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KEYWORDS Abstract Background and aims: Observational studies showed that coronavirus disease (2019)
Coronavirus disease (COVID-19) attacks universally and its most menacing progression uniquely endangers the
2019; elderly with cardiovascular disease (CVD). The causal association between COVID-19 infection
Atrial fibrillation; or its severity and susceptibility of atrial fibrillation (AF) remains unknown.
Bidirectional Methods and results: The bidirectional causal relationship between COVID-19 (including COVID-
Mendelian 19, hospitalized COVID-19 compared with not hospitalized COVID-19, hospitalized COVID-19
randomization compared with the general population, and severe COVID-19) and AF are determined by using
two-sample Mendelian randomization (MR) analysis. Genetically predicted severe COVID-19
was not significantly associated with the risk of AF [odds ratio (OR), 1.037; 95% confidence inter-
val (CI), 1.005—1.071; P = 0.023, ¢ = 0.115]. In addition, genetically predicted AF was also not
causally associated with severe COVID-19 (OR, 0.993; 95% CI, 0.888—1.111; P = 0.905,
q = 0.905). There was no evidence to support the association between genetically determined
COVID-19 and the risk of AF (OR, 1.111; 95% CI, 0.971—-1.272; P = 0.127, q = 0.318), and vice versa
(OR, 1.016; 95% CI, 0.976—1.058; P = 0.430, ¢ = 0.851). Besides, no significant association was
observed for hospitalized COVID-19 with AF. MR-Egger analysis indicated no evidence of direc-
tional pleiotropy.
Conclusion: Overall, this MR study provides no clear evidence that COVID-19 is causally associ-
ated with the risk of AF.
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1. Introduction

Coronavirus disease (COVID-19), which is caused by the
severe acute respiratory syndrome coronavirus 2 (SARS-
COV2) and represents the causative agent of a potentially
fatal disease, rapidly emerged as a global pandemic and
afflicted global finances and healthcare systems severely
[1]. The virus attacks universally, with the elderly being
the most vulnerable to this disease, especially those with
cardiovascular comorbidities such as diabetes mellitus,
hypertension, heart failure, and coronary heart disease
[2,3]. Atrial fibrillation (AF) is the most common cardiac
arrhythmia worldwide, and its prevalence is higher in
patients with other comorbidities [4].

COVID-19 may have an adverse impact on the heart and
cardiovascular system. AF is a frequent clinical manifes-
tation in hospitalized COVID-19 patients who require
admission to an intensive care unit [5]. In addition, recent
studies have found that SARS-COV2 infection may damage
cardiomyocytes and increase the risk of AF [6—8]. How-
ever, these findings are still susceptible to unmeasured
confounders and reverse causation that cannot be fully
ruled out in observational studies. Further investigation is
needed to determine the causal association between
COVID-19 and AF.

Mendelian randomization (MR) is a burgeoning field
that utilizes genetic variants that are robustly associated
with such modifiable exposures to generate more reliable
evidence [9]. This approach relies on the natural, random
assortment of genetic variants during meiosis yielding a
random distribution of genetic variants [10]. Genome-
wide association studies (GWAS) data, which typically
provide regression coefficients summarizing the associa-
tions of many genetic variants with various traits, are

potentially a powerful source of data for MR analysis [11].
Therefore, we performed bidirectional MR analyses for
determining the causal relationship between COVID-19
(including COVID-19, hospitalized COVID-19 compared
with not hospitalized COVID-19, hospitalized COVID-19
compared with the general population and severe
COVID-19) and AF using summary statistics results of
GWAS. Understanding the bidirectional relationship be-
tween COVID-19 and AF is of significant public health
importance about disease prevention and complications
management.

2. Methods
2.1. Data sources

2.1.1. Genetic association datasets for COVID-19
Summary genetic association estimates for the risk of
COVID-19 were obtained from the most recent version of
GWAS analyses of the COVID-19 host genetics initiative in
UK Biobank individuals released on January 18, 2021
(https://www.covid19hg.org/results/) [12]. We selected
four phenotypes from this GWAS: (1) COVID-19 patients
vs. the general population including 38,984 patients and
1,644,784 control participants; (2) hospitalized COVID-19
patients vs. not hospitalized COVID-19 patients including
3159 patients and 7206 control participants; (3) hospital-
ized COVID-19 patients vs. the general population
including 9986 patients and 1,877,672 control participants;
and (4) patients with very severe respiratory confirmed
COVID-19 vs. the general population including 5101 pa-
tients and 1,383,241 control participants. All COVID-19-
related GWAS summary statistic data were based on the
European ancestry population.
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Fig.1 Analyses pipeline to evaluate the explanations for the observed associations between COVID-19 and AF. COVID-19: Coronavirus disease 2019;
AF: Atrial fibrillation; MR: Mendelian randomization; SNP: Single nucleotide polymorphism.
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2.1.2. Genetic association datasets for AF

We drew on summary statistics from a recent meta-
analysis of GWAS in 31 studies of AF, which were
included 18,398 patients and 91,536 control participants
[13]. The majority of the study participants were of Euro-
pean ancestry. Details on genotype-quality control and
adjudication of AF can be found elsewhere [13].

2.2. Instrumental variables for COVID-19 and AF

We first performed forward MR analysis to assess the ef-
fects of the phenotypes of COVID-19, hospitalized COVID-
19 compared with not hospitalized COVID-19, hospitalized
COVID-19 compared with the general population, and se-
vere COVID-19 on AF by using genetic variants associated
with exposure as instrumental variables (IVs). Since a few
significant single nucleotide polymorphisms (SNPs) of
COVID-19 were available wusing the criterion of
P <5 x 10~8 SNPs were selected as [Vs at P < 1 x 10~ for
COVID-19. Then, we conducted reverse MR using genetic
variants associated with AF as IVs to investigate its effect
on COVID-19. SNPs that achieved significance
(P < 5 x 107®) for AF were selected as IVs.

We only retained independent variants from each other
based on the European ancestry reference data from the
1000 Genomes Project (Linkage disequilibrium [LD], r?
threshold = 0.001). The phenotypic variance (R?)
explained by the selected SNPs was about 0.14% for COVID-
19, 3.20% for hospitalized COVID-19 compared with not
hospitalized COVID-19, 0.49% for hospitalized COVID-19
compared with the general population, 1.08% for severe
COVID-19, and 0.58% for AF, respectively. For each selected
IV, R?> was calculated wusing the formula:
R?> = 2 x % x MAF x (1-MAF) (MAF represented the
minor allele frequency and g represented the effect esti-
mate of the genetic variant) [14].

2.3. MR analysis

The inverse variance-weighted (IVW) method was
employed as the main analysis for estimating the causal
effect combining the ratio estimates using each variant in
the multiplicative random-effects model [11]. Results can
be biased if IVs show horizontal pleiotropy, affecting the
outcome through pathways other than the exposure,
which could violate MR assumptions [15]. Therefore, four

Table 1 Causal association of COVID-19 with AF via forward MR analyses.

Phenotype Numbers of SNPs OR (95% CI) Beta (SE) P q
COVID-19 vs. population
VW 29 1.111 (0.971-1.272) 0.106 (0.069) 0.127 0.318
Weighted median 29 1.011 (0.861—1.186) 0.010 (0.082) 0.898 0.924
Penalised weighted median 29 1.008 (0.857—1.186) 0.008 (0.083) 0.924 0.924
MR-PRESSO 29 —0.103 (0.061) 0.103 0.318
MR-Egger 29 1.196 (0.805—1.775) 0.179 (0.202) 0.383 0.638
egger_intercept —0.006 0.702
Q statistic — 0.007
Hospitalized COVID-19 vs. not hospitalized COVID-19
VW 20 0.991 (0.941-1.044) —0.009 (0.027) 0.730 0.730
Weighted median 20 1.014 (0.952—1.081) 0.014 (0.032) 0.665 0.730
Penalised weighted median 20 1.015 (0.950—1.085) 0.015 (0.034) 0.655 0.730
MR-PRESSO 20 —0.018 (0.026) 0.514 0.730
MR-Egger 20 0.952 (0.838—1.082) —0.049 (0.065) 0.462 0.730
egger_intercept 0.010 0.511
Q statistic 0.080
Hospitalized COVID-19 vs. population
IVW 32 1.055 (0.995—-1.119) 0.054 (0.030) 0.075 0.125
Weighted median 32 1.076 (0.996—1.163) 0.073 (0.040) 0.065 0.125
Penalised weighted median 32 1.080 (1.001—1.166) 0.077 (0.039) 0.048 0.125
MR-PRESSO 32 0.035 (0.029) 0.246 0.308
MR-Egger 32 0.963 (0.808—1.149) —0.038 (0.090) 0.679 0.679
egger_intercept 0.012 0.290
Q statistic 0.055
Severe respiratory confirmed COVID-19 vs. population
IVW 33 1.037 (1.005—1.071) 0.037 (0.016) 0.023 0.115
Weighted median 33 1.039 (0.994—1.086) 0.038 (0.022) 0.092 0.153
Penalised weighted median 33 1.039 (0.995—1.085) 0.038 (0.022) 0.081 0.153
MR-Egger 33 1.038 (0.920—1.171) 0.037 (0.062) 0.551 0.551
egger_intercept —6.66e-05 0.996
Q statistic 0.699
MR-PRESSO 33 —0.023 (0.016) 0.151 0.189

Beta is the estimated effect size. P < 0.05 was considered statistically significant.
AF: Atrial fibrillation; CI: confidence interval; IVs: instrumental variables; IVW: inverse-variance weighted; MR: Mendelian randomization; MR-

PRESSO: Pleiotropy Residual Sum and Outlier; OR: odds ratio; SE: standard error; SNP: single-nucleotide polymorphism.
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Fig. 2A Scatter plot showing the associations of the SNP effects on COVID-19 against the SNP effects on AF. Circles indicate marginal genetic as-
sociations with COVID-19 and risk of AF for each variant. Error bars indicate 95% CIs. COVID-19: Coronavirus disease 2019; AF: Atrial fibrillation; MR:

Mendelian randomization; SNP: Single nucleotide polymorphism.

sensitivity analyses were performed including the
weighted median (WM), penalised weighted median
(PWM), Pleiotropy Residual Sum and Outlier (MR-
PRESSO) and MR-Egger regression. The WM method,
which selects the median MR estimate as the causal es-
timate, may provide precise causal estimates against
invalid instruments [16]. MR-PRESSO was applied to
detect and correct for any outliers reflecting the likely
pleiotropic effect for all reported results [17]. We con-
ducted MR-Egger analysis, which allows the intercept to
be freely assessed as an indicator of average pleiotropic
effect [15]. In order to assess the robustness of the sig-
nificant results, we further applied the Cochran’s Q sta-
tistic to detect heterogeneity among the Wald ratios for
each SNP for identifying the presence of horizontal plei-
otropy [18]. Leave-one-out analysis was conducted to
assess the undue influence of potentially pleiotropic SNPs
on the causal estimates [18]. Results are presented as
odds ratios (ORs) with 95% confidence intervals (95% CIs).
For the multiple corrections, the false discovery rate
(FDR) was used based on the Benjamini—Hochberg pro-
cedure (q) [19].

For bidirectional MR analyses, the causal relationships
between COVID-19 and AF were delineated into four po-
tential parts. Fig. 1 showed an overview of the bidirectional
MR study to investigate these explanations. If the P value
was less than 0.05 only in forward MR for Explanation 1,
there was a significant association of genetically instru-
mented COVID-19 with higher AF risk. Then we conducted
the reverse MR analysis assessing whether AF affected
COVID-19. This reverse causal association was observed if
the P value was less than 0.05 in Explanation 2. Explana-
tion 3 showed that there was bidirectional causality be-
tween COVID-19 and AF (P < 0.05). There was no causal
association in forward and reverse MR (P > 0.05), as
shown in Explanation 4.

All data analyses for MR were conducted using “Two-
SampleMR” package (Version 0.5.4) and “MR-PRESSO”
package (Version 1.0) in the R environment (R version
4,04, R Project for Statistical Computing). This package
harmonizes exposure and outcome data sets including
information on SNPs, alleles, effect sizes, standard errors, P
values, and effect allele frequencies for the selected
exposure instruments.
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Fig. 2B Scatter plot showing the associations of the SNP effects on hospitalized COVID-19 compared with not hospitalized COVID-19 against the
SNP effects on AF. Circles indicate marginal genetic associations with hospitalized COVID-19 and risk of AF for each variant. Error bars indicate 95%
Cls. COVID-19: Coronavirus disease 2019; AF: Atrial fibrillation; MR: Mendelian randomization; SNP: Single nucleotide polymorphism.

3. Results
3.1. Causal effect of COVID-19 on AF via forward MR

The summary genetic association data were reported in
Supplementary Table 1. In the forward MR analysis, we
used 29 independent SNPs as IVs for COVID-19. As shown
in Table 1, the IVW estimate showed that there was no
association between the genetically instrumented COVID-
19 and AF risk (OR, 1.111; 95% (I, 0.971-1.272; P = 0.127,
q = 0.318), with heterogeneity (P = 0.007) across in-
strument SNP effects. The MR Egger intercept test further
indicated no directional pleiotropy (P = 0.702). In addi-
tion, by using the IVW method, the genetic predisposition
of hospitalized COVID-19 patients compared with not
hospitalized COVID-19 patients and the general population
was not observed to be statistically significantly associated
with AF (OR = 0.991; 95% (I, 0.941-1.044; OR = 1.055;
95% CI, 0.995—1.119, respectively). The lack of causal as-
sociation remained in all sensitivity analyses (Table 1). Of
note, there was no association of the genetically instru-
mented severe COVID-19 with AF using 33 SNPs presented

in Table 1 (OR, 1.037; 95% CI, 1.005-1.071; P = 0.023,
g = 0.115), without directional pleiotropy (P = 0.996) and
heterogeneity (P = 0.699).

The results of leave-one-out sensitivity analyses
showed that the causal associations between genetically
instrumented COVID-19 phenotypes and AF were not
substantially driven by any individual SNP (Supplementary
Figures. 1A—D). Figs. 2A, B, C and D presented the causal
effect of the phenotypes of COVID-19 on AF, in which the
regression slopes of the lines corresponded to the causal
estimates using each of the four different methods.

3.2. Causal association of AF with COVID-19 via reverse
MR

The summary genetic association data of AF were reported
in Supplementary Table 1. As shown in Table 2, the reverse
MR analysis showed no statistically significant evidence of
a relationship between AF and COVID-19 (OR, 1.016; 95% CI,
0.976—1.058; P = 0.430, g = 0.851), hospitalized COVID-19
compared with not hospitalized COVID-19 (OR, 1.060; 95%
Cl, 0.935-1.201; P = 0.363, q = 0.453), hospitalized
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Fig. 2C Scatter plot showing the associations of the SNP effects on hospitalized COVID-19 compared with population against the SNP effects on AF.
Circles indicate marginal genetic associations with hospitalized COVID-19 and risk of AF for each variant. Error bars indicate 95% CIs. COVID-19:
Coronavirus disease 2019; AF: Atrial fibrillation; MR: Mendelian randomization; SNP: Single nucleotide polymorphism.

COVID-19 compared with the general population (OR,
1.017; 95% (I, 0.944-1.096; P = 0.661, ¢ = 0.935), and
severe COVID-19 (OR, 0.993; 95% CI, 0.888—1.111;
P = 0.905, g = 0.905). Similar results were found in the
sensitivity analyses. There was no heterogeneity and
directional pleiotropy based on the Q test and MR-Egger
intercept test for the associations of AF with COVID-19,
hospitalized COVID-19 compared with not hospitalized
COVID-19, hospitalized COVID-19 compared with the gen-
eral population, and severe COVID-19. The results of leave-
one-out sensitivity analysis showed that the association
between genetically instrumented AF with COVID-19,
hospitalized COVID-19 compared with not hospitalized
COVID-19, and hospitalized COVID-19 compared with the
general population was not substantially driven by any
individual SNP, except rs6843082 in phenotypes for hos-
pitalized COVID-19 compared with the general population
as well as severe COVID-19 (Supplementary Figures. 1E—H)
Figure figs5, figs6, figs7 and figs8. The relationship between
the effect sizes of the SNP—AF association and the SNP—the
phenotypes of COVID-19 associations are presented in
Supplementary Figures. 2A—D.

4. Discussion

To the best of our knowledge, this is the first study to
investigate the causal relationship between COVID-19 and
AF using a bidirectional two-sample MR in the European
population. In the present study, using publicly available
summary statistics data, no strong evidence was found to
indicate associations between COVID-19, hospitalized
COVID-19 compared with not hospitalized COVID-19,
hospitalized COVID-19 compared with the general popu-
lation, and severe COVID-19 and the risk of AF. Further-
more, there was no MR evidence indicating that genetic
liability to AF increases the risk of critical COVID-19. The
findings were overall robust in the sensitivity analyses.
To date, studies investigating the associations between
COVID-19 and AF have reported inconsistent results. Our
study showed a suggestive significance of severe COVID-19
on AF. However, this slight association disappeared after
correction for multiple testing. Consistent with our results,
AF is likely the consequence of systemic illness and not
solely the direct effect of COVID-19 infection [20]. How-
ever, some previous conventional studies have reported a
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direct association between COVID-19 and the enhanced
risk of AF [21]. In further population-based studies with a
cohort design, even after adjustment for age, hypertension,
coronary artery disease, cerebrovascular disease, and dia-
betes and so on, it is difficult to assess the causal rela-
tionship between the traits due to the effect of
unmeasured confounders [22]. The discrepancy between
the results of our study and the observational study may
be attributed to the unmeasured confounders in the
observational study.

Since the cause of the ongoing COVID-19 pandemic,
SARSCoV-2 invades host cells by attaching to the mem-
brane bound angiotensin-converting enzyme 2 (ACE2)
[23]. ACE2 shares similarities with its protein homolog
angiotensin-converting enzyme (ACE) and plays a role in
the renin—angiotensin—aldosterone system (RAAS) [24].
Previous studies also found that ACE 2 activity may be
related to AF [25,26]. The reason is that ACE2 might be a
functional receptor and cellular entry point for SARS-CoV-
2 to invade target cardiac cells [27—30]. Our results are

inconsistent with the above mechanism hypothesis.
Further research is required to clarify these results using
animal models in the laboratory.

In our analysis, we did not find any associations be-
tween AF and COVID-19. However, it is not clear whether
AF would contribute to increasing the risk for worse
prognosis, or even higher mortality of COVID-19.

Our MR study has several strengths. First, MR analysis
is a genetic epidemiology method that uses genetic de-
terminants of the exposure (COVID-19) to understand the
effect of the exposure on the outcome (AF), which can
control the potential bias. Genetic variation is not asso-
ciated with confounding factors, such as age, hyperten-
sion, and cerebrovascular disease, which may affect
observational studies [31]. Besides, MR analysis can avoid
reverse causation since genetic variation is allocated at
conception. Lastly, the MR analysis design is less suscep-
tible to potential unmeasured confounding and reverse
causation and can strengthen the evidence for causal
inference [31].
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Table 2 Causal association of AF with COVID-19 via reverse MR analyses.

Phenotype Numbers of SNPs OR (95% CI) Beta (SE) P q
COVID-19 vs. population
VW 20 1.016 (0.976—1.058) 0.016 (0.021) 0.430 0.851
Weighted median 20 1.011 (0.960—1.066) 0.011 (0.027) 0.675 0.851
Penalised weighted median 20 1.011 (0.957—1.068) 0.011 (0.028) 0.689 0.851
MR-PRESSO 20 0.020 (0.020) 0.346 0.851
MR-Egger 20 1.008 (0.927—1.097) 0.008 (0.043) 0.851 0.851
egger_intercept 0.001 0.833
Q statistic 0.322
Hospitalized COVID-19 vs. not hospitalized COVID-19
VW 20 1.060 (0.935—1.201) 0.058 (0.064) 0.363 0.453
Weighted median 20 1.112 (0.937—1.319) 0.106 (0.087) 0.224 0.453
Penalised weighted median 20 1.112 (0.933—-1.325) 0.106 (0.089) 0.236 0.453
MR-PRESSO 20 0.041 (0.063) 0.521 0.521
MR-Egger 20 1.133 (0.878—1.463) 0.125 (0.130) 0.350 0.453
egger_intercept -0.010 0.562
Q statistic 0.509
Hospitalized COVID-19 vs. population
VW 20 1.017 (0.944—1.096) 0.017 (0.038) 0.661 0.935
Weighted median 20 1.004 (0.906—1.113) 0.004 (0.053) 0.935 0.935
Penalised weighted median 20 1.004 (0.907—-1.112) 0.004 (0.052) 0.934 0.935
MR-PRESSO 20 —0.030 (0.038) 0.429 0.935
MR-Egger 20 0.984 (0.845—1.145) —0.016 (0.077) 0.836 0.935
egger_intercept 0.005 0.628
Q statistic 0.472
Severe respiratory confirmed COVID-19 vs. population
VW 20 0.993 (0.888—1.111) —0.007 (0.057) 0.905 0.905
Weighted median 20 0.900 (0.775—1.045) —0.105 (0.076) 0.167 0.465
Penalised weighted median 20 0.898 (0.767—1.053) —0.107 (0.081) 0.186 0.465
MR-PRESSO 20 —0.029 (0.054) 0.605 0.756
MR-Egger 20 0.938 (0.754—1.167) —0.064 (0.111) 0.571 0.756
egger_intercept 0.009 0.556
Q statistic 0.547

Beta is the estimated effect size. P < 0.05 was considered statistically significant.
AF: Atrial fibrillation; CI: confidence interval; IVs: instrumental variables; [VW: inverse-variance weighted; MR: Mendelian randomization; MR-
PRESSO: Pleiotropy Residual Sum and Outlier; OR: odds ratio; SE: standard error; SNP: single-nucleotide polymorphism.

The limitations of the current study should be
addressed. First, due to the limitation of data resource,
stratified analyses or analyses adjusted for other covariates
were impossible. Second, estimates of SNP-AF association
were derived from transancestry studies, which might
cause bias in terms of population admixture. The same
genetic variants could show different effects for different
populations. However, this might have a slight effect on
the estimates because the majority of the individuals were
of European ancestry. Third, we cannot exclude that our
findings might have been affected by weak instrument
bias, which depends on the selection of the genetic in-
strument through the threshold of P = 1 x 10~ for phe-
notypes of COVID-19. Finally, this MR study failed to detect
the causal associations due to very large sample sizes,
which is limited by a small fraction of the variation in the
phenotypes of COVID-19 explained by SNPs (1%).

5. Conclusions

Our MR study suggested that there was no evidence to
support the causal relationship between COVID-19 and AF.
Further research is required to clarify these findings
through the use of larger samples of the European ancestry.
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