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A B S T R A C T   

The COVID-19 pandemic has wielded an enormous pressure on global health care systems, economics and 
politics. Ongoing vaccination campaigns effectively attenuate viral spreading, leading to a reduction of infected 
individuals, hospitalizations and mortality. Nevertheless, the development of safe and effective vaccines as well 
as their global deployment is time-consuming and challenging. In addition, such preventive measures have no 
effect on already infected individuals and can show reduced efficacy against SARS-CoV-2 variants that escape 
vaccine-induced host immune responses. Therefore, it is crucial to continue the development of specific COVID- 
19 targeting therapeutics, including small molecular drugs, antibodies and nucleic acids. However, despite clear 
advantages of local drug delivery to the lung, inhalation therapy of such antivirals remains difficult. This review 
aims to highlight the potential of pulmonary surfactant (PS) in the treatment of COVID-19. Since SARS-CoV-2 
infection can progress to COVID-19-related acute respiratory distress syndrome (CARDS), which is associated 
with PS deficiency and inflammation, replacement therapy with exogenous surfactant can be considered to 
counter lung dysfunction. In addition, due to its surface-active properties and membrane-interacting potential, 
PS can be repurposed to enhance drug spreading along the respiratory epithelium and to promote intracellular 
drug delivery. By merging these beneficial features, PS can be regarded as a versatile biomaterial to combat 
respiratory infections, in particular COVID-19.   

1. Introduction 

In December 2019, the Chinese authorities identified severe acute 
respiratory syndrome coronavirus-2 (SARS-CoV-2) as a new emerging 
β-coronavirus, capable of infecting humans and causing respiratory 
pathology. Infection with SARS-CoV-2 can result in the development of 
coronavirus disease-19 (COVID-19), which poses a serious threat to 
global public health, echoed by an estimated global mortality rate of 
more than four million people, as reported by the World Health Orga-
nization (WHO) [1]. Since its emergence, SARS-CoV-2 has rapidly 
spread across countries by which, as of March 2020, the WHO officially 
declared the outbreak as a pandemic. This health crisis led to worldwide 
efforts to combat COVID-19 by directly targeting SARS-CoV-2 infection 
(e.g. with antivirals), symptomatic treatment (e.g. via steroids), as well as 
through the optimization and standardization of supportive care man-
agement such as prone positioning and oxygenation [2–4]. All these 
efforts have the goal to prevent the development of respiratory failure, 
the most common cause of COVID-19 mortality [5]. Importantly, global 
vaccination campaigns are currently ongoing and will further progress 

in the coming months, leading to a reduction of infections, hospitali-
zations and mortality [6]. However, the availability of both preventive 
measures as well as (combination) therapies for already infected pa-
tients might be most effective. Therefore, in response to the urgency to 
fight the escalating COVID-19 pandemic, many existing drugs have been 
screened with the aim to identify compounds that could be successfully 
repurposed, since such an approach is more time- and cost-efficient and 
is correlated to higher success rates compared to the development of 
novel anti-SARS-CoV-2 drugs [7–10]. A variety of compounds from 
diverse drug classes including antivirals (e.g. remdesivir, favipiravir and 
lopinavir/ritonavir), antiparasitics (e.g. chloroquine and hydroxy-
chloroquine), monoclonal antibodies (e.g. tocilizumab) and steroids (e.g. 
dexamethasone) have been investigated in (pre)-clinical trials [11]. In 
this regard, the broad-spectrum nucleotide mimic remdesivir is 
approved for emergency use as a post-infection treatment for COVID-19 
in around 50 countries [12,13]. Next to this, the WHO strongly recom-
mends the use of dexamethasone in severe COVID-19 patients that 
require oxygenation or mechanical ventilation [14]. In addition, many 
groups have investigated the potential of combining different 
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(repurposed) drugs to achieve improved therapeutic outcomes. In this 
aspect, remdesivir is often combined with anti-inflammatory drugs or 
immunomodulators to both target SARS-CoV-2 as well as inflammatory 
pathways. This led to the approval of remdesivir and the immunomod-
ulator baricitinib for emergency use by the Food and Drug Administra-
tion (FDA). Similarly, also combination therapies of casirivimab and 
imdevimab as well as bamlanivimab and estesevimab (i.e. monoclonal 
antibodies (mAbs) that target the spike protein of SARS-CoV-2) were 
granted emergency use approval by the FDA [15]. 

However, apart from this, advancements in the development of 
SARS-CoV-2-specific therapeutics are limited [16]. This can in part be 
explained by antiviral drug candidates often having limited influence on 
critical parameters such as the need for oxygenation or mortality [17]. 
However, the development of such specific antivirals as an add-on to 
vaccination is crucial, especially for already infected patients, in-
dividuals who are not yet vaccinated or in cases where vaccination does 
not provide sufficient protection (e.g. upon the emergence of SARS-CoV- 
2 variants) or causes adverse events (e.g. anaphylaxis and cerebral 
thrombosis) [18]. In this context, Seley-Radtke, Roche and Altea are 
developing a nucleotide analog (AT527) to directly target SARS-CoV-2 
infection after oral administration, which is currently evaluated in a 
phase III clinical trial (i.e. the MORNINGSKY trial). The aim is to 
administer this antiviral drug candidate to both non-hospitalized and 
hospitalized patients, as well as to prevent infection in people who 
experienced a high-risk contact [19]. Next to this, two oral antiviral 
drugs by Merck and Pfizer (i.e. molnupiravir and paxlovid, respectively) 
are currently under clinical development. Here, molnupiravir was 
initially developed to treat influenza, while paxlovid is a SARS-CoV-2- 
specific drug. Both candidates already showed to significantly reduce 
the number of hospitalizations and deaths of COVID-19 infected patients 
[20]. 

Infection with SARS-CoV-2 occurs through binding of the spike 
protein on the outer shell of the virus to the angiotensin-converting 
enzyme-2 (ACE-2) receptor, expressed on a variety of host cell types 
throughout the respiratory system. In particular, there is a significant 
expression of the ACE-2 receptor on type II pneumocytes, the alveolar 
epithelial cell type responsible for the production and secretion of PS 
[21–23]. In severe cases, infection with SARS-CoV-2 leads to the 
development of CARDS, associated with excessive inflammation, respi-
ratory failure and potentially death [24–27]. The administration of 
exogenous surfactants to patients suffering from both neonatal (NRDS) 
and acute respiratory distress syndrome (ARDS) has been widely 
investigated. This so-called ‘surfactant replacement therapy’ (SRT) is 
currently the standard-of-care to reduce mortality in premature infants 
with surfactant-deficient lungs [28]. Although clinical trials have failed 
to demonstrate improved survival in ARDS [24,29,30], the current 
COVID-19 pandemic has invigorated the use of exogenous surfactants to 
treat CARDS, resulting in several ongoing clinical trials [31–35]. In 
addition to this well-documented application, this review additionally 
aims to highlight two distinct modes of action of PS, which could prove 
highly beneficial in the fight against COVID-19. First, due to its surface- 
spreading properties, PS can be used as a drug delivery vehicle to ach-
ieve improved spreading of COVID-19-targeting drugs along the respi-
ratory surface, as well as to support drug delivery into more distal 
regions such as the alveolar spaces [2,8,36,37]. In addition, formulating 
drugs inside PS liposomal carriers can hitchhike down the endogenous 
surfactant recycling pathway to target specific cell types such as type II 
pneumocytes or alveolar macrophages (AMs) [38–40]. Secondly, be-
sides improving the extracellular availability of various therapeutics in 
the lung, PS has the newfound potential to promote the intracellular 
delivery of membrane-impermeable drugs. In particular, inhalation 
therapy with small interfering RNA (siRNA) is a promising approach to 
address acute respiratory viral infections, both by targeting viral pro-
teins responsible for infectivity or replication, as well as host-related 
proteins that play a crucial role in viral infection or disease severity 
[41,42]. To be functional, siRNA molecules require cytosolic delivery in 

the target cell of interest, for which they are typically encapsulated into 
nanoparticles (i.e. nanomedicines). Unfortunately, current state-of-the- 
art siRNA nanomedicines have difficulties in overcoming the many 
extra- and intracellular barriers upon topical administration to the lung, 
leading to inefficient cytosolic delivery [43,44]. In this regard, it was 
recently disclosed by Raemdonck and co-workers that exogenous PS has 
the unexpected property of promoting cytosolic siRNA delivery by 
polymeric nanomedicines [45–50]. As such, exogenous PS can be 
regarded as a multifaceted biomaterial, enabling both direct treatment 
of COVID-19-related lung dysfunction as well as improved pulmonary 
delivery of small molecular- and macromolecular drugs. 

2. Severe acute respiratory syndrome coronavirus-2 

Coronaviruses belong to the family of Coronaviridae, which is 
further subdivided in four genera (α, β, γ, δ) [51,52]. They are envel-
oped, single-stranded (ss) RNA viruses with a genome ranging from 26 
to 32 kilobases (kb) [53,54]. The ~30 kb long genome of SARS-CoV-2 
encodes four structural proteins including the nucleocapsid (N), spike 
(S), membrane (M) and envelope (E) proteins [41] and a variety of non- 
structural proteins such as RNA-dependent RNA polymerase and heli-
case [55]. The spike protein is responsible for the remarkable 
morphology shared by Coronaviridae, typified by the projection of 
crown-like structures on their surface [54,55]. 

Life-threatening lower respiratory tract infections were reported for 
severe acute respiratory syndrome coronavirus-1 (SARS-CoV-1) in 2003 
and Middle Eastern respiratory syndrome coronavirus (MERS-CoV) in 
2012 [56,57]. Since December 2019, SARS-CoV-2, the third virus of the 
β-coronavirus group, is responsible for the current pandemic [55]. 

As briefly mentioned above, infection with SARS-CoV-2 occurs 
through binding of the viral spike protein to the ACE-2 receptor, mainly 
expressed in the pulmonary system on endothelial cells and type II 
pneumocytes. Of note, the ACE-2 receptor is also expressed in other 
organs such as the intestine, heart and kidney, explaining the extrap-
ulmonary symptoms such as diarrhea, nausea, cardiac injury and acute 
kidney injury [51,58,59]. As shown in Fig. 1, viral entry occurs via direct 
fusion as well as via endocytic entry routes. The former mechanism of 
entry requires initial spike protein priming by a host serine protease, 
transmembrane protease serine 2 (TMPRSS2), which cleaves the protein 
into two subunits, S1 and S2. In the case of endocytic entry, the spike 
protein is activated by cathepsin B and L, two cysteine proteases present 
in the endosomal compartment, followed by fusion between the viral 
envelope and the endosomal membrane. In this way, SARS-CoV-2 can 
also infect host cells that lack TMPRSS2 [21,22,]. Once the SARS-CoV-2 
genome enters the cytosol, it is transcribed by the viral RNA-dependent 
RNA polymerase and translated into viral proteins by host cell ribo-
somes. Finally, mature virions are released via exocytosis, where they 
can further infect surrounding cells [23]. 

Despite the complete pathophysiological pattern of COVID-19 
remaining elusive, infection results in a broad spectrum of clinical 
manifestations, ranging from asymptomatic to life-threatening. Most 
common features of moderate COVID-19 include fever, cough, head-
ache, fatigue, myalgia and shortness of breath [53]. Especially older 
patients and patients with co-morbidities such as obesity, diabetes and 
cardiovascular disease are at risk to develop respiratory failure with 
differing levels of hypoxia and diffuse lung infiltrates, associated with 
multi-organ failure (which necessitates hospitalization in the intensive 
care unit (ICU) and mechanical ventilation) and a high mortality rate 
[2,51,54,58,60]. Of note, an increasing number of reports describe 
persistent complications post-infection that can last more than 4 weeks 
since the onset of symptoms [61–63]. 
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3. Pulmonary surfactant 

3.1. Endogenous pulmonary surfactant: Composition and function 

PS is a surface-active biomaterial present at the thin layer of fluid 
that lines the alveolar epithelial surface, where it lowers the surface 
tension upon the formation of surfactant films at the air-liquid interface 
(Fig. 2A) [64]. These interfacial films prevent alveolar collapse during 
expiration and thereby secure proper gas exchange [2,65–67]. The 
presence of PS is crucial for pulmonary homeostasis, as its absence, 
deficiency or inactivation is correlated with severe pulmonary diseases 
[66,68]. As shown in Fig. 2B, PS is mainly composed of lipids (~90 wt%) 
with dipalmitoylphosphatidylcholine (DPPC), a saturated phospholipid, 
being most abundant (~40 wt%). In addition, anionic lipids (~15 wt%) 
such as phosphatidylglycerol (PG), phosphatidylinositol (PI) and phos-
phatidylserine (PS) and neutral lipids such as cholesterol (~8 wt%) 
contribute to this lipid fraction [65,67]. The remaining 10 wt% consists 
of four highly specialized surfactant proteins (SPs), which can be divided 
in two groups based on their structural, physicochemical and functional 
properties, i.e. the large and hydrophilic proteins SP-A (~6 wt%) and SP- 

D (~1.5 wt%) and the smaller, hydrophobic proteins SP-B (~1 wt%) and 
SP-C (~1.5 wt%). 

PS is synthetized by type II pneumocytes and stored in highly packed 
intracellular organelles called lamellar bodies (LBs), which have a 
spherical shape and comprise concentrically organized membranes. 
Subsequently, upon fusion of the LBs with the plasma membrane, PS is 
secreted into the alveolar lumen where it partly reorganizes into tubular 
myelin. Tubular myelin consists of multi-layered lipid-protein structures 
in the liquid phase, stabilized by SP-A. The presence of SP-B and SP-C 
subsequently induces the adsorption of these structures onto the inter-
face (Fig. 3) [69]. Upon expiration, unsaturated lipids and cholesterol 
are excluded from these interfacial films (i.e. the squeeze-out model), 
resulting in the formation of a rigid DPPC monolayer that reduces the 
surface tension to near 0 N/m (Fig. 2C) [2]. 

About 65% of PS components (i.e. ‘used’ surfactant) is reutilized via 
recycling mechanisms by type II pneumocytes [70]. As depicted on 
Fig. 3, after binding of SP-A to the P63/CKAP4 receptor expressed on 
these cells [71,72], surfactant lipid- and protein complexes (mainly 
phospholipids and SP-A) are taken up via receptor-mediated endocy-
tosis. While SP-A is secreted into the extracellular space via recycling 

Fig. 1. SARS-CoV-2 structure and host cell entry mechanisms. The single stranded (ss) RNA viral genome encodes four structural proteins including the nucleocapsid, 
membrane, envelope and spike protein (A). Binding of S1 of the viral spike protein to the ACE-2 receptor on host cells induces 1) spike protein cleavage by TMPRSS2, 
followed by activation of S2 and viral internalization via direct fusion of the viral envelope and the host cell plasma membrane or 2) viral internalization via endocytic 
entry, followed by fusion between the viral envelope and the endosomal membrane (B). Abbreviations: SARS-CoV-2; severe acute respiratory syndrome coronavirus- 
2, ACE-2; angiotensin-converting enzyme-2, TMPRSS2; transmembrane protease serine 2, S1; subunit 1, S2; subunit 2. Adapted from ‘Mechanisms of SARS-CoV-2 
Viral Entry’, by BioRender.com (2021). Retrieved from https://app.biorender.com/biorender-templates 
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vesicles, phospholipids are stored in multivesicular bodies (MVBs) and 
are eventually directed towards LBs, by which the above-mentioned 
secretion, reorganization- and adsorption processes resume [70]. 

3.1.1. Hydrophilic surfactant proteins 
Next to the well-known biophysical function essential for mamma-

lian breathing, PS also contributes to the pulmonary innate immune 
system, protecting the alveoli from invading pathogens and other 
foreign particulate matter [29,65]. These properties are mainly assigned 
to SP-A and SP-D, two oligomeric proteins that belong to the family of 
collectins of which the role in the innate immune system can be 
explained by a dual mode-of-action [65,73]. First, it is reported that SP- 
A and SP-D have immunomodulatory properties. More specifically, as 
shown in Fig. 3, these proteins can bind to a variety of receptors on 
innate immune cells (e.g. AMs and monocytes) via their carbohydrate 
recognition domain (CRD) or N-terminal region, thereby modulating 
cytokine production [74–76]. In addition, SP-A and SP-D can directly 
bind to soluble pro-inflammatory mediators such as tumor necrosis 
factor (TNF)α and lipopolysaccharide (LPS), which results in the inhi-
bition of their downstream inflammatory actions (Fig. 3) [65,77,78]. 
Secondly, SP-A and SP-D bind to carbohydrates, phospholipids and 
glycolipids present on bacteria, viruses, yeasts and fungi, as well as to 
neutrophils and DNA via their CRD. This so-called ‘opsonization’ of 
pathogens and particles results in phagocytosis by immune cells such as 
AMs (Fig. 3) [79–81]. Next to its crucial role in the protection of alveoli 
against potentially harmful matter, it is reported that SP-D contributes to 
surfactant homeostasis, as its absence results in the accumulation of PS 
in the airways due to an aberrant recycling process, although the exact 

underlying mechanism is still unknown [82,83]. 

3.1.2. Hydrophobic surfactant proteins 
SP-B and SP-C are cationic and amphiphilic proteins, found in and 

between PS-associated lipid bilayers, and are essential for surfactant 
adsorption and stabilization at the alveolar air-liquid interface. Both 
proteins modulate membranes through combined electrostatic and hy-
drophobic protein-lipid interactions via cationic and aromatic residues, 
respectively [2,69,84,85]. SP-B belongs to the saposin-like protein 
(SAPLIP) family. All members of this family are characterized by a so- 
called ‘saposin fold’, consisting of α-helical domains, six conserved 
cysteines that form three intramolecular disulfide bridges as well as 
conserved hydrophobic regions [86]. As depicted in Fig. 2B, the SP-B 
monomer (79aa) has a complex three-dimensional structure consisting 
of five cationic amphiphilic α helices that mediate its peripheral orien-
tation in surfactant membranes. Moreover, via an intermolecular disul-
fide bridge, SP-B assembles into a covalent homodimer, which is 
believed to be important for its surface activity and the promotion of 
membrane-membrane interactions, of which the latter may induce 
membrane fusion [87,88]. 

In addition, SP-B homodimers can assemble into larger oligomers 
with a ring-shaped channel configuration. These oligomers are believed 
to mediate translocation of lipids between membranes and towards the 
air-liquid interface, a key initial step to obtain proper surfactant struc-
ture and alveolar dynamics. Moreover, next to its role in dense packing 
of surfactant components in LBs, it is described that extracellular SP-B 
also induces the secretion of PS from these intracellular organelles via 
interaction with and activation of receptors on the plasma membrane of 

Fig. 2. Schematic representation of the alveolar compartment, including the alveolar epithelium (i.e. type I- and type II pneumocytes), alveolar macrophages and 
pulmonary surfactant (A). Proteolipid composition of pulmonary surfactant (wt%) (B). Organization of pulmonary surfactant and lipid-protein interactions during 
expiration, according to the squeeze-out model. Grey, orange and purple lipids represent saturated lipids, unsaturated lipids and cholesterol, respectively (C). 
Abbreviations: DPPC; dipalmitoylphosphatidylcholine, PC; phosphatidylcholine, PG; phosphatidylglycerol, PL; phospholipid, NL; neutral lipid, SPs; surfactant 
proteins, SP-A; surfactant protein-A, SP-B; surfactant protein-B, SP-C; surfactant protein-C, SP-D; surfactant protein-D. Created with BioRender.com (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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type II pneumocytes. The pleiotropic effects of SP-B at the alveolar air- 
liquid interface appear indispensable for mammalian breathing, as SP- 
B deficiency, for example due to mutations in the SP-B gene SFTPB, 
leads to fatal respiratory failure [89,90]. 

SP-C is a 35aa lipoprotein that, in contrast to SP-B, displays a 
transmembrane orientation due to its α-helical conformation and the 
presence of two palmitoylated cysteine residues (Fig. 2B) [91]. Although 
the absence of SP-C in PS is correlated to chronic respiratory diseases, it 
does not fully impair breathing as is the case with SP-B deficiency 
[92,93]. In this regard, although the specific role of SP-C in surfactant 
layers is not yet fully understood, it is clear that its presence is crucial for 
proper surfactant structure, recycling and dynamics during repetitive 
breathing cycles [94,95]. 

Next to the importance of SP-B and SP-C in surfactant dynamics and 
stability as described above, recent studies have elucidated the contri-
bution of these proteins, together with phospholipids, to immunomod-
ulatory processes, based on their anti-inflammatory and antibacterial 
properties [65,96–102]. More in-depth information on the structure and 
function of the SPs can be found in comprehensive reviews on the topic 
[83,88,103–105]. 

3.2. Exogenous pulmonary surfactant: Surfactant replacement therapy 

PS has become the standard-of-care in the prevention and treatment 
of NRDS after Avery and Mead discovered the correlation between NRDS 
and surfactant deficiency [28,106]. Since the lungs of preterm infants 
are not yet fully developed, there is no production of endogenous 

surfactant, requiring the supplementation of exogenous clinical surfac-
tants to avoid alveolar collapse and respiratory failure [24,68]. 

3.2.1. First-generation synthetic surfactant preparations 
The clinical use of exogenous surfactant is not a recent finding. The 

potential of SRT was already discovered in 1953, where the nebulization 
of the non-ionic detergent Triton WR-1339 (Alevaire®) was probed as a 
treatment for neonatal asphyxia. Since its administration was associated 
with fatal outcomes, additional efforts were done to improve safety and 
efficacy of SRT. Further research led to the development of first- 
generation protein-free synthetic surfactants such as Colfosceril Palmi-
tate (Exosurf®), which contains a mixture of DPPC and two spreading 
agents (i.e. hexadecanol and tyloxapol) [107] and Pumactant (ALEC®), 
composed of DPPC and PG (Table 1) [108]. 

3.2.2. Animal-derived surfactant preparations 
The discovery of the importance of SP-B and SP-C for rapid adsorp-

tion and stability of surfactant membranes paved the way towards the 
use of animal-derived surfactants [113–116]. Indeed, studies that 
compared animal-derived surfactants and protein-free synthetic sur-
factants showed that the latter failed to reduce the surface tension, due 
to the lack of SP-B and SP-C. In addition, it is reported that the admin-
istration of animal-derived surfactants results in lower needs for venti-
lation, reduced risk of pneumothorax and a lower mortality rate. 
Consequently, protein-free synthetic preparations were withdrawn from 
the market [117,118]. 

A variety of animal-derived surfactants, which differ in origin and 

Fig. 3. Interaction of endogenous pulmonary surfactant with pulmonary cells, cellular membranes and the immune system. Pulmonary surfactant is produced by 
type II pneumocytes in concentrically organized lamellar bodies, which are partly converted into tubular myelin upon secretion into the alveolar lumen. The presence 
of SP-B and SP-C in tubular myelin drives the adsorption of surfactant membranes towards the air-liquid interface (1). Binding of SP-A to the P63/CKAP4 receptor 
expressed by type II pneumocytes induces the uptake and recycling of used surfactant components (2). Degradation of used surfactant components occurs via uptake 
and phagocytosis by alveolar macrophages (3). SP-A and SP-D are involved in the pulmonary innate immune system via opsonization of aerial pathogens, followed by 
phagocytosis by alveolar macrophages (4). SP-A and SP-D modulate inflammatory responses via interactions with immune cells, thereby reducing cytokine pro-
duction, as well as via direct binding and inactivation of soluble cytokines (5). Grey, orange and purple lines represent saturated, unsaturated and cholesterol-rich 
domains, respectively. Abbreviations: SP-A; surfactant protein-A, SP-B; surfactant protein-B, SP-C; surfactant protein-C, SP-D; surfactant protein-D. Created with BioR 
ender.com (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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proteolipid content, are widely used in NRDS management (Table 1). In 
1983, Curstedt and Robertson were the first to investigate the porcine- 
derived Poractant Alfa (Curosurf®) [2,119]. Following studies led to 
the development of other animal-derived surfactants such as Beractant 
(Survanta®), Calfactant (Infasurf®) and SF-RI I (Alveofact®), all from 
bovine origin [103,108,120]. 

Various studies have compared the efficacy among different animal- 
derived preparations, however with conflicting results. In general, there 
are no significant differences between preparations from bovine origin. 
On the contrary, different studies reported on the superiority of Cur-
osurf®, compared to both Survanta® and Infasurf®, albeit the admin-
istered dose of Curosurf® was systematically higher. Therefore, in order 
to draw clear conclusions, randomized and controlled trials that 
compare the efficacy of animal-derived surfactants at the same dose are 
needed [121,122]. 

3.2.3. Second-generation synthetic surfactant preparations 
Animal-derived preparations are associated with batch-to-batch 

variabilities, limited supply and a theoretical risk of pathogen trans-
mission. Together with the fact that extraction and purification from 
animal lungs are time-consuming and expensive, the focus of SRT has 
shifted to the development of synthetic alternatives [103]. Due to the 
complex three-dimensional structure and the high hydrophobicity of SP- 
B and SP-C, production of their complete native form via chemical 
synthesis or recombinant technologies without loss of function is not yet 
possible [103,123]. Therefore, there is a need to develop simpler SP-B 
and SP-C analogues or mimics that can, at least partially, replicate 
their structure and, most importantly, their biophysical function. 

KL4 (21aa, sinapultide) is a cationic amphiphilic peptide with four 
lysine (K)-tetraleucine (L4) repeats that was clinically approved by the 
FDA in 2012 as the first synthetic peptide for substitution of SP-B in 
clinical surfactants. The sequence of KL4 is based on the hydrophobic/ 
hydrophilic ratio in the C-terminal part of SP-B. Upon combination with 
DPPC, palmitoyloleoylphosphatidylglycerol (POPG) and palmitic acid, 
this synthetic formulation (Surfaxin®) is as effective as its animal- 
derived counterparts in the treatment of NRDS [123,124]. 

Given the importance of both the N- and C-terminal segment for the 
surface activity of SP-B, Walther and Waring studied the in vitro and in 
vivo surface activity of Mini-B (MB) and Super Mini-B (SMB), peptides 

that comprise two amphiphilic α helices of native SP-B, located at the N- 
and C termini, which are linked by two disulfide bridges [125]. The SMB 
peptide additionally contains the seven first N-terminal amino acids 
(FPIPLPY) [126]. The high hydrophobicity of this sequence fosters 
interaction with surfactant membranes, explaining the higher surface 
activity of SMB compared to MB [127,128]. Additional efforts to 
develop a peptide with increased hydrophobicity and α-helical structure 
as well as reduced susceptibility to oxidation led to the design of Mini- 
BLeu, a MB analogue in which two methionine residues are replaced 
by leucine [129]. 

In contrast to SP-B, the specific amino acid composition of SP-C 
seems to be less important for its biophysical function, since SP-C ana-
logues that solely mimic the α-helical structure of the transmembrane 
part of native SP-C can fully replicate its surface-active properties 
[130,131]. This observation led to the development of SP-C33Leu, 
which deviates from native SP-C with respect to the removal or substi-
tution of specific amino acids [103,130,132]. 

Currently, CHF5633 is the most advanced synthetic surfactant 
preparation and is under clinical investigation in a phase II trial for 
NRDS after proof of equal efficacy compared to Curosurf® and Sur-
vanta® in in vitro and in vivo models [133–136]. CHF5633 contains 
peptide analogues of both SP-B and SP-C (i.e. Mini-BLeu and recombi-
nantly synthesized SP-C33Leu), together with DPPC and POPG [2,103]. 
In addition, a surfactant preparation that contains a mixture of DPPC, 
palmitoyloleoylphosphatidylcholine (POPC), POPG and SMB (i.e. Min-
isurf), is currently under preclinical investigation [137]. 

4. Pulmonary surfactant in the fight against COVID-19 

4.1. Surfactant replacement therapy to treat COVID-19-related acute 
respiratory distress syndrome 

The clinical success of SRT in NRDS has rationalized attempts to 
broaden the therapeutic application of clinical surfactants to other lung 
diseases like ARDS. ARDS is a severe form of acute lung injury [25] and 
is incited by direct lung insults (e.g. due to pneumonia or gastric content 
aspiration) as well as indirect systemic causes (e.g. extrapulmonary 
sepsis, nonthoracic trauma or burn injury) and is associated with high 
morbidity and mortality [25,138,139]. Clinical manifestations include 

Table 1 
Protein- and phospholipid composition of surfactant preparations of different origin.  

Preparation Origin SP-B SP-C Phospholipids (PL) Others Ref. 

First-generation synthetic surfactant preparations 
Colfosceril 

(Exosurf®) 
Synthetic – – 13.5 

mg/mL 
(DPPC) 

Hexadecanol 
Tyloxapol 

[109] 

Pumactant 
(ALEC®) 

Synthetic – – 40 
mg/mL 
(DPPC, PG) 

– [109]  

Animal-derived surfactant preparations 
Poractant Alfa 

(Curosurf®) 
Minced porcine lung extract 2–3.7 

mg/mM PL 
5–11.6 mg/mM PL 80 

mg/mL 
Tripalmitoylglycerol 
Palmitic acid 

[109,110] 

Beractant 
(Survanta®) 

Minced bovine lung extract 0–1.3 
mg/mM PL 

1–20 
mg/mM PL 

25–30 
mg/mL 

– [109,110] 

Calfactant 
(Infasurf®) 

Calf lung lavage 5.4 
mg/mM PL 

8.1 
mg/mM PL 

35 
mg/mL 

– [109,110] 

SF-RI I 
(Alveofact®) 

Bovine lung lavage 2–5.6 
mg/mM PL 

1–12 
mg/mM PL 

40 
mg/mL 

– [109]  

Second-generation synthetic surfactant preparations 
Lucinactant 

(Surfaxin®) 
Synthetic 19.8 

mg/mM PL 
(KL4) 

– 30 
mg/mL 
(DPPC, POPG) 

Palmitic acid [109] 

CHF5633 
(Under clinical investigation, phase II) 

Synthetic 0.2% 
(Mini-Bleu) 

1.5% 
(SP-C33Leu) 

80 
mg/mL 
(DPPC, POPG) 

– [111,112] 

Minisurf 
(Under preclinical investigation) 

Synthetic 3% 
(SMB) 

– DPPC, POPC, POPG – [111]  
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surfactant deficiency and inactivation [2,66], pulmonary edema, hyp-
oxemia and suppressed respiration [64]. These symptoms are the result 
of acute outbursts of pro-inflammatory cytokines and an affected 
endothelial barrier, which lead to a continuous cycle of pulmonary 
inflammation and tissue damage [25,39,140–142]. Due to conflicting 
clinical outcomes, with several clinical trials on adult patients showing 
no improvement in survival despite enhanced oxygenation, currently no 
comparable SRT is available to treat patients suffering from ARDS 
[24,29,30]. The main reason for these suboptimal outcomes is that next 
to the underlying surfactant deficiency, also inactivation of endogenous 
and exogenous surfactant occurs due to the presence of surface-active 
serum proteins and inflammatory molecules in the alveolar lumen, as 
will be explained later [139]. 

The high expression level of the ACE-2 receptor on the cellular sur-
face of type II pneumocytes makes this cell type particularly vulnerable 
to infection with SARS-CoV-2. As a result, SARS-CoV-2 infection is re-
ported to result in decreased endogenous PS levels, as well as altered PS 
composition and mutations [143]. Of importance, COVID-19-related 
mortality is mostly caused by a continuous, uncontrolled and exagger-
ated immune response. This is explained by the recruitment of inflam-
matory cells such as monocytes and macrophages, which subsequently 
secrete cytokines and chemokines, resulting in a so-called ‘cytokine 
storm’. Subsequent neutrophil influx and degranulation leads to the 
destruction of type II pneumocytes and endothelial cells, resulting in the 
impairment of surfactant production and secretion, a disrupted endo-
thelial barrier, serum leakage into the alveolar spaces and the 

development of CARDS (Fig. 4) [24–27,144]. Moreover, the ACE-2 re-
ceptor is involved in anti-inflammatory and antifibrotic mechanisms, 
which protect the lung from injuries. Extensive binding of SARS-CoV-2 
to this receptor thus reduces its lung-protective capacities [27]. 

Surprisingly, CARDS does not follow the common clinical pattern in 
terms of lung mechanics, alveolar damage and radiological pre-
sentations typically seen with ARDS [145], but is rather classified as an 
atypical pneumonia that resembles the pathophysiology of NRDS [24]. 

Based on the distinctive clinical manifestations of CARDS and the 
correlation to surfactant deficiency and inactivation, it is clear that re-
sults from past ARDS trials cannot simply serve as a reference to its 
potential in treating patients with CARDS [145]. Therefore, surfactant 
treatment to anticipate on the progression of severe lung injury in 
COVID-19 patients has been proposed as a potential treatment for 
COVID-19 [2,24,30]. Indeed, a study by Gerosa et al. showed that 
infection with SARS-CoV-2 results in the overexpression of SP-A inside 
the alveolar spaces. Here, it is important to note that SP-A is present in 
rather condensed masses, which implies its inactivation or dysregulation 
[146]. Another study by Islam et al. subsequently showed that, next to 
affected levels and structures of SP-A, there is a dysregulation of a va-
riety of genes involved in pulmonary surfactant production and activa-
tion, as well as its turnover and metabolism [147]. Next to this, Kerget 
et al. reported a significant increase of SP-D levels in blood samples of 
infected vs. non-infected individuals. Importantly, SP-D levels were 
higher in patients who developed CARDS and who did not survive SARS- 
CoV-2 infection. These results highlight the importance of serum SP-D as 

Fig. 4. Non-treated (A)versus pulmonary surfactant-treated COVID-19-related acute respiratory distress syndrome (B). Infection with SARS-CoV-2 results in the 
recruitment of alveolar macrophages, which produce high levels of cytokines, also referred to as a cytokine storm (1). Subsequent neutrophil recruitment and 
degranulation (2) leads to the destruction of type II pneumocytes and endothelial cells, resulting in reduced surfactant production and secretion, serum leakage in the 
alveolar spaces and surfactant inactivation by surface-active cytokines and serum proteins that adsorb to the air-liquid interface, thereby excluding endogenous PS 
components (3). Improper surfactant function leads to collapsed alveoli, aberrant gas exchange and respiratory failure. The administration of exogenous surfactant 
can supplement the affected endogenous PS pool (1), as well as dampen the inflammatory response via interactions with immune cells, cytokines and SARS-CoV-2 
(2). Exogenous SP-A and SP-D can prevent viral infection via binding and neutralization of the spike protein, thereby preventing its interaction with the ACE-2 
receptor on type II pneumocytes (3). Exogenous SP-A and SP-D grants more resistance towards surfactant inactivation (4). Recovery of the surfactant layer as 
well as reduced inflammation leads to less cellular damage, reduced serum leakage in the alveolar spaces, enhanced gas exchange and thus the prevention of 
respiratory failure. Abbreviations: COVID-19; coronavirus disease-19, SARS-CoV-2; severe acute respiratory syndrome coronavirus-2, ACE-2; angiotensin-converting 
enzyme-2, SP-A; surfactant protein-A, SP-D; surfactant protein-D. Created with BioRender.com 
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a biomarker for disease progression, as well as underscore the potential 
of SRT in severely ill COVID-19 patients due to the leakage of SP-D from 
the alveolar spaces into the systemic circulation, induced by an affected 
alveolar integrity [148]. Likewise, a study by Tong et al. revealed that 
serum SP-D levels were significantly higher in patients with severe 
COVID-19 [149]. 

As shown in Fig. 4, the administration of exogenous surfactants is 
reported to have several beneficial features, i.e. (1) restoration of the 
endogenous surfactant pool, thereby reducing the surface tension and 
work of breathing, and (2) mitigating the activation of the innate im-
mune system and preventing inflammatory damage, which is mainly 
assigned to the presence of anionic lipids in the surfactant preparation. 
POPG and PI are reported to have immunomodulatory properties via 
interaction with toll-like receptors (TLRs) and viruses. More specifically, 
in vitro experiments revealed that these anionic lipids are capable of 
suppressing the activation of both TLR2 and TLR4 in AMs [99,150]. In 
addition, in vitro experiments in primary human bronchial epithelial 
cells (HBECs) showed that both POPG and PI could bind to respiratory 
syncytial virus (RSV), thereby preventing infection and production of 
interleukin (IL)-6 and IL-8. These findings were confirmed in vivo in RSV- 
infected mice, where intranasal administration of POPG and PI resulted 
in a decreased neutrophil- and lymphocyte count in lung lavage, as well 
as a significant reduction in viral load [98,151,152]. Likewise, in vitro 
studies in HBECs and Madin-Darby Canine Kidney (MDCK) cells showed 
that POPG and PI prevent infection with H3N2 influenza A virus (IAV). 
Subsequent in vivo studies also demonstrated protection of mice from 
H1N1-IAV infection [153]. 

It is worth mentioning that the optimal composition and origin of 
surfactant preparations for the treatment of CARDS and NRDS might 
differ. First, all clinical surfactants currently on the market to prevent 
NRDS are devoid of the hydrophilic proteins SP-A and SP-D, albeit that 
their presence can add to a more effective treatment of CARDS. SP-A and 
SP-D could promote the clearance of SARS-CoV-2 through binding of 
their CRD to the glycosylated spike protein [154], as well as modulate 
the inflammatory response correlated to infection and associated with 
disease severity (Fig. 4) [154,155]. Earlier in vitro studies already 
demonstrated that SP-A and SP-D have antiviral properties against CoVs, 
where SP-A and SP-D were able to bind and neutralize HCoV-229E 
[156,157]. Furthermore, the antiviral properties of SP-A and SP-D 
have been confirmed for a variety of other viruses [158–162]. 

As shown in Fig. 4, the addition of SP-A and SP-D can also grant more 
resistance to surfactant inactivation [2,163]. A damaged endothelial 
barrier results in the leakage of serum into the alveolar lumen, as 
extensively described in severely ill COVID-19 patients suffering from 
CARDS. In the same manner as surface-active inflammatory molecules 
(e.g. IL-1 and TNF), surface-active serum proteins (e.g. albumin) can 
adsorb to the air-liquid interface, creating a steric and electrostatic 
barrier that prevents effective surfactant adsorption [164–166]. Inter-
estingly, recent studies have shown that the addition of non-adsorbing 
hydrophilic macromolecules such as polyethyleneglycol (PEG) and hy-
aluronic acid also prevents surfactant inactivation in a similar way 
[139]. 

Since animal-derived SP-A and SP-D could also induce immunogenic 
reactions in adults, addition of these proteins to the formulation would 
require synthesis of human homologues [2]. Efforts to develop recom-
binant fragments of SP-A (rfhSP-A) and SP-D (rfhSP-D) have been un-
dertaken. Most importantly, these fragments are able to mimic the 
antipathogenic and immunomodulatory properties of the native pro-
teins [105]. In this regard, a recent study by Madan et al. reported that 
rfhSP-D successfully neutralized SARS-CoV-2 and reduced infection in 
clinical samples, where it is more potent in inhibiting viral replication 
and infectivity compared to remdesivir [167]. In addition, it has been 
shown that rfhSP-D binds to the S1 subunit of the viral spike protein, 
thereby preventing its interaction with the ACE-2 receptor [168]. 

Secondly, focusing on the development of synthetic surfactants 
might become even more important in the treatment of CARDS. Indeed, 

synthetic surfactants seem more resistant to inactivation [169]. In 
addition, it has been reported that CHF5633 reduces LPS-induced pro- 
inflammatory cytokine release from human monocytes, a valuable 
property given the marked inflammatory nature of COVID-19 
[170–172]. 

In addition to higher doses and/or more frequent administrations 
[173], also an alternative pulmonary delivery mode might be required. 
In neonates suffering from NRDS, surfactants are typically administered 
via an intratracheal bolus instillation, yet this delivery mode is invasive 
and associated with a non-homogenous distribution throughout the lung 
tissue. Taking into account the larger surface area of the conducting 
airways in adults, there is a risk for more significant loss of surfactant 
along its way to the alveoli. Therefore, non-invasive delivery modes such 
as surfactant aerosolization using ultrasonic or jet nebulizers are 
currently under development [174–177], and have already proven to be 
safe in animal models without functional alterations of the surfactant 
preparation [178–180]. 

Based on the above-mentioned beneficial features of surfactant 
administration to COVID-19 patients, several clinical trials have been 
initiated to investigate the safety, efficacy and practical feasibility of this 
treatment option and are summarized in Table 2 [2,181]. 

In addition, the off-label use of surfactants to treat CARDS has 
already been reported in the literature. 

Busani et al. reported on the administration of Curosurf® to five 
critically ill patients suffering from COVID-19-related pneumonia and 
low lung compliance. Patients received surfactant during one month at a 
dosage of 30 mg/kg via intratracheal intubation, initiated shortly after 
the onset of invasive mechanical ventilation. The results showed 
improvement of oxygenation after one hour in four patients and after six 
hours in all patients. Additionally, over the course of 30 days, a survival 
rate of 80% was observed despite the critical condition of the included 
patients [181]. 

A single-center retrospective case-control pilot study was reported by 
Piva et al., where seven COVID-19 patients suffering from CARDS 
received Curosurf® through bronchoscopy for two months at a dose of 
720 mg in 150 mL normal saline for a total of ten instillations. These 
patients were matched to 14 COVID-19 patients with similar disease 
severity, receiving only supportive care. Despite the infection risk for 
healthcare providers related to the bronchoscopy procedure, the 
personnel did not develop COVID-19, indicating the feasibility of sur-
factant therapy via this delivery mode. In addition, a favorable safety 
profile was observed, where none of the patients receiving surfactant 
developed acute decompensation. Despite the limited and preliminary 
data regarding treatment efficacy, surfactant delivery and retention in 
the lungs following bronchoscopy was confirmed. However, future 
clinical trials using this mode of delivery are required to confirm a 
possible reduction in total time on mechanical ventilation and long-term 
mortality [182]. 

Heching et al. reported on the administration of Infasurf® at a dosage 
of 20 mg/kg to a critically ill COVID-19 patient. Surfactant was directly 
dispersed into the lungs via a tracheobronchial suction catheter passed 
through the endotracheal tube. An improvement of oxygenation was 
seen after 18 h, which further improved after 48 h and resulted in the 
removal of the patient from extracorporeal membrane oxygenation 
(ECMO) and extubation [29]. 

Although validation on the efficacy, safety and feasibility by suffi-
ciently powered clinical trials is required, the outcomes as mentioned 
above already give an optimistic indication on the potential of exoge-
nous surfactant administration to COVID-19 patients. 

4.2. Use of exogenous pulmonary surfactant for vehiculization and 
spreading of COVID-19-targeting drugs 

As the lungs are the major target tissue of SARS-CoV-2 infection, 
pulmonary delivery of COVID-19-targeting drugs is an attractive alter-
native for intravenous administration. Local application to the lung has 
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a variety of advantages as it is non-invasive, grants direct access to target 
cells, allows a rapid onset of action and prevents systemic side effects 
[183,184]. A variety of new and existing drug molecules and approaches 
are envisioned as a potential treatment for COVID-19, including anti-
viral therapies as well as therapeutics that target pathophysiological 
pathways associated to infection [2]. In this regard, this section will 
discuss the potential to exploit exogenous PS as a drug delivery vehicle 
or carrier to enhance drug spreading and adsorption or drug targeting to 
specific cell types after local pulmonary delivery, leading to improved 
therapeutic outcomes. 

4.2.1. Antivirals 
Antiviral drugs might be most suitable for treating COVID-19, as they 

specifically target the viral life cycle and viral spreading. As the 
pandemic unfolded, the number of clinical trials that evaluated the 
repurposing of existing drugs as antivirals concurrently increased, since 
this repurposing strategy has several advantages compared to the 
development of new drugs [7,185]. 

However, the randomized evaluation of COVID-19 therapy (RE-
COVERY) trial showed no clinical benefit from the use of hydroxy-
chloroquine or lopinavir/ritonavir [186,187]. As a result, Gilead’s 
remdesivir, a repurposed antiviral drug that acts as a nucleoside 
analogue to inhibit the RNA-dependent RNA polymerase of SARS-CoV-2 
[188], is the only antiviral drug approved for the treatment of COVID-19 
thus far. The approval of remdesivir was grounded on three randomized 
controlled trials, where the administration of remdesivir resulted in a 
shorter recovery time and a reduction in respiratory tract infection 
compared to the placebo group. 

4.2.2. Antibodies 
Another approach to prevent viral entry is the development of mAbs 

or antibody-based products that for example bind the viral spike protein, 
thereby blocking its interaction with the ACE-2 receptor. In this regard, 
Wrapp et al. reported successful neutralization of the SARS-CoV-2 spike 
protein by heavy chain-only antibodies (HCAbs). Moreover, by the 
construction of a bivalent Fc-fusion (i.e. a tail-to-head combination of 
two HCAbs fused to the Fc domain of human IgG1), it also neutralizes 
SARS-CoV-2 pseudoviruses [52]. Likewise, Koenig et al. screened an 
HCAb library, where four HCAbs seemed to efficiently neutralize SARS- 
CoV-2 via binding to two distinct epitopes on the RBD, which allows 
combination of HCAbs to obtain improved neutralization efficiencies. In 
this regard, a bivalent HCAb (i.e. VHH VE) was able to neutralize SARS- 
CoV-2 by a rather unusual mode-of-action. Here, the binding of VHH VE 
to the RBD induced fusion, leading to irreversible changes in spike 
protein structure, thereby preventing its subsequent interaction with the 
ACE-2 receptor on host cell membranes. Importantly, VHH VE was also 
able to neutralize SARS-CoV-2 variants [189]. Focusing on inhalation 
therapy, HCAbs have several advantages compared to conventional 
mAbs. First, they have a high robustness as they are able to refold after 
denaturation. In addition, they are small and have a high thermal- and 

chemical stability and solubility. Next to targeting the spike protein, also 
neutralization of inflammatory molecules such as interleukins can be of 
interest. In this regard, the RECOVERY trial probed the potential of 
tocilizumab, a recombinant humanized anti-IL-6 mAb. Results showed 
improved survival in hospitalized COVID-19 patients with confirmed 
hypoxemia and systemic inflammation [190]. 

4.2.3. Corticosteroids 
Since COVID-19 disease severity is correlated to inflammatory lung 

injury, the administration of corticosteroids is an arguable treatment 
option to temper inflammation pathways and prevent the development 
of respiratory failure. In this regard, the RECOVERY trial investigated 
the impact of oral and intravenous administered dexamethasone (once 
daily, 10 days) on the 28-day mortality. Dexamethasone treatment 
resulted in a lower mortality rate in patients that required invasive 
mechanical ventilation or oxygenation, compared to patients receiving 
usual care. As a result, next to remdesivir, also dexamethasone was 
approved for hospitalized COVID-19 patients requiring oxygenation 
with or without mechanical ventilation. Given the many advantages of 
local pulmonary delivery as described above and its wide application in 
other respiratory diseases including asthma and COPD, also inhalation 
corticosteroids (ICS) have been considered for local COVID-19 treat-
ment. Ramakrishnan et al. performed a randomized open-label 
controlled phase II trial (i.e. steroids in COVID-19, STOIC) of inhaled 
budesonide within the first week of mild COVID-19 symptom onset. 
Results showed that early administration of inhaled budesonide reduced 
the hazard of urgent medical care requirements and shortened the re-
covery time, compared to patients receiving conventional care [191]. A 
recent study by Yamaya et al. showed that pre-treatment of primary 
human nasal- and tracheal epithelial cells with a combination of bude-
sonide, glycopyrronium and formoterol lowered viral titers of HCoV- 
229E and modulated infection-induced inflammation by decreasing 
the release of IL-6, IL-8 and IFNβ [192]. In addition, budesonide and 
formoterol lowered TNFα release induced by other respiratory viruses 
such as rhinoviruses and RSV in bronchial epithelial cells in vitro [193]. 
Notably, recent studies reported on the clinical potential of inhaled 
ciclesonide. Upon local administration, this corticosteroid has an anti- 
inflammatory effect as well as antiviral activities, as it lowers SARS- 
CoV-2 replication and cytotoxic potential in Vero cells in vitro [194]. 
Following this data, Covis Pharma group recently announced favorable 
safety and efficacy results from a double-blind randomized controlled 
phase III trial investigating ciclesonide administration via a metered- 
dose inhaler (MDI) in non-hospitalized, symptomatic COVID-19 pa-
tients. Results showed faster relief of symptoms and a reduced risk for 
hospitalization by day 30, compared to placebo. Importantly, no adverse 
events were reported up to 60 days post-treatment [195]. To improve 
therapeutic results upon inhalation, Lammers et al. described the 
promise of dexamethasone nanomedicines. As the encapsulation of 
drugs into nanoparticles results in enhanced phagocytosis by AMs, 
dexamethasone could be more specifically delivered to the cells that 

Table 2 
Overview of ongoing clinical trials investigating the potential of surfactant replacement therapy in COVID-19 management. Abbreviations: NA; not announced, BLES; 
bovine lipid extraction surfactant.  

Preparation Dose Dose 
frequency 

Initiation Delivery mode Sample 
size 

Phase Ref. 

Bovactant (Alveofact®) 1080–3240 mg/ 
kg 
(45 mg/mL) 

3/day Within 24 h of ventilation Nebulization 24 NA [31] 

BLES® 50 mg/kg 
(27 mg/mL) 

≤ 3/day As soon as possible/within 48 h of 
ventilation 

Intratracheal instillation 20 I/II [32] 

Poractant Alfa 
(Curosurf®) 

48 mg/kg 
(16 mg/mL) 

NA Within 72 h of ventilation Endobronchial 
administration 

20 II [33] 

Lucinactant (Surfaxin®) 80 mg/kg NA At the time of ventilation Intratracheal instillation 30 II [34] 
Poractant Alfa 

(Curosurf®) 
30 mg/kg 
(80 mg/mL) 

3/day Within 48 h of ventilation Intratracheal instillation 85 II [35]  
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play a key role in lung inflammation [196]. 

4.2.4. Pulmonary surfactant-assisted drug delivery and spreading 
In general, despite the availability of many interesting drugs to treat 

COVID-19, deep penetration of drugs into the lungs and drug deposition 
in the alveolar spaces is challenging. Impaction of aerosolized drugs on 
bifurcations will lead to mucociliary clearance and hence subtherapeutic 
outcomes. Most important, as described above, critically ill COVID-19 
patients additionally suffer from acute respiratory distress, which is 
correlated with the development of hypoxic, collapsed lung regions. 
These regions are even more difficult to reach following inhalation 
therapy due to a reduced surface area that is accessible for drug depo-
sition and the inability of the patients to properly use inhalation devices 
[36]. 

Therefore, recent studies have evaluated the use of exogenous PS as a 
vehicle or liposomal carrier for inhalation therapy of COVID-19- 
targeting drugs. Upon so-called ‘surfactant vehiculization’ (i.e. co- 
delivery of drugs and an exogenous surfactant preparation, Fig. 5), 
one can expect improved drug spreading and adsorption along the entire 
respiratory epithelial surface due to the excellent and rapid surface- 

spreading of PS, followed by drug release during consecutive compres-
sion/expansion cycles upon breathing [2,37]. Owing to the ability of 
exogenous surfactant to improve lung dynamics as mentioned above, 
this treatment strategy can be seen as a double-edged sword to attain 
improved therapeutic outcomes and provides new opportunities for 
local pulmonary drug delivery, e.g. in CARDS. 

In addition, liposomal surfactant carriers (i.e. drugs formulated in-
side surfactant liposomes, Fig. 5) can mediate active targeting of drugs. 
As mentioned above, during consecutive breathing cycles, used PS 
components are released from surfactant films and recycled through 
uptake into type II pneumocytes and repackaging in LBs. Next to this, 
used PS components can also be processed and degraded by AMs. In case 
the PS-encapsulated drugs are carried along with this depleted pool of PS 
components, they can also benefit from this recycling mechanism to 
promote further spreading along the lung surface or enable internali-
zation by these specific cell types [39,40,197]. 

Given the amphiphilic nature of PS, a variety of therapeutics with 
different physicochemical properties can be incorporated, even enabling 
combination therapy by loading several drugs into an exogenous lung 
surfactant formulation, as shown in Fig. 5 [198]. Hidalgo et al. 

Fig. 5. Exogenous pulmonary surfactant as a vehicle or liposomal carrier for COVID-19-targeting drugs. Encapsulation of drugs inside exogenous PS can improve 
drug spreading and adsorption along the entire pulmonary epithelium (1). The administration of exogenous surfactant can supplement the reduced or inactivated 
endogenous surfactant pool, which prevents alveolar collapse and facilitates the delivery and deposition of inhaled drugs in deeper lung regions (2). SP-A-mediated 
uptake in type II pneumocytes induces drug- and surfactant recycling, which allows further drug spreading along the alveolar interface (3). SP-A- and SP-D-mediated 
drug internalization by alveolar macrophages allows anti-inflammatory drugs (e.g. corticosteroids) to interfere with the production of pro-inflammatory cytokines 
(4). SP-A-mediated uptake of antivirals in type II pneumocytes results in the reduction of viral replication processes and/or viral infectivity via various mechanisms of 
action (5). PS-assisted delivery of monoclonal-antibody based products (e.g. heavy chain-only antibodies) allows them to bind to viral components (e.g. the spike 
protein), thereby preventing interactions with the ACE-2 receptor thus reducing their infectivity (6). Abbreviations: SP-A; surfactant protein-A, SP-B; surfactant 
protein-B, SP-C; surfactant protein-C, SP-D; surfactant protein-D, ACE-2; angiotensin-converting enzyme-2, SARS-CoV-2. severe acute respiratory syndrome 
coronavirus-2, PL; phospholipid, PS; pulmonary surfactant. Created with BioRender.com 
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confirmed that hydrophobic drugs such as corticosteroids experience 
enhanced transport and spreading along the respiratory surface upon 
formulation in exogenous PS [199]. In addition, Ya-Min et al. compared 
the therapeutic effect of aerosolized dexamethasone and co- 
aerosolization of dexamethasone and PS in an acute lung injury (ALI) 
mouse model. While dexamethasone alone did not improve lung func-
tion in terms of PaO2, co-delivery with PS resulted in a reduction of lung 
index, lung injury scores and levels of the pro-inflammatory cytokines 
TNFα, IL-1β and IL-6 in bronchoalveolar lavage (BAL) [198]. 

PS-assisted pulmonary drug delivery of other small molecules has 
also been investigated. Here, the immunomodulating agent tacrolimus 
retained its immunosuppressive efficacy after lung transplantation and 
in respiratory infections upon encapsulation in lung surfactant-like 
carriers. In addition, the combination of the aminoglycoside antibiotic 
tobramycin and clinical surfactant leads to improved survival rates in 
mice suffering from Klebsiella pneumonia infection [200,201]. Next to 
small molecules, also the delivery of biological drugs including antimi-
crobial peptides, antibodies, antioxidant enzymes and viral particles 
have shown to benefit from this particular encapsulation approach 
[202–205]. 

A recent publication reported the potential of co-aerosolizing the 
cationic amphiphilic compound ambroxol and surfactant in the form of 
ambroxol-loaded- and coated DPPC nanoparticles as a treatment for 
CARDS. Ambroxol is a mucolytic drug that is widely used in a variety of 
pulmonary diseases [206]. Moreover, it is reported to have anti- 
inflammatory, anti-oxidant, antiviral and antibacterial properties, as 
well as to stimulate the production- and secretion of PS [207,208]. Upon 
co-delivery, the surfactant fraction can supplement the deficient or 
inactivated endogenous surfactant pool, while ambroxol can further 
fight the disease by the array of therapeutic properties as described 
above. This approach was established by an earlier meta-analysis on the 
administration of high-dose ambroxol to patients suffering from ARDS, 
of which results showed an improvement in oxygenation, as well as a 
reduction of superoxide dismutase (SOD), TNFα and IL-6 levels in serum 
[209]. 

4.3. Use of exogenous pulmonary surfactant to promote delivery of 
antiviral siRNA molecules 

4.3.1. siRNA therapeutics as an effective antiviral therapy 
As briefly mentioned above, there is a clear unmet medical need for 

more specific anti-SARS-CoV-2 therapies targeting key steps in the viral 
life cycle. A promising strategy is the use of the RNA interference (RNAi) 
mechanism, where siRNA molecules can be designed to specifically and 
selectively target viral and/or host-related proteins, without affecting 
host cell homeostasis [210]. 

Upon inhalation and delivery into the target cell cytosol, these 
double-stranded siRNA molecules will bind to the RNA-induced 
silencing complex (RISC). After digestion of the lagging strand, the 
activated RISC employs the retained guide strand to bind to a comple-
mentary region on the target mRNA, followed by its enzymatic degra-
dation. Notably, this approach ensures a very effective treatment due to 
the catalytic nature of this gene silencing mechanism, requiring rela-
tively few siRNA molecules per cell to induce potent gene knockdown 
[211–215]. In addition, the screening of siRNA libraries to identify lead 
molecules with promising antiviral effects is not as time-consuming as 
the de novo development of small molecules or antibody(− based) ther-
apeutics, an attractive feature given the rapid spread of viral infections 
such as SARS-CoV-2 [17]. 

Efforts to exploit the RNAi mechanism to treat respiratory infections 
have already been made, with a first report by Bitko and Barik in 2001 
showing successful in vitro antiviral activity against RSV via siRNA- 
mediated knockdown of the RSV phosphoprotein (i.e. the smaller sub-
unit of RNA-dependent RNA polymerase) [216]. In addition, to antici-
pate on the outbreaks of SARS-CoV-1 and MERS-CoV, a variety of siRNA 
molecules have been designed that effectively target viral RNA- 

dependent RNA polymerase, helicase, proteolytic enzymes and struc-
tural proteins [217]. 

As briefly mentioned above, both a variety of SARS-CoV-2 proteins 
responsible for infectivity or viral replication as well as host-related 
proteins that play a crucial role in viral infection or disease severity 
are interesting siRNA targets for an effective antiviral therapy. In severe 
cases, COVID-19-related morbidity and mortality is caused by an exag-
gerated pulmonary immune response. More specifically, an upregula-
tion of INFγ, TNFα, IL-6, IL-10 and IL-12 is reported, where especially IL- 
6 seems to promote the inflammatory cascade [58,218–221]. In addi-
tion, the upregulation of high-mobility group box 1 (HMGB1) and 
sphingosine-1-phosphate lyase (S1PLyase) is observed, where the latter 
has a more upstream mode-of-action, as its downregulation results in the 
reduction of TNFα- and IL-6 levels [141,142]. Other studies additionally 
report on increased levels of IL-2, IL-7, granulocyte-colony stimulating 
factor (G-CSF), inducible protein-10 (IP-10), monocyte chemo- 
attractant protein-1 (MCP-1) and macrophage inflammatory protein- 
1α (MIP-1α), where IP-10 is correlated to disease deterioration and 
death [51,222,223]. 

Although downregulation of the inflammatory cascade is a war-
ranted approach to reduce disease severity, translational suppression of 
viral proteins might be a more direct and specific strategy. The genomic 
sequence of SARS-CoV-2 was released early after its discovery, which 
facilitated the development of siRNA libraries to target SARS-CoV-2 
viral ssRNA coding regions. Currently, several companies are focusing 
on the development of siRNA molecules to target SARS-CoV-2. Alnylam 
Pharmaceuticals has synthetized more than 350 siRNA hits that target 
highly conserved regions in the SARS-CoV-2 genome [224]. Likewise, 
OilX Pharmaceuticals holds a patent on 30 siRNA molecules targeting 
conserved regions among coronaviral transcripts. Lastly, Sirnaomics 
focuses on the development of siRNA molecules targeting proteins 
involved in SARS-CoV-2 infection and replication [225]. 

RNAi-based suppression of all four structural proteins (S, E, M and N) 
can avoid cellular entry and viral assembly, where targeting the spike- 
and envelope protein have attracted most attention. Since the spike 
protein is responsible for viral entry into host cells, downregulating this 
protein will result in its absence in newly assembled viral particles, 
leading to exocytosis of viruses with reduced infectivity [225]. In this 
regard, Gallicano et al. showed successful in vitro spike protein sup-
pression in HEK293 cells and human airway tracheal cells, without 
compromising cell growth and viability [226]. Next to this, the envelope 
protein is involved in viral assembly and release into the extracellular 
environment. The sequence of the envelope protein seems to be highly 
conserved [225], which allows the development of siRNA molecules that 
will not lose their efficiency upon mutation of the virus, an important 
consideration taking into account the emergence of SARS-CoV-2 vari-
ants [227]. 

Next to structural proteins, also proteins involved in viral replication 
are envisioned. In this regard, the sequences coding for protease 3CL, 
RNA-dependent RNA polymerase and helicase are known to be highly 
conserved among β-coronaviruses [225]. 

It is worth noting that the RNAi mechanism allows the combination 
of different siRNA molecules into one synergistic treatment. In this way, 
multiple viral- and host-related genes can be targeted simultaneously, 
leading to significantly enhanced therapeutic efficiencies [228–231]. 

4.3.2. Nanoparticle-assisted cytosolic delivery of siRNA molecules 
following inhalation therapy 

After inhalation, siRNA molecules need to be safely guided to the 
target cell cytosol, for which they are generally formulated into nano-
particles. However, besides the many advantages of local pulmonary 
delivery of nanomedicines, the lung also poses many extra- and intra-
cellular barriers that can hamper siRNA delivery [232,233]. In general, 
predicting the fate of inhaled nanoparticles is complex since it is 
determined by a variety of parameters. Next to particle-related proper-
ties (e.g. mean mass aerodynamic diameter (MMAD), hydrophobicity 
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and charge), also patient-related properties (e.g. breathing patterns) as 
well as the anatomy, physiology and pathological state of the lung are 
involved. An important anatomical barrier towards pulmonary siRNA 
delivery is the highly branched structure of the lungs, where the fate of 
aerosolized particles following inhalation therapy will strongly depend 
on their MMAD. Nanomedicines formulated in aerosolized microparti-
cles (e.g. dry powders or nebulized droplets) that sediment in the 
bronchial or alveolar region will subsequently need to cross the respi-
ratory mucus or pulmonary surfactant layer to reach the underlying 
bronchial or alveolar epithelial cells, respectively [234–236]. In addi-
tion, nanoparticles are prone to clearance by respiratory immune cells 
such as macrophages, which can be present at both interfaces [237]. In 
this regard, investigating nanoparticle/PS interactions are crucial since 
such interactions can both alter the nanoparticles’ distribution profile, 
targeting potential and drug delivery efficiency, as well as affect the 
endogenous PS layer [83]. However, the design of such studies is chal-
lenging since it requires the use of materials or models that closely 
resemble the composition of endogenous PS. Indeed, clinically used 
surfactants can be obtained easily but have several limitations; they are 
devoid of the hydrophilic proteins SP-A and SP-D and both the phos-
pholipid- and SP-B/SP-C fractions are often lower compared to physio-
logical conditions. Therefore, the use of patient-derived PS (e.g. via BAL) 
is more desired, however requires more invasive procedures. Several 
studies report on the greater affinity of surfactant proteins to smaller 
particles, leading to enhanced toxicity of these particles towards 
endogenous PS [238–240]. In this regard, SP-A and SP-D will more 
easily adsorb to hydrophilic nanoparticles, leading to particle opsoni-
zation and enhanced uptake by AMs and lung dendritic cells [241,242]. 
In addition, Wohlleben et al. showed that SP-A adsorption may induce 
interactions with PS lipids, thereby facilitating particle diffusion 
through the liquid phase and enhancing particle delivery to desired cell 
types [243]. On the other hand, SP-B and SP-C have a higher affinity for 
hydrophobic particles, which is more detrimental for the biophysical 
function of PS given the importance of SP-B and SP-C in surfactant 
adsorption and stability [197]. In this context, cationic and hydrophilic 
particles seem more biocompatible since their intrinsic properties 
mitigate interactions with SP-B and SP-C [244–246]. Importantly, Beck- 
Broichsitter et al. showed that pre-coating of particles with PS compo-
nents such as SP-B and SP-C can avoid their interaction with endogenous 
PS, thus reducing the risk for PS toxicity or a change in the particles’ 
characteristics [246]. In contrast to the adsorption of surfactant pro-
teins, Raesch et al. elucidated that the composition of the lipid corona 
was independent from the particles’ properties [234]. 

However, one of the most difficult barriers to overcome for siRNA 
therapeutics is situated at the intracellular level. When nanoparticles 
interact with the cellular plasma membrane, they are typically taken up 
via endocytosis, confining them inside early endosomes. These organ-
elles further mature towards late endosomes and finally fuse with ly-
sosomes, which are characterized by an acidic pH (~4.5–5) and the 
presence of degrading enzymes, including nucleases [247]. As the RNAi 
machinery resides in the cytosol, endosomal escape of nanoparticles 
and/or their siRNA cargo into the cell cytosol before lysosomal fusion 
occurs is required to induce target gene silencing. Despite the many 
efforts towards the design of effective nanoformulations in the last de-
cades, even for state-of-the-art nanocarriers the endosomal escape effi-
ciency remains very low (< 1–2%) [44]. Importantly, since the lungs of 
COVID-19 patients are already highly sensitized due to the activation of 
inflammatory pathways, not only an effective, but also a biocompatible 
nanoparticle for inhalation therapy of siRNA therapeutics is highly 
sought after. In this regard, exploiting bio-inspired materials is a 
research area gaining attention. 

As mentioned above, PS can be regarded as an extracellular barrier 
upon inhalation of nanomedicines. More specifically, surfactant com-
ponents can adsorb to the surface of the nanoparticle, creating a bio-
molecular corona. In addition, due to the presence of negatively charged 
surfactant components (e.g. PG, PI and PS), there is a risk for nanocarrier 

aggregation or siRNA decomplexation prior to endocytic uptake 
[37,83,197,248]. In this regard, De Backer et al. investigated the 
colloidal stability and transfection efficiency of siRNA-loaded cationic 
dextran nanogels (siNGs) in the presence of two clinically available 
animal-derived surfactants (i.e. Curosurf® and Infasurf®) [45]. These 
polysaccharide nanoparticles are biodegradable due to the presence of 
carbonate ester crosslinks that interconnect the dextran backbone and 
were previously shown to have a high loading capacity for siRNA mol-
ecules [249]. Moreover, siNGs showed efficient delivery of siRNA in vitro 
in lung epithelial and alveolar macrophage cell lines (i.e. H1299_eGFP 
and MH-S) [250]. 

Despite a significant reduction of siNG cellular uptake upon surfac-
tant exposure, gene silencing was maintained in both cell lines, indi-
cating that the presence of surfactant can further promote the cytosolic 
delivery of siNGs. These initial results led to the development of a bio- 
inspired hybrid nanoparticle composed of a siNG core layered with a 
surfactant shell (Curosurf®). In addition to the above-mentioned bene-
ficial effects of PS (i.e. surfactant supplementation, improved bio-
distribution and anti-inflammatory effects) as well as the promoted 
siRNA delivery, this anionic surfactant coating is expected to improve in 
vivo stability (e.g. mitigating the interaction with and decomplexation of 
siRNA by mucins and endogenous PS components), as well as nano-
carrier biocompatibility [46]. 

Following in vivo studies that probed the administration of uncoated- 
and Curosurf®-coated siNGs via pharyngeal aspiration in mice showed 
that only the latter could induce gene suppression in resident AMs, 
reaching 70% knockdown of the pan-leukocyte marker CD45 at a dosage 
of 1 mg/kg [47]. 

Clinical translation of the above-mentioned core-shell nano-
composites requires testing the long-term stability as well as the delivery 
efficiency following aerosolization. In this regard, previous studies 
already showed the feasibility to lyophilize PS preparations of different 
origins without compromising their surface-activities [251–253]. 
Considering this, Merckx et al. assessed lyophilization of Curosurf®- 
coated siNGs, followed by reconstitution and nebulization using a state- 
of-the-art vibrating mesh nebulizer. Importantly, neither the lyophili-
zation and reconstitution process, nor the subsequent nebulization 
negatively impacted the physicochemical properties and the biological 
performance of the particles. Of note, no stabilizing agents such as cryo- 
and lyoprotectants were required to achieve this feat [48]. 

Further research by Merckx et al. revealed that the cationic amphi-
philic SP-B is the key component in lung surfactant responsible for the 
improved siRNA delivery by siNGs, which was demonstrated both in 
vitro and in vivo in an LPS-induced acute lung injury model, targeting the 
pro-inflammatory cytokine TNFα (Fig. 6) [49]. This discovery enabled to 
reduce the complexity of the surfactant coat by replacing Curosurf® 
with a simplified SP-B proteolipid mixture. In addition, the latter 
enabled to investigate the impact of the lipid components on the 
delivery-promoting activity of SP-B in more detail. In vitro studies 
demonstrated the importance of a fluid lipid bilayer to support SP-B, 
with cholesterol not exceeding physiological levels, while the type of 
anionic lipid was less critical [50]. 

Guagliardo et al. further revealed that SP-B fosters endosomal escape 
of siRNA via membrane fusion events. This mode-of-action in part ex-
plains the enhanced in vitro gene silencing efficiency when SP-B is pre-
sent in a more fluid lipid microenvironment, as the latter allows lateral 
diffusion of SP-B molecules and the formation of SP-B homodimers or 
larger oligomers with improved membrane-interaction potential 
[254,255]. More specifically, in vitro results showed that SP-B-mediated 
fusion was pH independent and required the presence of anionic lipids in 
the opposing membrane. As shown in Fig. 7, these anionic lipids are 
believed to electrostatically interact with the cationic SP-B, guarantee-
ing close membrane contact to provoke membrane fusion followed by 
cytosolic delivery of encapsulated siRNA molecules. Interestingly, a 
similar mechanism of action is described for arginine-rich cell pene-
trating peptides (CPPs), as these residues allow electrostatic interactions 
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with anionic lipids in the endosomal compartment. For example, a 
disulfide-bonded dimer of HIV-TAT (i.e. dHIV-TAT) fosters endosomal 
escape by binding to bis(monoacylglycerol)phosphate (BMP) lipids in 
the late endosomal compartment. Upon binding, fusion occurs between 
bilayers containing BMP, followed by content leakage and endosomal 
escape of the cargo [256]. 

Similar to SRT, also this treatment approach might benefit from the 
development of SP-B analogues that can mimic the siRNA delivery 
properties of native SP-B. In this regard, Qiu et al. showed succesfull 
siRNA delivery into alveolar- and bronchial epithelial cells (i.e. A549 
and BEAS-2B) in vitro upon complexation with the cationic KL4 peptide 
[257]. Following studies by the same group showed in vitro mRNA de-
livery in lung epithelial cells via complexation with a (12-mer) PEGy-
lated KL4 peptide. To obtain a suitable microformulation for local 
pulmonary delivery, these complexes were formulated into a dry pow-
der without compromising the delivery efficiency of the particles. 
Intratracheal administration of the mRNA/PEG12KL4 complexes via a 
liquid or powder aerosol in mice led to succesful mRNA delivery in 
deeper lung regions without inducing inflammation [258]. 

5. Conclusions 

Although the COVID-19 pandemic is gradually losing strength due to 
global vaccination initiatives, the slow-moving global vaccine distribu-
tion, residual infections of vaccinated, non-vaccinated and immuno-
suppressed individuals as well as the possible emergence of resistant 
viral variants advocate the continued development of effective COVID- 
19 treatment strategies. In this regard, pulmonary administration of 
exogenous pulmonary surfactant (i.e. SRT) could greatly contribute to 
COVID-19 management as these preparations could supplement the 
deficient or inactivated endogenous surfactant pool as well as directly 

target SARS-CoV-2 and alleviate inflammation-related symptoms upon 
combination with small molecular- and macromolecular drugs. 

First, although typical ARDS did not show benefit from SRT in early 
clinical trials, the resemblance of the clinical manifestations of CARDS 
and NRDS rationalizes its re-investigation. Indeed, NRDS is treatable 
with SRT, reflected by strongly reduced mortality rates and need for 
oxygenation. However, besides the importance to identify COVID-19 
patients that might benefit from this treatment strategy, simply re- 
claiming the surfactant preparations or doses applied for NRDS will 
likely not suffice. For example, additional research is needed regarding 
the optimal composition of surfactant preparations to assure resistance 
to inactivating agents, where further advances in the development of 
synthetic surfactants and the addition of non-adsorbing proteins or 
polymers could prove beneficial. Another important aspect is finding a 
substitute for the intratracheal delivery route, e.g. non-invasive surfac-
tant delivery via aerosolization, where a balance must be found between 
patient comfort and protecting the personnel from infection. 

Secondly, as the lungs are the main target for SARS-CoV-2 infection, 
inhalation of COVID-19-targeting drugs (e.g. (repurposed) antivirals, 
steroids and antibody(− based) therapeutics) is an attractive adminis-
tration route. However, especially in severely ill COVID-19 patients it is 
challenging to target the more distal airways upon inhalation since these 
patients experience hypoxic and collapsed lung regions. Here, due to its 
excellent surface-spreading properties, pulmonary surfactant can serve 
as a vehicle or carrier for COVID-19-targeting drugs. This approach can 
be regarded as a combination therapy where the administration of sur-
factant can both regenerate the affected endogenous surfactant pool as 
well as improve drug spreading and adsorption along the respiratory 
surface and aid active drug targeting to specific cell types. 

Lastly, the deployment of siRNA-based antivirals can alleviate the 
challenges associated with small molecular antivirals as this therapy is 

Fig. 6. Schematic overview of relative TNFα silencing in a murine, LPS-induced acute lung injury (ALI) model. Intratracheal administration of anti-TNFα siRNA was 
performed using uncoated nanogels (siNGs) or nanogels coated with a surfactant-inspired proteolipid composition (DPPC or DOPC:PG 85:15, LIP), with or without 
SP-B (siNGs LIP, siNGs LIP:SP-B), followed by LPS administration after 24 h. TNFα levels were quantified in BAL fluid, obtained 24 h after LPS stimulation. TNFα 
expression levels of mice treated with anti-TNFα siRNA are normalized to mice treated with control siRNA (siCTRL). Only siRNA delivery using siNGs coated with 
DPPC:PG and supplemented with SP-B leads to substantial gene silencing. All values are a mean ± standard deviation (SD) from four independent repeats (n = 4). 
Statistical analysis was performed via One-Way ANOVA followed by a Tukey’s multiple comparison test. Abbreviations: TNFα; tumor necrosis factor α, LPS; lipo-
polysaccharide, siNGs; siRNA-loaded nanogels, SP-B; surfactant protein-B, BAL; bronchoalveolar lavage. Data adopted from [49], with permission. Created with BioR 
ender.com 
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highly specific, allows to target different genes of interest simulta-
neously and is able to inhibit otherwise undruggable targets. To guar-
antee target cell entry and protection of the siRNA payload from 
degradation, these molecules are generally formulated into nanosized 
carriers. Unfortunately, to date no nanoformulation is available that 
allows safe and efficient siRNA delivery following inhalation. In 
response to this unmet need, Raemdonck and co-workers disclosed the 
ability of the pulmonary surfactant-associated SP-B to enhance the 
cytosolic delivery of siRNA. Given its endogenous nature, pulmonary 
surfactant-based nanoparticles could pave the way to the development 
of biocompatible surfactant-inspired formulations that enable efficient 
delivery of antiviral siRNAs to the lungs of COVID-19 patients. More-
over, it is anticipated that such formulations could be more widely used 
for treatment of other respiratory pathologies as well. 
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[41] H. Uludağ, K. Parent, H.M. Aliabadi, A. Haddadi, Prospects for RNAi therapy of 
COVID-19, Front. Bioeng. Biotechnol. 8 (2020) 916. 

[42] A. Mehta, T. Michler, O.M. Merkel, siRNA therapeutics against respiratory viral 
infections—what have we learned for potential COVID-19 therapies? Adv. 
Healthc. Mater. 10 (2021) 2001650. 

[43] Y. Xie, O.M. Merkel, Pulmonary delivery of siRNA via polymeric vectors as 
therapies of asthma, Arch. Pharm. (Weinheim) 348 (2015) 681–688. 

[44] J. Gilleron, W. Querbes, A. Zeigerer, A. Borodovsky, G. Marsico, U. Schubert, 
K. Manygoats, S. Seifert, C. Andree, M. Stöter, H. Epstein-Barash, L. Zhang, 
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Prats, A. de Lorenzo, A. Serrano-Mollar, Á.L. Corbí, C. Casals, Surfactant protein A 
prevents IFN-γ/IFN-γ receptor interaction and attenuates classical activation of 
human alveolar macrophages, J. Immunol. 197 (2016) 590–598. 

[78] R. Arroyo, M.A. Khan, M. Echaide, et al., SP-D attenuates LPS-induced formation 
of human neutrophil extracellular traps (NETs), protecting pulmonary surfactant 
inactivation by NETs, Commun. Biol. 2 (2019) 470. 

[79] N.T. Veith, T. Tschernig, B. Gutbier, M. Witzenrath, C. Meier, M. Menger, 
M. Bischoff, Surfactant protein A mediates pulmonary clearance of 
Staphylococcus aureus, Respir. Res. 15 (2014) 85. 

[80] C.A. Benne, B. Benaissa-Trouw, J.A.G. van Strijp, C.A. Kraaijeveld, J.F. van 
Iwaarden, Surfactant protein A, but not surfactant protein D, is an opsonin for 
influenza A virus phagocytosis by rat alveolar macrophages, Eur. J. Immunol. 27 
(1997) 886–890. 

[81] M. Gil, F.X. McCormack, A.M. LeVine, Surfactant protein A modulates cell surface 
expression of CR3 on alveolar macrophages and enhances CR3-mediated 
phagocytosis, J. Biol. Chem. 284 (2009) 7495–7504. 

[82] T.R. Korfhagen, V. Sheftelyevich, M.S. Burhans, M.D. Bruno, G.F. Ross, S.E. Wert, 
M.T. Stahlman, A.H. Jobe, M. Ikegami, J.A. Whitsett, J.H. Fisher, Surfactant 
protein-D regulates surfactant phospholipid homeostasis in vivo, J. Biol. Chem. 
273 (1998) 28438–28443. 
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