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Abstract

Fracture risk is increased in patients with type 2 diabetes mellitus (T2DM). In addition, these
patients sustain fractures despite having higher levels of areal bone mineral density, as measured
by dual-energy X-ray absorptiometry, than individuals without T2DM. Thus, additional factors
such as alterations in bone quality could have important roles in mediating skeletal fragility

in patients with T2DM. Although the pathogenesis of increased fracture risk in T2DM is
multifactorial, impairments in bone material properties and increases in cortical porosity have
emerged as two key skeletal abnormalities that contribute to skeletal fragility in patients with
T2DM. In addition, indices of bone formation are uniformly reduced in patients with T2DM,
with evidence from mouse studies published over the past few years linking this abnormality to
accelerated skeletal ageing, specifically cellular senescence. In this Review, we highlight the latest
advances in our understanding of the mechanisms of skeletal fragility in patients with T2DM and
suggest potential novel therapeutic approaches to address this problem.

Type 2 diabetes mellitus (T2DM) is increasing in incidence and prevalence around

the world®. Although considerable attention has been appropriately focused on the well-
recognized complications of T2DM, including retinopathy, nephropathy, neuropathy and
vascular disease, data are now accumulating that warrant skeletal fragility being added to
the list of known diabetic complications. Fracture risk is clearly increased in patients with
T2DM?2. However, numerous studies have demonstrated that areal bone mineral density
(BMD) as measured by dual-energy X-ray absorptiometry (DXA\) is preserved, or even
elevated, in patients with T2DM relative to individuals without T2DMZ24. In addition to
elevated fracture risk, patients with T2DM have increased morbidity following a fracture
compared with patients with a fracture but without T2DM®. Further complicating the
issue is the observation that the most widely used fracture risk assessment tool (FRAX)8
underestimates fracture risk in patients with T2DM*. This observation indicates that
additional factors beyond BMD and the risk factors for fracture included in FRAX (prior
fragility fracture, parental history of hip fracture, smoking, glucocorticoid use, rheumatoid
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arthritis and alcohol consumption) probably contribute to increased skeletal fragility in
patients with T2DM.

The topic of diabetic skeletal fragility in type 1 diabetes mellitus and T2DM was extensively
reviewed in Nature Reviews Endocrinology in 2017 by Napoli and colleagues?. As such,

the goal of this article is to provide an update with new information that has been

published since that review. Furthermore, we focus on specific areas emerging as key to

the pathogenesis of skeletal fragility in these patients and potential therapeutic approaches
to manage increased fracture risk in patients with T2DM. In addition, we summarize the
evidence that skeletal fragility should now be included in the list of well-recognized diabetic
complications, given shared mechanisms across the different complications of T2DM. For
this Review, we selected published papers based on the authors’ knowledge of the literature
as well as PubMed searches using ‘diabetes’ and ‘bone’ as search keywords, focusing
largely on papers published since the review by Napoli and colleagues?.

Epidemiology of fracture risk in T2DM

Evidence for increased fracture risk in T2DM.

The clinical importance of fragility fractures in patients with T2DM has considerably
increased worldwide, as increasing life expectancy in people with T2DM has led to rapid
growth in the number of ageing patients with T2DM’. In 2008, we reported a population-
based study of 700 residents with T2DM in Olmsted County, Minnesota, USA, with 23,236
person-years of follow-up, who experienced 1,369 fractures8. Fracture risk was elevated
(standardized incidence ratio (SIR) 1.3, 95% CI 1.2-1.4) compared with residents without
T2DM. Moreover, fractures were increased among patients with neuropathy (HR 1.3, 95%
Cl 1.1-1.6) and those on insulin (HR 1.3, 95% CI 1.1-1.5), but the risk was reduced among
users of biguanides (HR 0.7, 95% CI 0.6-0.96)8. These findings are consistent with a meta-
analysis published in 2020 that reported data from 17,571,738 participants with 319,652

hip fractures and 2,978,487 participants with 181,228 non-vertebral fractures®. Patients with
T2DM had an elevated risk of fracture at the hip (relative risk (RR) 1.33, 95% CI 1.19-1.49)
and non-vertebral sites (RR 1.19, 95% CI 1.11-1.28) compared with participants without
T2DM. In addition, a long duration of T2DM and insulin use were independently associated
with an increased risk of hip fracture®.

Out of all fracture sites, the risk of hip fractures has been most consistently increased in
T2DM310.11 Interestingly, a large-scale, retrospective, longitudinal, nationwide population-
based cohort study of 5,761,785 individuals in the Republic of Korea confirmed that the
hazard ratios of hip fractures were slightly increased in people with prediabetes compared
with people without T2DM (HR 1.032, 95% CI 1.009-1.056)12. Further progressive
increases in hip fracture risk were observed in those with newly diagnosed T2DM (meaning
individuals diagnosed at the time of the initial clinic visit for the study and without a

prior history of T2DM) (HR 1.168, 95% CI 1.113-1.225), T2DM of less than 5 years’
duration (HR 1.543, 95% CI 1.495-1.592) and T2DM of greater than 5 years’ duration (HR
2.105, 95% CI 2.054-2.157). The secular trend of risk of hip fracture increasing according
to the duration of T2DM was consistent in both sexes and all age groups. Moreover, a
meta-analysis evaluating fractures in patients with diabetes mellitus showed an increased
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risk of total, hip, upper arm and ankle fractures: patients who had type 1 diabetes mellitus
had a greater risk than those with T2DM?3. Another meta-analysis focusing on peripheral
fractures found an increased risk of ankle fractures (RR 1.30, 95% CI 1.15-1.48) but a
decreased risk of wrist fractures (RR 0.85, 95% CI 0.77-0.95) in patients with T2DM4,

The most recent meta-analysis from 2020 indicated a decrease in prevalence (OR 0.84,

95% CI1 0.70-0.95) but an increase in incidence (OR 1.35, 95% CI 1.27-1.44)° of vertebral
fracture in patients with T2DM compared with control individuals without diabetes mellitus.
Furthermore, individuals with both T2DM and vertebral fracture have increased mortality
compared with individuals without T2DM or vertebral fracture (HR 2.11, 95% CI 1.72—
2.59) or with vertebral fracture alone (HR 1.84, 95% CI 1.49-2.28), and a borderline
increased risk compared with individuals with T2DM alone (HR 1.23, 95% CI 0.99-1.52).
In addition, a paper published in 2020 reported an Italian nationwide study of 59,950 women
of whom 5.2% had diabetes mellitus (predominantly T2DM) and noted an association
between diabetes mellitus and any fracture (OR 1.3, 95% CI 1.1-1.4, and OR 1.3, 95% ClI
1.2-1.5, for vertebral or hip fractures and non-vertebral, non-hip fractures, respectively)®.
Interestingly, the prevalence of vertebral or hip fracture was higher in participants with
diabetes mellitus but without obesity (OR 1.9, 95% CI 1.7-2.1) than in patients with obesity
and diabetes mellitus (OR 1.5, 95% CI 1.3-1.8), suggesting that obesity might be partially
protective against vertebral or hip fractures in T2DM12,

However, data from the Osteoporotic Fractures in Men Study, which enrolled men aged

65 years and older with T2DM (/7= 875) and men without diabetes mellitus (7 =4,679),
showed that the prevalence (7.0% versus 7.7%, respectively) and incidence (4.4% versus
4.5%, respectively) of vertebral fracture were not higher in men with T2DM than in men
without diabetes mellitus'8. The risk of prevalent (OR, 1.05, 95% CI 0.78-1.40) or incident
(OR, 1.28, 95% CI 0.81-2.00) vertebral fracture was also not higher in men with T2DM
than in men without diabetes mellitus in models adjusted for age, clinic site, race, BMI

and BMD. Nevertheless, the results revealed a trend for an increased risk of incident
vertebral fractures by 30% in BMD-adjusted models?8. Collectively, these findings raise the
possibility that increased vertebral fracture risk might be more consistently present in older
women with T2DM than in older men with T2DM.

The impact of glycaemic control on fracture risk in T2DM.

The association between glycaemic control and fracture risk is best described as a J-shaped
relationship, as observational studies have found that both poor glycaemic control and very
strict glycaemic control are associated with increased fracture risk}7=20 This relationship is
probably best explained by hypoglycaemia resulting from very strict glycaemic control21-23,
For example, in a study published in 2020, 4,706 Japanese patients with T2DM (2,755

men and 1,951 postmenopausal women; mean age 66 years) were followed prospectively
(median of 5.3 years; follow-up rate 97.6%) and stratified by severe hypoglycaemia status
and glycaemic control?4. Fractures occurred in 662 participants (249 men and 413 women).
FIGURE 1 shows the age-adjusted and sex-adjusted incidence rates (expressed per 1,000
person-years) based on multiple or single episodes of hypoglycaemia as well as HbA ;.
measurements. Having multiple episodes of hypoglycaemia was associated with a marked
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increase in fracture risk, and even a history of a single episode of hypoglycaemia led to
an increase in fracture risk. In the absence of hypoglycaemia, fracture risk was similar in
those with HbA ;. values of <7%, 7% to <8%, and 8% to <9%, but increased statistically
significantly in patients with HbA1 values of >9%724,

Another study published in 2020 confirmed the relationship between poor glycaemic control
and increased fracture risk. Here, Chinese individuals aged =60 years with T2DM were
identified from electronic health records in Hong Kong between 2008 and 2012 and
observed for incident hip fractures?®. A total of 83,282 participants were included, with

a mean age of 71.3 + 7.5 years, duration of diabetes mellitus of 11.7 £ 7.7 years, baseline
HbA 1 of 7.33 £ 1.23%, and median follow-up of 6.8 years. A mean HbA;. of =8.0% was
associated with a 25% increase in incident hip fractures compared with a mean HbA of
<7.0%. In addition, all HbA; variability indices were independent predictors of incident
hip fractures, with an adjusted hazard ratio of up to 1.29 (all < 0.001) and persisted as
independent predictors across groups of different intensities of glycaemic control. Thus,
both poor glycaemic control and HbA . variability across the spectrum of glycaemic control
are independent positive predictors of hip fractures in patients with T2DM?25,

Pathogenesis of skeletal fragility in T2DM

Clinical studies on skeletal fragility pathogenesis in T2DM.

Despite the increase in fracture risk, most studies have found that patients with T2DM

have preserved, or even increased, BMD compared with control individuals without diabetes
mellitus. For example, in a subset (7= 6,384) of postmenopausal women from the Women’s
Health Initiative, women with T2DM consistently had higher spine and hip BMD values
than women without diabetes mellitus both at baseline and over 9 years of follow-up
(TABLE 1)26, A meta-analysis that included studies of women and men with T2DM showed
similar findings, with high Zscores (standard deviations from the mean) of 0.41 at the

spine and 0.27 at the hip in patients with T2DM3. These findings have been subsequently
confirmed and extended by perhaps the most comprehensive meta-analysis to date on the
association between BMD and T2DM, which included 15 observational studies (3,437
patients with T2DM and 19,139 control individuals)?”. This analysis showed that BMD in
patients with T2DM was significantly higher than in participants without diabetes mellitus,
with pooled mean differences of 0.04 g/cm? (95% CI 0.02-0.05) at the femoral neck, 0.06
glem? (95% CI1 0.04-0.08) at the hip and 0.06 g/cm? (95% CI 0.04-0.07) at the spine.

These differences were equivalent to about a 25-50% higher standard deviation for BMD

in patients with T2DM than in control individuals, depending on the skeletal site. The
differences between patients with T2DM and participants without diabetes mellitus for
forearm BMD were not significant, perhaps due to reduced statistical power as forearm
BMD was included in fewer studies.

Because T2DM is associated with obesity, this meta-analysis2’ also evaluated the effects
of BMI and found that in general, the association between T2DM and BMD remained
despite correction for BMI. The authors postulated that additional factors, including
altered adipokine levels (for example, increased leptin and reduced adiponectin) and
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hyperinsulinaemia might potentially have mediated the effects of obesity on BMD in
T2DM?7,

Along with increased BMD, several studies have noted reduced bone turnover in patients
with T2DM?28-30, As shown in FIG. 2 from a previous study from our group?®, patients
with T2DM have reduced markers of bone formation (serum levels of procollagen type 1
amino-terminal propeptide (P1NP); FIG. 2a) and resorption (carboxy-terminal telopeptide
of type 1 collagen (CTx); FIG. 2b). The mechanisms underlying the reduced bone turnover
in patients with T2DM are unclear. However, one study3° found that bone formation and
resorption markers were not reduced in participants with obesity who were insulin sensitive,
but were reduced in participants with obesity who were insulin resistant and in patients
with T2DM, indicating that insulin resistance contributed to the reduced bone turnover in
T2DM. In addition, these investigators found that visceral adipose tissue (assessed by CT)
was negatively correlated with both serum levels of PANP (FIG. 2c) and serum levels of CTx
(FIG. 2d). Thus, both insulin resistance and increased visceral adipose tissue contribute to
the reduced bone formation and resorption indices in patients with T2DM, although there
are probably also other factors involved.

Importantly, BMD still predicts fracture risk in patients with T2DM; however, the FRAX
algorithm generally underestimates fracture risk in patients with T2DM?#. Although this
underestimation is related, at least in part, to an increased risk of falls3!, additional factors
are probably also involved, leading to the search for indices of ‘bone quality’ that might

be impaired in patients with T2DM. The spine trabecular bone score, which is derived
from the texture of the spine DXA image, is reduced in patients with T2DM and predicts
fracture risk independent of BMD?32, In addition, a number of studies have utilized high-
resolution peripheral quantitative CT (HR-pQCT) to evaluate the effects of T2DM on

bone microarchitecture in the peripheral skeleton (radius and tibia). These studies have
generally found preserved, or even improved, trabecular bone microarchitecture in patients
with T2DM compared with control individuals without diabetes mellitus33-38. However
some3°:36:38-40 pyt not all29:37:41 studies have found increased cortical porosity in patients
with T2DM, which independently predicts fracture risk, at least in postmenopausal women
without diabetes mellitus#243,

Impairments in bone material properties and increased cortical porosity in T2DM.

Another aspect of bone quality that might be impaired in patients with T2DM is the
material property of bone. Using in vivo microindentation, our group initially reported

that postmenopausal women with longstanding (>10 years) T2DM had a reduced bone
material strength index (BMSi) compared with age-matched control women who did not
have diabetes mellitus2®. Other groups subsequently reported similar findings#44°. Of note,
one study found reductions in BMSi in Black patients with T2DM, but not in white patients
with T2DM as compared with race-matched subjects without T2DM46. However, in a larger
cohort of patients with T2DM, we were unable to find a statistically significant difference in
BMSi between patients with T2DM and control participants®’.

These data suggest that although patients with T2DM might have alterations in bone
quality, specifically increased cortical porosity and impaired bone material properties (that
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is, BMSi), heterogeneity could exist within these patients leading to the conflicting findings
noted in this section. We reasoned that these skeletal abnormalities could be related to
underlying diabetic complications, which might vary from cohort to cohort. Thus, we
performed a comprehensive assessment of diabetic complications in a fairly large (n=

171) cohort of men =50 years of age and postmenopausal women with T2DM, as well

as 108 control individuals without diabetes mellitus. This assessment included evaluation
of urine microalbuminuria, retinopathy, detailed neuropathy testing and vascular testing®’.
The vascular testing included transcutaneous oxygen tension (a non-invasive measure of
microvascular blood flow assessed on the dorsum of the foot) and the ankle brachial

index (a measure of macrovascular blood flow). These measures, as well as skin advanced
glycation end products (AGEs) assessed non-invasively using skin autofluorescence*’ were
then related to bone microarchitectural parameters by HR-pQCT and BMSi. AGEs are

the products of irreversible, non-enzymatic reactions between proteins and sugars*8:49,

The long-lived and slowly turned-over proteins in bone, most notably collagens®?, are
particularly susceptible to these modifications, which negatively affect bone material
properties.

In terms of the HR-pQCT parameters, we found that the patients with T2DM had
statistically significantly higher bone volume fraction and trabecular thickness at the tibia
but not the radius than the control participants, even following adjustment for age, sex and
BMI37. Overall, cortical porosity was not statistically significantly different between the
groups, but we found that patients with T2DM and clinically relevant microvascular disease
(defined as a transcutaneous oxygen tension of <40 mm Hg®1:52) had increased cortical
porosity (+21%, P =0.031) at the distal tibia compared with the control participants without
diabetes mellitus3”. As noted already, in this cohort, BMSi did not differ significantly
between the groups, but skin AGEs were significantly higher (+17%, £< 0.001) in

the T2DM patients than in the control participants. Interestingly, significant negative
correlations were observed between BMSi and skin AGEs in both the T2DM patients (r
=-0.30, A< 0.001) and the control participants (r= -0.23, P< 0.001)%’.

Based on these data and previous work2%:44-46 e have proposed a working model for the
pathogenesis of skeletal abnormalities and increased fracture risk in patients with T2DM
(F1G. 3)%. These patients generally have preserved, or even increased, BMD and trabecular
bone volume fraction, which is probably related to obesity and/or hyperinsulinaemia (see
section on “Mechanisms of skeletal fragility in T2DM”)53:54. However, these beneficial
trabecular bone changes are negated by impaired bone quality, specifically increased
accumulation of AGEs that probably contributes to impaired bone material properties, and
microvascular disease that could be responsible for increased cortical porosity. The low
bone turnover associated with T2DM?28-30 might also contribute to reduced bone quality
due to impaired microfracture repair. Collectively, the impaired bone material properties
and increased cortical porosity, along with impaired microfracture repair secondary to the
low bone turnover lead to skeletal fragility, which, in the setting of peripheral neuropathy
and an increased propensity for falls31, results in the increased fracture risk observed in
these patients despite a relative preservation of BMD. Of note, weight loss, which can be
crucial in the management of T2DM, might also increase fracture risk. For example, in the
Look AHEAD trial, an intensive lifestyle intervention (=7% weight loss) in individuals with
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T2DM and obesity or overweight increased the risk of fragility fractures (composite of hip,
pelvis or upper arm and/or shoulder) (HR 1.39, 95% CI 1.02—1.89)°°. Clearly, additional
human and animal studies are needed to further test and refine this model, but the model
(FIG. 3) does provide a potentially useful framework for such studies.

Mechanisms of skeletal fragility in T2DM

Overview of potential mechanisms.

A complex network of hormones, neurotransmitters and other factors are necessary to
regulate bone metabolism and energy homeostasis. Mounting evidence has established that
the skeleton not only regulates itself via remodelling of bone, but also has far-reaching
systemic influences, for example, on whole-body energy metabolism56-58, Conversely,
basic mechanisms central to energy metabolism have important roles in regulating skeletal
homeostasis®®:60, Precisely how these remarkable functions go awry in T2DM i still
unclear and the complexity of the process is becoming increasingly apparent. As reviewed
previously?:61, several multifactorial cellular and molecular mechanisms probably interact
to either protect against or contribute to skeletal fragility in T2DM at various stages of the
natural course of the disease. These mechanisms include, but are not limited to, effects of
hyperinsulinaemia, obesity and increased bone marrow adiposity, long-term hyperglycaemia
and accumulation of AGEs, inflammation, reactive oxygen species, oxidative stress,
accumulation of senescent cells and the presence of diabetic complications such as
microvascular disease?62,

In the early stages of T2DM, hyperinsulinaemia is probably responsible for the preserved,
or improved, BMD and trabecular bone microarchitectural parameters observed in patients
with T2DM3554.83 as insulin is osteoanabolic®3:64, The benefit of hyperinsulinaemia to
bone is independent of adipose tissue mass®. This early stage advantage in trabecular bone
microarchitecture is not maintained at the later stages of T2DM®3, when hyperinsulinaemia
subsides due to B-cell failure.

The increased BMI and percentage body adiposity that is common in patients with T2DM
might have beneficial effects on the skeleton due to the protective effects of greater
mechanical loading. These effects are perhaps either potentiated or offset by the complex
actions of adipokines (for example, adiponectin and leptin) and by the pathophysiological
effects of adipose-derived pro-inflammatory cytokines®1. The skeletal effects of obesity
could also be dependent on adipose distribution, as depots associated with insulin resistance
and the metabolic syndrome, such as visceral adipose tissue and bone marrow adipose
tissue (BMAT), have been linked to increased chronic inflammation89:61, Examples of
pro-inflammatory cytokines associated with increased visceral adipose tissue mass include
TNF and IL-6 (REF.56). Along with other factors, these cytokines promote bone resorption
by stimulating production of the osteoclastogenic cytokine RANKLS7, which could have a
causal role in the development of cortical porosity in uncontrolled T2DM.

Obesity in the setting of T2DM is also associated with increased BMAT in both rodents®8
and humans®?; however, the functional roles of this adipose depot remain incompletely
understood. Although some evidence suggests that BMAT is negatively correlated with
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BMD in postmenopausal women with T2DM and obesity, and that women with poorly
controlled diabetes mellitus have increased levels of BMAT70.71, the mechanism underlying
these observations are unknown. Clearly, a better understanding of the roles of BMAT

in potentially mediating skeletal fragility in T2DM is needed. Some evidence from the

past few years suggests that high levels of BMAT-derived lipids both locally in the bone
marrow and in the circulation generate reactive oxygen species and oxidative stress that are
detrimental to the functions of stem and progenitor cells as well as to cells of the osteoblast
lineage®0. Furthermore, studies in rodents’2 and humans’374 have found that levels of
sclerostin, a potent soluble antagonist of the bone-anabolic canonical WNT-@-catenin
signalling pathway’®, are increased in T2DM and correlate with BMAT accumulation®.
Taken together, these mechanisms might, at least in part, explain the low bone formation
rates observed in T2DM.

The role of cellular senescence in mediating skeletal fragility in T2DM.

Diverse forms of age-related stress or metabolic insults, including DNA breaks, reactive
oxygen species, proteotoxic aggregates and inflammation, converge to cause a cell to enter
an essentially irreversible permanent growth arrest, termed senescence’’. The senescence
programme is activated by cyclin-dependent kinase inhibitors, most notably p16!"4a and
p21CiP1 that antagonize the actions of cyclin-dependent kinases to halt cell proliferation and
malignant transformation’8.79. Senescent cells develop an altered gene expression profile
that includes upregulation of senescent cell anti-apoptotic pathways®® and a senescence-
associated secretory phenotype (SASP), typically consisting of pro-inflammatory cytokines,
chemokines and matrix remodelling proteins®1:82, Accumulation of senescent cells increases
with ageing, obesity and T2DM77:83.84_|n these contexts, the accumulation of senescent
cells is presumably due to metabolic dysfunction, inefficient immune system removal and
resistance to apoptosis8®86, The biological relevance and consequences of senescent cells
are becoming evident in several models of ageing and disease’’, including models of T2DM.

Obesity and T2DM are associated with the premature increased burden of senescent cells
in adipose tissue®”-88, pancreatic B-cells?, liver?, brain®! and bone®2, which contributes
to metabolic dysfunction and several accelerated ageing phenotypes’’. Mechanistically, the
SASP of senescent cells, characterized by increased levels of pro-inflammatory cytokines
(for example, IL-6, TNF and activin A), contributes to insulin resistance in T2DM

by disrupting insulin signalling, attracting macrophages that exacerbate inflammation
and spreading senescence to neighbouring cells and tissues®:92-95 |n addition, the
consequences of T2DM (for example, glucotoxicity and lipotoxicity) can amplify the
accumulation of senescent cells in multiple tissues, resulting in a pathogenic positive
feedback loop®3. This systemic increase in senescent cell burden contributes to the
development of metabolic dysfunction and several other diabetic complications, such as
cardiovascular disease, neurodegeneration, renal disease and hepatic steatosis’’. These
effects are exacerbated in patients with poorly controlled T2DM.

With regard to skeletal fragility, work from our group published in 2020 demonstrated
accelerated osteocyte senescence and poor bone quality in an inducible obese mouse model
of T2DMB62, Importantly, obesity was induced in these mice during adulthood, after skeletal

Nat Rev Endocrinol. Author manuscript; available in PMC 2021 November 20.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Khosla et al.

Page 9

maturity. After 3 months of established disease, these mice display several detrimental
alterations in bone quality that closely mirror those in bones from humans with T2DM,
including defective cortical bone microarchitecture, reduced biomechanical strength and
impaired bone material properties®2. In addition, bone histomorphometry revealed lower
bone formation rates in mice with T2DM than in non-diabetic mice82, again consistent with
data in patients with T2DM?®,

A combination of multiple key characteristics (as encouraged by a consensus article®7)

was used to identify senescent osteocytes in mice with T2DM. First, mRNA expression

of the key mediators of senescence, p16"742 and p21¢P were found to be statistically
significantly elevated in osteocyte-enriched bones of T2DM mice (FIG. 4a). Further,

as shown in FIG. 4b, the senescence-associated distension of satellites assay%8 (that is,
large-scale unravelling of peri-centromeric satellite DNA characteristic of senescent cells),
revealed that the percentage of senescent osteocytes was statistically significantly higher

in bone cortices of T2DM mice than in control mice (FIG. 4c). We also measured telomere-
associated foci (TAF), a specific, robust marker of senescence, in osteocytes (FIG. 4d). TAF
are sites of DNA damage (yH2AX), which colocalize with telomeres®’. As quantified (FIG.
4g), the percentage of TAF* osteocytes increased in bone cortices of T2DM mice. Finally,
quantitative PCR with reverse transcription was used to measure a panel of established
SASP genes81:82.99 jn the osteocyte-enriched samples of T2DM mice®2. Interestingly, this
analysis revealed a unique pro-inflammatory SASP composed predominantly of upregulated
levels of matrix metalloproteinases (MMPs; that is, Mmp3, Mmp9, Mmp12and Mmp13)
(FIG. 4f). In addition, the expression of NfkbZ (which encodes NF-xB), a downstream target
of the RAGE pathway“8:190 that is activated by AGEs?*8, was also statistically significantly
elevated in osteocyte-enriched bones of T2DM mice (FIG. 4f). Thus, elevated levels of
MMPs and NF-xB seem to be part of the SASP signature of senescent osteocytes unique

to T2DMB62, These findings establish that T2DM, in the context of obesity, causes the
premature accumulation of senescent osteocytes during young adulthood, at least in a mouse
model. Other bone-resident cell types, however, might also become senescent and additional
key SASP factors specific to T2DM are likely to exist.

Role of AGEs.

As noted above, the production and accumulation of AGEs is an important complication

of hyperglycaemia observed in patients with T2DM. Based on rodent and cadaver studies,
AGEs lead to impairments in the ability of collagen to dissipate energy and a reduction in
the capacity of organic and mineralized matrix to creep (deform under mechanical stress),
leading to bone fracture at low levels of strainl92, In addition to their direct effects on bone
material properties through collagen modification, AGEs also bind to and can signal through
a transmembrane protein termed receptor for AGE (RAGE, the protein product of the Ager
gene) in diverse cell types throughout the body, including in the osteoclastic and osteoblastic
cell lineages in bone192.103 |ndeed, A&-(1-carboxymethyl)-I-lysine is a dominant RAGE
ligand in bone and has been found to accumulate in the bone and serum of mice with
T2DM62’104’105.
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Of note, almost all of the data regarding the accumulation of AGEs in bone are currently
derived from rodent studies, as studying this issue in humans is a challenge. However, one
study has quantified serum levels of AGEs (pentosidine and total AGEs) as well as AGEs
from proximal femur specimens from participants with and without T2DM19, Serum levels
of pentosidine or total AGEs did not differ between groups, but cortical bone levels of AGEs
tended to be higher in the participants with T2DM than in those without T2DM (+21.3%, P
= 0.08), whereas trabecular bone levels of AGEs were similar between the groups. Cortical
or trabecular bone levels of AGEs were only weakly correlated (7= 0.28-0.39) with serum
levels of AGEs. Additional human studies are needed to evaluate the accumulation of AGEs
in bone in patients with T2DM and the relationship of these to AGEs in serum, urine or skin.
In terms of fracture risk, a study found an association between urinary levels of pentosidine
and vertebral fracture risk in patients with T2DM07, Collectively, these data demonstrate
that AGEs accumulate in patients with T2DM and provide the basis for future studies of
accumulated AGEs in the context of T2DM and its effects on bone material properties.

A number of intracellular signalling pathways are potentially activated through RAGE
signalling (including PKC, JAK-STAT, PI3K and MAPK), many of which converge on
the activation of NF-xB signalling, thereby generating an inflammatory response that
contributes to T2DM#8:100_ This observation suggests that specific blockade of RAGE
signalling might alleviate the increased inflammatory response seen in bone in patients
with T2DM. Indeed, it has been demonstrated that the soluble RAGE molecule (SRAGE)
inhibits HMGB1-induced inflammation1%8. In addition, SRAGE slowed the rate of alveolar
bone loss in a diabetic model of periodontal disease19. Small-molecule inhibitors have also
been shown to inhibit RAGE signalling and have anti-inflammatory effects in Alzheimer
disease, neuroinflammation and cancer!19.111, Some of these RAGE inhibitors have also
been shown to prevent bone loss through RAGE-dependent inhibition of osteoblast and/or
osteocyte apoptosis12113 Whether blockade of RAGE signalling in bone improves bone
material properties in the context of T2DM is a subject of ongoing research.

Links between the vasculature and bone.

In addition to the accumulation of AGEs and senescent cells in bone, another potential
contributor to skeletal fragility in T2DM is macrovascular and microvascular disease.
Histological examination of bone remodelling units, the clusters of cells responsible for
the active processes of bone resorption and formation, has revealed the presence of

a capillary system that provides the bone remodelling unit access to the bloodstream,
nutrients and other cells involved in bone homeostasis'14. The crosstalk between the
vasculature and bone remodelling compartments is essential for proper bone development,
normal functioning and repair following bone injury!15. Disruptions in this interface can
lead to impaired bone homeostasis, as is often seen in diseases such as T2DM115, This
crosstalk occurs between vascular endothelial cells and other neighbouring cells that assist
in the control of bone metabolism. Mesenchymal stem cells for example, have intrinsic
osteogenic capacity and promote vascularization through communication with vascular
endothelial cells, which occurs via pro-angiogenic factors such as vascular endothelial
growth factors, insulin-like growth factors, platelet-derived growth factors and fibroblast
growth factors116:117_ Crosstalk of vascular endothelial cells also exists with other cell
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types, such as periosteum-derived progenitors!8, adipose-derived progenitors!?, stromal

cells20, macrophages2! and pericytes!?2. The interactions between endothelial cells and

these auxiliary cells promote angiogenesis and bone mineralization, leading to normal and
healthy bone metabolism.

The appearance of vascular disease in patients with T2DM is a common diabetic
complication, due to hyperglycaemia damaging blood vessels!23. Another common feature
in diabetic bone disease is increased cortical porosity, which has been found in patients with
T2DM in several studies3®:36:39.40_1n our 2020 study3?, we found that our cohort of patients
with T2DM and clinically relevant microvascular disease (defined as exhibiting a lowered
oxygen tension, as described previously) had increased cortical porosity at the distal tibia.
The causal link between lowered oxygen tension and cortical porosity in T2DM is unknown,
but impaired crosstalk between the bone vasculature (for example, vascular endothelial cells)
and osteogenic cell precursors could be a potential mechanism. In this model, the decreased
vascularization, and therefore the decreased number of vascular endothelial cells, would
lead to reduced signalling for the recruitment and differentiation of osteogenic precursor
cells. This reduced signalling would inhibit the restoration of bone formation at sites

of intracortical remodelling, leading to the appearance of a cortical pore that cannot be
filled. However, further studies are clearly needed to fully understand the link between the
vasculature and cortical porosity.

FIGURE 5 builds on FIG. 3 and presents a working model of the cellular and molecular
changes leading to impaired bone quality and skeletal fragility in patients with T2DM,
focusing specifically on AGEs, cellular senescence and microvascular disease. Multiple
key mechanisms and effects, stemming from the accumulation of AGEs and senescent
cells, converge to cause accelerated ageing of several tissues, including bone. Over long
periods, these mechanisms (and probably additional mechanisms) contribute to established
skeletal complications in T2DM, such as low bone turnover and abnormal collagen

and mineralization, which leads to impaired bone material properties. In addition, the
microvascular disease associated with T2DM probably contributes to compromised cortical
bone microarchitecture, ultimately increasing fracture risk!24, Given that these mechanisms
are linked and overlap, interventions that target one could in theory ameliorate others

and have beneficial influences on multiple systems and physiological functions in T2DM.
Therefore, basic mechanisms central to energy metabolism and accelerated ageing, such

as cellular senescence and the RAGE pathway, are potential therapeutic targets for
interventions that could alleviate or partially treat T2DM and its complications, including
skeletal fragility.

Treatment of skeletal fragility in T2DM

Currently, limited evidence exists for therapeutic interventions to prevent or treat skeletal
fragility in patients with T2DM. However, similar to individuals without T2DM, lifestyle
measures, including appropriate physical activity, smoking cessation, avoidance of alcohol
abuse and assuring adequate dietary calcium and vitamin D intake, should be implemented
as the mainstay of osteoporosis prevention and treatment in patients with T2DM125,

As noted already, evidence from the Look AHEAD trial shows that intensive lifestyle
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intervention leading to considerable weight loss in individuals with T2DM and obesity or
overweight increases the risk of fragility fractures®. Thus, a fracture prevention programme,
especially weight-bearing exercise, to balance the potential negative effects of weight loss in
patients with T2DM should be considered.

Patients with T2DM have an increased risk of falls126.127 sg risk factors for falls,

including visual impairment due to diabetic retinopathy, peripheral neuropathy, poor
balance, sarcopenia, cardiovascular diseases, sequalae of stroke (neurological and cognitive
impairment) and hypoglycaemic events, should be included in the evaluation of fracture
risk in patients with T2DM?23:127_ Fal| risk should be rigorously assessed and, where
appropriate, preventive measures instituted. A systematic review demonstrated that fall
prevention programmes in patients with T2DM28 and peripheral neuropathy2® improved
balance without the risk of adverse effects in older adults (=60 years of age) with T2DM.

Impact of diabetes mellitus medications on fracture risk.

As discussed already, maintenance of good glycaemic control and avoidance of
hypoglycaemia should reduce fracture risk. Although no prospective trials have been
performed on the effects of diabetes mellitus medications on bone fragility, evidence from
epidemiological studies and adverse effects surveillance in clinical trials in diabetes mellitus
have provided important insights into the potentially beneficial or adverse effects of diabetes
mellitus medications on fracture risk (TABLE 2)261. Insulin use has also been associated
with an increased risk of fractures30; however, whether insulin use is a marker of the
severity and/or duration of the disease or the occurrence of hypoglycaemic events that
precipitate falls is uncertain. The choice of insulin formulation might affect fracture risk, as
long-standing therapy with insulin glargine was associated with a lower fracture risk than
treatment with NPH insulin13; whether this difference was related to a reduced frequency
of hypoglycaemia with insulin glargine remains to be determined. However, another study
found no differences between types of insulin and risk of fractures132,

Medications with a neutral or favourable effect on bone metabolism, such as metformin
and incretin-based treatments, should be the preferred treatment in patients with T2DM at
increased fracture risk based on BMD testing and/or FRAX scores!33. Interestingly, the
latest meta-analysis of GLP1 receptor antagonists, which included 38 studies with 39,795
patients (241 incident fractures, 107 in the GLP1 receptor antagonist group and 134 in

the control group), found that when compared with placebo and other antidiabetic drugs,
liraglutide and lixisenatide were associated with a statistically significant reduction in the
risk of fractures and the beneficial effects were dependent on the duration of treatment34,
By contrast, use of thiazolidinediones should be avoided as these drugs are associated with
an increase in fracture risk13%, SGLT2 inhibitors, specifically canagliflozin, should also
probably be used with caution in patients with T2DM as this drug has also been associated
with increased fracture risk'36 However, the most recent meta-analysis (from 2019) which
included 27 eligible randomized controlled trials with 20,895 participants with T2DM, with
an average study duration of 64.22 weeks, did not find an increased risk of fracture in
patients with T2DM treated with SGLT?2 inhibitors'37. More long-term follow-up data are
needed to clarify the impact of SGLT2 inhibitors on fracture risk.
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In addition, concomitant medications related to comorbidities should also be carefully
considered for their possible effects on fracture risk in patients with T2DM; note that

much of the data cited in this section has come from studies largely in patients without
diabetes mellitus. In terms of antihypertensive medications, in the Antihypertensive and
Lipid-Lowering Treatment to Prevent Heart Attack trial, thiazide diuretic users had a lower
risk of fracture in adjusted analyses (HR 0.79, 95% CI 0.63-0.98) than users of calcium
channel blockers or angiotensin-converting enzyme inhibitors38. In a large Swedish cohort
study published in 2020, loop diuretics were associated with an increased risk of hip fracture
(HR 1.23, 95% CI 1.11-1.35). No statistically significant associations were found between
the risk of hip fracture and current exposure to p-blockers, calcium channel blockers,
angiotensin-converting enzyme inhibitors, angiotensin receptor blockers or aldosterone
receptor blockers139, An updated meta-analysis of randomized controlled trials revealed

no significant effect of statin treatment on the risk of fractures (RR 1.00, 95% CI 0.87-
1.15)140, However, antidepressants and drugs for treatment of diabetic neuropathy should be
prescribed cautiously because meta-analyses of observational studies have shown increased
risk of fractures among users of selective serotonin reuptake inhibitors'4! and tricyclic
antidepressantsl42 compared with participants not using these medications.

Impact of osteoporosis medications on fracture risk in T2DM.

Studies evaluating the antifracture efficacy of current osteoporosis drugs in patients with
T2DM have not been widely published. As osteoporosis in T2DM is a condition with a

low bone turnover, antiresorptive medications, which further reduce bone turnover, might
not be the preferred option28-30, However, a meta-analysis evaluating osteoporosis drugs,
including bisphosphonates (which are potent antiresorptive drugs), found an efficacy similar
to that achieved in patients with osteoporosis but without diabetes mellitus43. Nonetheless,
randomized control trials are needed to assess the antifracture efficacy of osteoporosis drugs
in patients with T2DM. In the absence of further evidence, bisphosphonates remain the
first choice for osteoporosis treatment in patients with T2DM. However, the possibility that
the RANKL antagonist, denosumab could have favourable effects on glucose metabolism
could make that a more attractive antiresorptive option for patients with T2DM than
bisphosphonates. Thus, although a post hoc analysis of the FREEDOM trial showed

no overall effect of denosumab on fasting glucose levels in postmenopausal women

with diabetes mellitus or prediabetes, a statistically significant decrease in fasting serum
levels of glucose was observed in women with diabetes mellitus not using antidiabetic
medications144. Interestingly, as, in animal studies, denosumab induced human g-cell
proliferation both in vitro and in vivol45, the possibility of using it in the future as a
treatment for T2DM itself has been raised4®. Indeed, in 2020, our group reported that
denosumab-treated patients showed a statistically significant improvement in HbA4. of a
magnitude similar to that seen with commonly used antidiabetic medications, relative to no
treatment or bisphosphonate usel47.

Finally, post hoc analysis of patients with T2DM from the Abaloparatide Comparator Trial
In Vertebral Endpoints (ACTIVE), a phase Il1, double-blind, randomized, placebo-controlled
and active-controlled trial, showed that in women with postmenopausal osteoporosis and
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T2DM, abaloparatide treatment led to statistically significant improvements in BMD
compared with placebo, similar to the improvements in the overall ACTIVE population148.

Future directions.

Future directions for treatment of T2DM-related skeletal fragility will be driven by
mechanistic insights into the factors that cause compromised bone quality (for example,
RAGE inhibitors and senolytic drugs). Based on the pathogenesis of T2DM-related skeletal
fragility, RAGE inhibitors are potential agents that might help alleviate fracture risk in
patients with T2DM. Several studies have demonstrated beneficial effects with RAGE
inhibitors in various age-related pathologies, including T2DM, cardiovascular disease,
neurodegeneration and cancer4°. Moreover, downregulation of RAGE signalling has been
shown to protect against disease-induced bone and muscle loss®9151, Notably, in bone,
genetic RAGE deficiency protects against ovariectomy-induced bone loss in micel0,
However, studies have shown that short-term pharmacological RAGE inhibition does not
protect against early ageing-induced bone loss'%2, Further studies of RAGE inhibitors are
needed to evaluate their role in preventing or treating T2DM-related skeletal fragility. As
described already, senescent cells accumulate in the bone microenvironment in a T2DM
mouse model52 and these cells could lead to a reduction in bone formation and a relative
increase in bone resorption133. Intermittent senolytic therapy reduces senescent cell burden,
which simultaneously suppresses bone resorption with either an increase (in cortical bone)
or maintenance (in trabecular bone) of bone formation, leading to higher levels of bone
formation relative to bone resorption®3. However, further research is needed to better
understand whether the clearance of the senescent cells would be beneficial for skeletal
fragility in the setting of T2DM.

Conclusions

The evidence is now clear that skeletal fragility should be included among known,
established diabetic complications such as retinopathy, nephropathy, neuropathy and
vascular disease. Patients with T2DM tend to sustain fragility fractures despite higher levels
of BMD than individuals who do not have diabetes mellitus, with impaired bone material
properties seeming to most consistently contribute to skeletal frailty in patients with T2DM.
Alterations in bone material properties are related, at least in part, to AGE accumulation.

In addition, patients with T2DM also have increased cortical porosity, which is linked

to microvascular disease. The underlying cellular and molecular mechanisms leading to
skeletal fragility in T2DM are complex, but probably involve AGE effects not only on bone
material properties, but also on bone cell function through RAGE signalling. Additionally,
premature accumulation of senescent cells could possibly lead to an accelerated skeletal
ageing phenotype in T2DM, as seems to be present in other tissues. Although standard
osteoporosis drugs remain the mainstay in preventing fractures in patients with T2DM,
future research should focus on targeting the underlying mechanisms (for example, RAGE
signalling and senescence) that mediate the skeletal fragility in patients with T2DM.
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Key points

Fracture risk is increased in patients with type 2 diabetes mellitus (T2Dm)
despite normal, or even increased, bone mineral density.

Clinical studies have revealed that the two most consistent alterations in bone
quality in patients with T2Dm are impaired bone material properties and
increased cortical porosity.

These abnormalities seem to be linked, at least in part, to accumulation
of advanced glycation end products (leading to impaired bone material
properties) and microvascular disease (leading to increased cortical porosity).

evidence from the past few years also indicates that T2Dm, at least in mice,
is associated with accelerated skeletal ageing and increased accumulation of
senescent cells, in bone as well as in other tissues.

Current strategies for fracture prevention in patients with T2Dm include
minimizing exposure to diabetes mellitus drugs that increase fracture risk
and use of osteoporosis medications shown to be effective in patients without
diabetes mellitus.

Further studies are needed to evaluate the efficacy of osteoporosis
medications specifically in patients with T2Dm and to develop new drugs
targeting the mechanisms potentially driving skeletal fragility in patients with
T2Dm.
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Fig. 1 |. Age-adjusted and sex-adjusted incidence of fractures based on the number of
hypoglycaemic episodes and baseline HbA1; in a cohort of Japanese patients with T2DM.

Multiple episodes of hypoglycaemia are associated with a marked increase in fracture risk,
and even a history of a single episode of hypoglycaemia results in an increase in fracture
risk. In the absence of hypoglycaemia, fracture risk is increased significantly in patients with
HbA ¢ values 29%. *P< 0.01, **P < 0.001 versus the reference group (HbA1. <7% without
severe hypoglycaemia). Adapted with permission from Komorita et al. 202024,
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Fig. 2 |. Bone turnover is reduced in patients with T2DM.
Serum levels of procollagen type 1 amino-terminal propeptide (PLNP) (part a) and of

carboxy-terminal telopeptide of type 1 collagen (CTx) (part b) in a cohort of patients

with type 2 diabetes mellitus (T2DM) compared with a cohort without diabetes mellitus,
demonstrating the reduction in bone turnover observed across studies in patients with
T2DM?9, Correlation between visceral adipose tissue area (assessed by CT) and serum
levels of PANP (part ¢) and of CTx (part d) in a combined cohort of people without diabetes
mellitus (including those who were lean and those with obesity) and patients with T2DM.
Parts ¢ and d adapted with permission from Tonks et al.30.

Nat Rev Endocrinol. Author manuscript; available in PMC 2021 November 20.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Khosla et al.

T AGEs

T2DM

Obesity and
hyperinsulinaemia

! Bone material
strength index

®

\/

Page 26

Microvascular disease
(transcutaneous oxygen
tension <40 mmHg)

Normal or TBMD on DXA

Normal or T trabecular
bone volume fraction

©

\/

Fracture

®

Falls

T Cortical porosity

®

Neuropathy and
other factors

Fig. 3 |. A working model for the pathogenesis of skeletal fragility and increased fracture risk in

patients with T2DM.

Patients with type 2 diabetes mellitus (T2DM) generally have preserved or increased

bone mineral density (BMD) as measured by dual-energy X-ray absorptiometry (DXA)
and trabecular bone fraction as measured by high-resolution peripheral quantitative CT
(HR-pQCT), which is probably related to obesity and/or hyperinsulinaemia. However,
these patients have impaired bone quality, including increased accumulation of advanced
glycation end products (AGEs) in bone that leads to impaired bone material properties and
microvascular disease that contributes to increased cortical porosity. Patients with T2DM
also have an increased propensity for falls, which further contributes to fracture risk. +,
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increases fracture risk; —, decreases fracture risk. FIGURE 3 reproduced with permission
from Samakkarnthai et al.3”.

Nat Rev Endocrinol. Author manuscript; available in PMC 2021 November 20.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Khosla et al. Page 28

a Senescence b T2DM c SADS d T2DM
47 154 ® Telomere
- ® YH2AX
< TAF
§ ¥ ¢ *x I
a *kk 5\ 10 I
E I s 3 l
= |
5 4 8 '1
<t € \
= H Control Y 54 \
£ 1 (n=10) §
HT2DM L
(n=10)
0- 0-l
& F
S N
Q’\ Q,\'
e f SASP
100 4+
80
8 | e 3—— * *%
s, % (—‘j *kk
8 o i3 *%
S 60 g o e
3 e & -
< 2
N3 £ 1
20 M Control
I T2DM
0- o

> 9 O > N
@6& @((\Q @((\Q Q&Q $‘§€'0

Fig. 4 |. Accelerated osteocyte senescence in T2DM.
mMRNA expression of p16/%42 and p21¢/P1 in osteocyte-enriched bones (part a). Senescence-

associated distension of satellites (SADS)* osteocytes in control mice versus mice with type
2 diabetes mellitus (T2DM) (parts b, ¢). Arrows in part b indicate SADS (unravelling of
peri-centromeric satellite DNA) in the osteocyte nucleus. Telomere-associated foci (TAF)*
osteocytes in control mice versus mice with T2DM (parts d, €). Arrows in part d indicate
TAFs (yellow) and sites of DNA damage (yH2AX, green), which colocalize with telomeres
(red) in the osteocyte nucleus. mMRNA expression of senescence-associated secretory
phenotype (SASP) markers in control mice versus mice with T2DM (part f). Collectively,
these data demonstrate that T2DM, at least in a mouse model, is associated with accelerated
osteocyte senescence and the secretion of a SASP that might have deleterious skeletal
effects. Data are means + standard error of the mean. *£< 0.05; **P< 0.01; ***P < 0.001.
Adapted with permission from Eckhardt et al 62,
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Fig. 5 |. Emerging pathophysiological mechanisms at the nexus of complications related to
T2DM, including skeletal fragility.

Microvascular disease, including impaired vascular—bone crosstalk contributes to increased
cortical porosity and reduced bone quality. Accumulation of advanced glycation end
products (AGESs) and cellular senescence activate the senescence-associated secretory
phenotype (SASP), which contributes to reduced bone formation and further impairments
in bone quality. Coloured circles represent AGEs and coloured triangles represent the
SASP. CML, A£-(carboxymethyl)lysine; MMPs, matrix metalloproteinases. Adapted with
permission from Eckhardt et al. 202092,

TCcML - TNF-xB TMMPs
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