recruited during the initial recruitment effort in
January 2019. Another 51% of participants joined during
a second recruitment drive in July 2019. Additional par-
ticipants were allowed to join at any time over the 15-
month course of the project. Although differences in
starting date may have limited comparison between par-
ticipants, allowing additional participants to join ex-
panded opportunities to attract active participants and
garner the most accurate forecasts – one of the primary
goals of this project. Prizes were awarded in three
rounds for two six-month periods (January–June, 2019;
July–December, 2019) and one three-month period
(January–March, 2020). The awards were based on fore-
casting performance (see “scoring participants” below).
For the first and second rounds, the first-place prize was
$599 with descending amounts awarded to a 5th place
prize of $100. A performance-based raffle was used to
award 20 additional participants $50 each. For the
shorter third round, a similar prize structure was used
with lower amounts starting at $500 and only including
12 raffle winners, since the competition did not run for
as long.

Developing the platform
The research team explored a number of potential ap-
proaches to an online disease prediction platform and
chose Hypermind (previously known as Lumenogic), a
company with extensive experience in crowdsourcing
techniques, to assist in this process [15]. After evaluating
both prediction markets and prediction polls, the re-
search team considered prediction polling through
Hypermind’s Prescience platform to be the most easily
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accessible to those without experience in commodities
trading, which was considered an important factor in
attracting and retaining participants. Hypermind’s Pres-
cience platform was developed though experience with
several Intelligence Advanced Research Projects Activity
(IARPA) research programs on crowd-based forecasting
for the US intelligence community [ 16–18]. As Fig. 1 il-
lustrates, the platform allowed participants to forecast
easily and quickly by assigning probabilities to possible
outcomes. They could update their forecasts as needed,
share reasoning for their forecasts, engage in conversa-
tions with other forecasters, access open source informa-
tion about disease topics, and compete for performance-
based prizes. Importantly, forecasters were made aware
of a current aggregated forecast of the crowd for each
question, as well as its evolution over time, but only after
having made their first forecast in the relevant question.
The platform was also lightly customized for the particu-
lar needs of this project, including a bespoke dashboard
aimed at policy makers.

Developing forecasting questions
The research team developed an initial set of questions
for the platform and added new questions, or “Individual
Forecasting Problems” (IFPs), at a rate of approximately
1 per week. [See Supplementary material] New IFPs

were generally added on Mondays, in conjunction with a
weekly newsletter, to encourage continued interest and
participation in the project. IFPs were focused on a
range of infectious disease outcomes, including intensity
of disease (e.g. number of US states with high influenza-
like illness activity), spread of disease to different loca-
tions, and case counts. When developing IFPs, care was
given to ensure that the wording had only one possible
interpretation, that forecasters would be able to select a
discrete outcome from a complete set of mutually-
exclusive answers weeks or months ahead of its occur-
rence, and that the IFP could be fairly resolved by a pre-
identified and authoritative source that provided timely
information (i.e. if an IFP asked for a case count by a
certain date, the resolution source needed to provide a
reliable report on that date). The platform allowed the
posting of two types of IFPs: “discrete” IFPs featured two
or more discrete answers (e.g., yes/no, or Beni/Butembo/
Katwa/Mandima), while “range” IFPs featured three or
more interval answers arranged on a continuum (e.g., 20
or fewer cases/21–100/101–300/more than 300 cases).
Figure 2 shows an example of a “range” IFP.

Scoring participants
The forecasting performance of each participant was
measured relative to other participants’ for both

Fig. 1 Main features of the forecasting user interface. Participants were asked to provide, for each question, a probability for each possible
answer. The forecasting widget forced all probabilities to add up to 100%. After they made their first forecast in a question, participants were
shown a current (but sub-optimal) aggregation of the collective (crowd) forecast for comparison, and could update their own at will. If they
chose to, participants could also share their forecasts and rationales in the discussion forum
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timeliness and accuracy. Probability forecasts were
scored using the Brier score [19] for discrete IFPs and its
distance-sensitive ordered-categorical version [20] for
range IFPs. Every day, the platform recorded each partic-
ipant’s latest forecast for each IFP. If a participant had
not made a forecast that day, his/her forecast from the
previous day was carried over. When an IFP resolved ac-
cording to ground truth, the score of each daily forecast
was computed and compared to the median score of all
other participants for that IFP on that day. Forecasts that
were more accurate than the median led to point gains,
while forecasts that were less accurate than the median
caused forecasters to lose points. A participant whose
score matched the median on a particular day scored 0
points on that day. On days before one had started

forecasting an IFP, his/her daily score was imputed to be
the median score obtained by all active forecasters, for
better or worse. So as soon as one thought she could
make a forecast that was better than most, she had in-
centives to do so.

Aggregating the crowd forecast
Individual forecasts for each question were aggregated
using an algorithm developed and tested through experi-
ence with several IARPA research programs in geopolit-
ical crowd forecasting [11]. Individual forecasts were
first weighted, with greater weight given to forecasters
who update their predictions frequently and who have a
better past record of accuracy. The pool of individual
forecasts was then reduced so that only the 30% most

Fig. 2 Example of an individual forecasting problem (IFP) of type “range”. This IFP was open to forecasting for 21 days. It featured 4 outcomes at
the start, but one was ruled out by ground reports on day 12 and another on day 16. The top chart shows how the crowd-forecasted
probabilities for each outcome evolved over time, with the solid line indicating the correct outcome (based on a ground truth of 48 WHO
member states). The bottom chart shows the daily Brier scores (forecasting errors) of the crowd’s forecast as compared to the “chance” forecast
which assigned equal probabilities to all outcomes not yet ruled out
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recent forecasts were retained for aggregation, while
others were discarded. The weighted forecasts were then
averaged. Finally, an extremization step was used to
sharpen the resulting forecast and compensate for col-
lective under-confidence [21]. As previously noted, indi-
vidual forecasters had access to a crowd forecast while
making their own, but that publicly-displayed crowd
forecast reflected a degraded version of the full algo-
rithm just described. It was the simple average of the
30% most recent forecasts in that IFP, not taking into
account individual weights nor extremization. We
wanted the forecasters to position themselves relative to
the crowd’s opinion without giving them the benefit of
the fully-optimized crowd wisdom.

Evaluating the crowd forecast
The crowd forecast’s absolute accuracy for each IFP was
computed by averaging its daily Brier scores over the
lifetime of the IFP. The overall accuracy of the aggre-
gated forecasts was also computed as the average of its
scores across all IFPs. But forecasting accuracy is only
meaningful when compared to benchmarks, such as the
“chance” forecast that would result from assigning equal
probabilities to all possible outcomes in an IFP, or the
accuracy of the individual forecasters themselves. The
accuracy and timeliness of the crowd forecast were fur-
ther evaluated in four increasingly severe ways: 1) the
percentage of the lifetime of an IFP that the crowd fore-
cast was more accurate than chance, 2) the point in the
lifetime of an IFP at which the crowd forecast became ir-
reversibly better than chance (the earlier the better), 3)
the percentage of the lifetime of an IFP that the correct
outcome was the crowd’s favorite, and 4) the point in
the lifetime of an IFP at which the correct outcome be-
came irreversibly the crowd’s favorite. For example, in
the IFP described in Fig. 1, the crowd’s forecast was bet-
ter than the chance forecast for 16 days out of 21, or
76% of the lifetime of that IFP. It became irreversibly
better than the chance forecast on day 5, or 24% into the
lifetime of that IFP. The crowd favorited the correct out-
come for 10 out 21 days, or 48% of the lifetime of that
IFP. The correct outcome became irreversibly the
crowd’s favorite on day 12, or 57% into the lifetime of
this IFP.

Results
Individual forecasting problems
Over the course of 15 months (January 2019 – March
2020), 61 IFPs were provided to forecasters and eventu-
ally settled: 15 (25%) were of the discrete kind and 46
(75%) were of the range kind. They featured 2 to 6 pos-
sible outcomes, with an average of 3.56 outcomes per
IFP. In total, 217 possible outcomes were forecastable
for the 61 settled IFPs. The average IFP lifetime was 47

days (median 31.5 days) from opening to settlement, but
that metric varied widely across IFPs, from 7 to 289 days.
At most, 10 IFPs were concurrently active on the plat-
form at any time.

Forecasters
Over the course of the project, 562 participants fore-
casted on at least one IFP. On average, IFPs had partici-
pation from 92 participants (range: 35–252 forecasters)
and participants forecasted on 10 IFPs. In total 10,750
forecasts were collected over the 61 settled IFPs (where
each forecast features a probability estimate for each of
the outcomes listed in the relevant IFP). While a small
majority of participants, 54%, were public-health profes-
sionals, 15% had professional backgrounds in other
health-related fields, and the remaining 31% did not re-
port any health-related professional background. Of the
132 skilled forecasters vetted by Hypermind who partici-
pated, only 5 were public-health professionals, and only
6 more indicated some other health-related professional
background. Both kinds of “expertise”, in relevant do-
main knowledge or in general-purpose forecasting skill,
seem to have powered quality forecasting of disease out-
breaks [22]. For instance, among the top 10 best fore-
casters in the contest’s final leaderboard, 4 were public-
health professionals, 3 had some other health-related
professional background, and 3 were Hypermind skilled
forecasters who did not report any health-related profes-
sional background. From another angle, five were vetted
Hypermind forecasters, while the other 5 were not. Fur-
thermore, the 1st place forecaster was one of the very
few public-health professional who was also a Hyper-
mind skilled forecaster.

Crowd forecast reliability (calibration)
We evaluated the crowd’s forecast calibration, or the
consistency between the crowd’s forecasted probabil-
ities and the observed outcome occurrences, expecting
approximately 20% of all forecasts made with a prob-
ability of 0.20 to correspond to outcomes that oc-
curred; 30% of those made with a probability of 0.30
to correspond to outcomes that occurred, etc. If the
forecasts were perfectly calibrated, the data points in
Fig. 3 would perfectly align on the diagonal. To for-
mally compute calibration, we used Murphy’s reliabil-
ity score, a well-established standard in weather
forecasting [23] and more recently in geopolitical
forecasting. However, given that some IFPs were fore-
casted up to 40 times longer than others and
attracted up to 20 times more forecasts, we first
weighted each IFP’s forecasts by the inverse of the
number of forecasts in that IFP. The resulting crowd
forecast reliability measures were .0043 and .0015 re-
spectively at the 1 and 5% levels of precision.

Sell et al. BMC Public Health         (2021) 21:2132 Page 5 of 9



Crowd forecast accuracy and timeliness
When experimenting with crowd wisdom a classic
benchmark is to compare the accuracy of the crowd
against that of its individual members. A fair comparison
required that we restrict the IFP sample to the 54 that
were added to the platform after the Hypermind fore-
casters were invited to join (which was 3 weeks after the
start of the project). On this sample, the mean and me-
dian forecasters achieved Brier scores no better than
chance (.466 and .465 vs .465), and only 6 individuals
achieved lower Brier scores than the unweighted average
of everyone’s forecasts (.331). Of those, only 3 bested the
unweighted average of the 30% most recent forecasts
that was displayed in the platform’s user interface (.276),
and none outperformed the optimized crowd forecast
computed by the full aggregation algorithm (.245).
Over all 61 IFPs, the optimized crowd aggregation

(henceforth simply referred to as the crowd forecast)
was 48% more accurate than chance overall (Cohen’s
d = 1.05). The average of its mean daily Brier score
across all IFPs was 0.238 as compared to a score of
0.460 that would result from chance. Of 61 IFPs, there
were only 6 in which the crowd forecast was less accur-
ate than chance (with no discernible common link
among them). Because the crowd Brier scores were very
skewed (1.37), a Wilcoxon Signed-Ranks Test was run
and the output indicated that the crowd aggregation

advantage over chance forecasting was highly significant
(Z = 1774; p < .001).
Figure 4 shows how well and how early the crowd’s

forecast met two relevant accuracy criteria: the first cri-
terion is being more accurate than a chance forecast
(equal probabilities across all possible outcomes). The
second criterion, which is more severe, is assigning the
highest probability to the correct outcome. The left plot
shows that for most of the IFPs the crowd’s accuracy
was better than chance for almost the entire lifetime of
the IFP (median: 97% of the lifetime of an IFP; mean:
83%). Furthermore, the correct outcome was the crowd’s
favorite for most of the lifetime of most IFPs (median:
77% of the lifetime of an IFP; mean: 66%). In terms of
timeliness, the right plot in Fig. 4 shows that the crowds’
accuracy generally became irreversibly better than
chance (i.e. from that point in time until ground-truth
was observed) very early in the lifetime of most IFPs
(median 5% into the lifetime of the IFP; mean: 27%).
Furthermore, for most IFPs, the correct outcome be-
came the definitive favorite of the crowd in the first half
of the IFP’s lifetime (median: 42% into the lifetime the
IFP; mean: 46%).

Question formation
The types of IFPs proposed impacted forecaster accur-
acy. Selecting the correct interval in a range IFP (75% of

Fig. 3 Crowd forecast reliability. The charts plot the proportion of forecasts with probability p that correspond to outcomes that occurred. The
left plot shows the data at the 0.01 probability level of precision. In the right plot, all the outcomes forecasted at probabilities [.01, .05] are
grouped together into a single data point, then all the outcomes forecasted with probabilities within [.06, .10], etc. This grouping by successive
chunks of 5% helps reduce the noise in the data. The closer the data points align with the diagonal, the more reliable the forecast probabilities
are. The surface area of each dot indicates relative number of forecasts made at that level of probability. A greater proportion of forecasts were
made at lower probabilities because the majority of IFPs featured 3 or more outcomes, only one of which could eventually occur
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the questions) is intrinsically more difficult than select-
ing the correct choice in a discrete IFP. In several in-
stances we observed that the correct outcome alternated
between the 1st and 2nd highest assigned probabilities,
with the nearest competing outcome being closely re-
lated (e.g. the next lowest or next highest level of case
counts offered as a potential answer). Six IFPs, not in-
cluded in the analytical sample of 61 settled IFPs, were
voided due to uncertainty in interpretation or resolution.

Discussion
Over the 61 settled IFPs, crowd forecasts showed high
levels of reliability and accuracy. However, instances in
which the crowd did not produce definitive outcomes in
a timely manner were useful as well. In these cases, the
inability of the crowd to decide on a single outcome
highlighted substantial levels of uncertainty related to fu-
ture directions of the outbreak or disease in question.
Providing information on levels of certainty is also a
valuable component in decision making during infec-
tious disease events.
The most difficult component of fielding this infec-

tious disease prediction platform was the development
of forecasting questions. Questions had to be carefully
designed to be straightforward and simple enough to
have a limited number of possible outcomes and, at the
same time, complex enough to provide useful informa-
tion to policymakers and public-health practitioners.
Furthermore, outcomes had to be published by reputable
sources for the time frame in question. This was a diffi-
cult balance to strike, and more refinement is required
to develop lines of inquiry that are simple to interpret,
readily resolved, and easily used for decision-making
during an outbreak.

Frequent and accurate public health surveillance data
is needed to enable research team members to develop
relevant questions and for forecasters to make accurate
predictions. The project team observed that forecasters
seemed to perform better on questions covering topics
with reliable and frequently updated official surveillance
data, high levels of media coverage, and details about
cases. Formulating appropriate answer ranges, identify-
ing the correct time period for questions to resolve, de-
termining accurate question resolutions and
understanding overall disease dynamics requires an ac-
curate starting point based on accurate and frequent dis-
ease reporting. Final surveillance information is only
needed for scoring purposes, but without this informa-
tion, it would be difficult to provide feedback to fore-
casters on how accurate their forecasts were, limiting
incentives for thoughtful forecasting.
Through the question development process, the re-

search team identified only a few countries and regions
with publicly available, timely, and reliable disease
reporting. It was relatively rare for countries and regions
to issue reports on a regular and predictable schedule.
Furthermore, the quality of reporting within a region or
country can vary widely depending on the disease or
outbreak context (e.g., animal vs human disease). Poor
reporting greatly limited opportunities to ask forecasters
to predict on disease outbreaks, especially those that
were newly emerging. Paradoxically, those situations
with the least robust disease surveillance are those that
could most benefit from supplementary information
from crowd forecasting.
Additional research is needed to ensure crowd fore-

casting information can be translated into meaningful
actions by public health and other response officials. For

Fig. 4 Four measures of the accuracy and timeliness of the crowd’s forecasts. The left chart plots the percentage of days in the lifetime of each IFP
that the crowd’s forecast met one of two accuracy criteria. The right chart plots how early in the lifetime of each IFP the crowd’s forecast met
one of two accuracy criteria. The box plots represent 61 IFPs, with mean values are indicated by “+” marks. See text for a detailed description
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instance, several IFPs focused on the speed and geo-
graphic spread of the virus that causes COVID-19,
showing the potential for rapid escalation of a global
pandemic as it emerged. This type of information must
be meaningfully merged into existing data streams and
systems to enable decision making.
The forecasting platform was established in early 2019

as a proof-of-concept project to understand more about
crowd forecasting using prediction polling for infectious
disease outcomes. As a result, it was operating with a
large number of infectious disease and forecasting ex-
perts during the emergence of COVID-19. The final
round of forecasting included questions focused heavily
on the emerging pandemic. The crowd accurately pre-
dicted explosive growth and spread of the disease but
forecasts in some instances also provided indications of
uncertainty, likely due to poor disease reporting, testing,
and surveillance early in the outbreak. Establishing
standing crowd forecasting efforts could aid in rapidly
producing predictions for emerging outbreaks. Obvi-
ously, during emerging outbreaks, those with profes-
sional public-health responsibilities may be less able to
participate in and conduct such efforts. However, the
remaining crowd of skilled forecasters and professionals
in other health-related fields can continue to provide
timely well-informed forecasts. That is especially true
when large numbers of public-health professionals are
suddenly focused on documenting and publishing timely
information about the outbreak, as was the case in the
early stages of the Covid-19 pandemic.

Limitations
This project was subject to a number of limitations. The
project team worked hard to develop IFPs on topics
without an obvious answer, but difficulty varied. This
process also required forecasting by the project team to
identify appropriate questions and ranges. In retrospect,
IFP answer options in several cases should have included
higher ranges. Ideally, the forecasting task should be left
entirely to the forecasters, not to those asking questions.
This issue can largely be addressed by further technical
development of the forecasting platform, which we have
begun experimenting with. The use of monetary rewards
may have influenced participant behavior. However, the
level of the award was unlikely to be large enough to
lead to meaningful shifts in forecasts.

Conclusion
Over the 61 settled IFPs, crowd forecasts showed high
levels of reliability, accuracy and timeliness. Consistent
with the “wisdom of crowds” phenomenon, crowd fore-
casts aggregated using best-practice algorithms proved
well-calibrated and outperformed all individual fore-
casters, a majority of which had professional expertise in

public-health. Crowd forecasting efforts in public health
may be a useful addition to traditional disease forecast-
ing, modeling, and other data sources in decision making
for public health events. Such crowd-sourced forecasting
can help to predict disease trends and allow public
health and policymakers time to prepare and respond to
an unfolding outbreak. These efforts will never replace
traditional surveillance methods, since surveillance data
is the gold standard and is also needed to verify predic-
tion platform outcomes, but they can supplement trad-
itional methods. By providing rapid synthesis of the
knowledge and expectations of experts and informed
amateurs, crowd-sourced forecasting can help inform
decision-making surrounding implementation of disease
mitigation strategies and predict where disease may
cause problems in the near future. While promising in
concept and in pilot testing, prediction polling for infec-
tious diseases should be tested further with a particular
focus on determining optimal participant make-up, un-
derstanding the best incentive structure, optimizing par-
ticipant experience and asking questions that are most
timely and relevant to policymakers.
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