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A B S T R A C T   

Buildings’ occupancy is one of the important factors causing the energy performance and sustainability gap in 
buildings. Better occupancy prediction decreases this gap both in the design stage and in the use phase of the 
building. Machine learning-based models proved to be very accurate and fast for occupancy prediction when 
buildings are exploited under normal conditions. Meanwhile, during the Covid-19 pandemic occupancy of the 
offices has dramatically changed. The study presents 2 office buildings’ long-term monitoring results for different 
periods of the pandemic. It aims to analyse actual occupancies during the pandemic and its influence on the ELM 
(Extreme Learning Machine) based occupancy-forecasting models’ reliability. The results show much lower 
actual occupancies in the offices than given in standards and methodologies; it is still low even when quarantines 
are cancelled. Average peak occupancy within the whole measured period is: for Building A – 12–20% and for 
Building B – 2–23%. The daily occupancy schedules differ for both offices as they belong to different industries. 
ELM-SA model has shown low accuracies during pandemic periods as a result of lower occupancies – R2 =

0.27–0.56.   

1. Introduction 

The coronavirus disease 2019 (COVID-19) was taken over the world and 
posed major challenges for our life (Agarwal, Swaroop, Raj & Saini, 2021). 
It has especially affected such areas as economy, socialization, envi-
ronment as well as energy industry (Jiang, Fan & Klemeš, 2021; Mas-
tropietro, Rodilla & Batlle, 2020; Zhang et al., 2020). According to 
International Energy Agency (IEA) Global Energy Review 2020, the 
pandemic energy demand decrease was the biggest in the past 70 years. 
Up to mid-April 2020, countries in full lockdown experienced a decline 
of around 25% in the weekly energy demand and those in partial lock-
down experienced an average decline of 18% (Geraldi, Bavaresco, Tri-
ana, Melo & Lamberts, 2021; Krarti & Aldubyan, 2021). Overall, in 2020 
energy demand decrease was 7 times greater compared to the 2009 
financial crisis (Kang et al., 2021). In the 20th century, there was no 
event, which showed such a drastic emissions drop (Perkins, Munguia, 
Ellenbecker, Moure-eraso & Velazquez, 2021). 

It is obvious that the pandemic has radically changed energy demand 

around the world and demonstrated the potential for controlling climate 
change and a more sustainable lifestyle following the Paris Agreement 
(Paris Agreement 2015). The pandemic changes showed the following 
tendencies: traditional fossil energy demand declines, but renewable 
energy increases; commercial and industrial energy demand declines, 
but residential energy increases; at the district level – thermal energy for 
buildings declines, but electrical increases; changes in the electrical 
energy demand peak times. 

The emergence of COVID-19 pandemic is causing tremendous impact 
on our daily lives (Xie et al., 2021), such as human mobility changes 
(Benita, 2021), buildings’ occupancies (Lang, 2020), etc. COVID-19 
pandemic also raised an issue about the changes and challenges with 
the office work culture. According to Stahl (2021), up to the fall of 2020, 
the occupancy of co-working spaces decreased by 27%. Pandemic forced 
people to gather new skills on different tools enabling the remote work 
and it became a common practice to work and participate in different 
meetings and events remotely. That is why, many discussions claim 
(Lord, 2021; Stahl, 2021) that it will never come back to the time before 
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COVID-19. The tendencies show that in the future after the pandemic 
ends, employees will switch to the hybrid work: remote + in office 
working model, which will reduce the office rental market (Arup, 2021). 
Also probably we will face the following trends: space design will offer 
more privacy and possibilities for separation, more flexible working 
schedules and locations, great attention for health and safety, possibil-
ities to collaborate and to concentrate (Jiang et al., 2021; (Beaudoin 
et al., 2020). At the same time, it is obvious that post-pandemic changes 
will dramatically change not just the occupancy of the offices, but also 
will face new occupancy predictability challenges, which are related 
both to the design and usage stages of the buildings. 

The importance of occupants presence in the building was analysed 
and highlighted previously by many studies (Franco & Leccese, 2020; 
Salimi & Hammad, 2020, etc.), as well as the importance of occupants’ 
actions (Azar & Menassa, 2012; Happle, Fonseca & Schlueter, 2018, 
etc.) on building energy use (Geraldi et al., 2021; Zhang et al., 2020, 
etc.). The real-time knowledge of occupation in offices is essential to 
keep standard indoor environment and to control HVAC (Heating, 
ventilation and air conditioning) systems efficiently (Franco & Leccese, 
2020; Wang, Huang, Feng, Cao & Haghighat, 2021). This knowledge is 
also important when predicting the energy demand of the building in the 
design stage seeking to avoid energy performance gaps (Delzendeh, Wu, 
Lee & Zhou, 2017; Menezes, Cripps, Bouchlaghem & Buswell, 2012). As 
the COVID-19 outbreak has dramatically changed the energy con-
sumption in all building use types, so it indicates the need for new en-
ergy systems and their management after a pandemic period (Guo et al., 
2021; Kang et al., 2021; Pan, Du, Fu & Fu, 2021). Ivanko, Ding and Nord 
(2021) highlighted the importance of heat use profiles, which during the 
pandemic time are not studied enough. 

The American Society of Heating, Refrigerating and Air Conditioning 
Engineers (ASHRAE) presents guidance (Schoen, 2020) for buildings 
operation in epidemic conditions – it recommends using “Unoccupied 
mode”, which means that the HVAC systems are operating to the min-
imum needs. However, Masoso and Grobler (2010) found in a case study 
that around 56% of the energy was used during non-working hours and 
this enables to assume that unoccupied offices during the pandemic do 
not necessarily lead to very low energy use. Therefore, occupancy in-
formation and accuracy of prediction methods are essential for building 
simulation in predesign stage as well as for better building management 
systems (BMS) performance (Salimi & Hammad, 2020; Salimi, Liu & 

Hammad, 2019). 
Generally, occupancy prediction models can be categorized as 

deterministic, stochastic, and machine learning (Wang, Chen & Hong, 
2018) resulting in different prediction speeds and accuracies. Most of 
the models focus on occupants’ presence and behaviour (Chen, Xu & 
Soh, 2015; Page, Robinson, Morel & Scartezzini, 2008; Wang, Yan & 
Jiang, 2011). Others have provided occupancy algorithms based on the 
analysis of environmental data from sensors (Dong et al., 2010; 
Dong&Lam, 2011; Han, Gao & Fan, 2012; Sandels, Widen & Nordstrom, 
2015) or combined methods for measuring environmental data, energy 
consumption data, and monitoring the presence of the occupancy (Ai, 
Fan & Gao, 2014; Wang & Ding, 2015). 

Although the occupancy prediction models that were applied for 
building energy simulation in pre-design and operation phases before 
the pandemic period in many cases showed very good accuracies, 
following the pandemic situation there is a probability that their reli-
ability may drop. Challenges related to reliability of the usage of the 
historical (pre-pandemic) occupancy data to train machine learning- 
based algorithms used for energy demand forecasting were recently 
emphasized by Xie et al. (2021). Authors concluded that interruption 
caused by the COVID-19 pandemic is likely to cause enormous loss 
regarding the applicability of historical data as the training basis for 
forecasting models if the occupancy data was not collected properly. The 
paper presented bellow also deals with the occupancy data collection 
issues and COVID-19 influence on machine learning based occupancy 
prediction models reliability. Authors of the paper already have studied 
the applicability of few ELM methods (Bielskus, Motuzienė, Vilutienė & 
Indriulionis, 2020; Motuzienė, Bielskus, Lapinskienė & Rynkun, 2021) 
and concluded that ELM–SA (Extreme Learning Machine model com-
bined with Simulated Annealing optimisation algorithm) methods is 
reliable and fast for the prediction of the occupancy. Therefore, it has a 
high potential for integration into office buildings’ BMS to increase their 
efficient and sustainable operation. This paper aims to analyse actual 
occupancies (buildings’ utilization rate) during the pandemic and its 
influence on the ELM based occupancy-forecasting models’ reliability. 
The analysis is based on the long-term monitoring data of 2 office 
buildings including different pandemic periods. 

Table 1 
Monitored buildings.  

Observed 
building 

Description of the building Number of work stations in 
observed office spaces 

Period of observation Observed 
parameters 

Office A In Vilnius, built in 2017, total area – 2 405 m2, energy efficiency 
label B, professional services 

14  2021.01.05–2021.07.31 CO2, occupancy 

Office B In Kaunas, built in 2016, total area – 22 506 m2, energy efficiency 
label B, manufacturing 

75 2020.01.02–2021.07.31 occupancy  

Fig. 1. Principal scheme of the research.  
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2. Methods and materials 

Long-term monitoring is performed in two office buildings in Vilnius 
and Kaunas (Table 1). Both monitored spaces are open-offices and are 
related to engineering services, but belong to different industries – 
building A is a professional services office, and building B – 
manufacturing company’s office. This is important to emphasize as, 
according to JLL report (JLL 2020), actual office buildings’ area utili-
zation rate across industries differs: manufacturing industries usually 
have higher utilisations rates (68% on average worldwide) and profes-
sional skills offices have lower utilisation rates (49% on average 
worldwide). These values were defined before COVID-19 pandemic. 

The study presents monitoring for different periods of the pandemic 
and can be divided into 2 stages: 1) analysis of the influence of the 
pandemic on the actual occupancies (building’s utilisation rate) based 
on the long-term monitoring, and 2) assessing the influence of the 
pandemic building’s occupancies on the ELM based occupancy fore-
casting models’ reliability. The principal scheme of the study is pre-
sented in Fig. 1. 

2.1. Monitoring and data processing 

Long-term measurements in both buildings were performed during 
different periods of the pandemic. In Building A monitored parameters 
include: 1) occupancy, which was monitored in two ways – with 
PIR+temperature sensors and 3D camera and 2) CO2 concentration. In 
Building B just occupancy using PIR+temperature sensors was 
measured. Buildings’ general description is given in Table 1. 

Building A was monitored for almost 8 months (monitoring con-
tinues). Building B has a constant occupancy monitoring system with 
PIR sensors, therefore this building had occupancy measurement data 
starting from the pre-pandemic period – a total of 1 year and 8 months. 
The monitoring period for Building A includes periods of second quar-
antine which is also divided into strict (most businesses closed, contacts 
forbidden and movement between municipalities forbidden) and light 
quarantine (some businesses re-opened, contacts in small groups and 
movement between municipalities allowed) and period when quaran-
tine was cancelled (see Fig.1). Building B included also the period before 
the pandemic, data of first quarantine when most businesses were 
closed, but movement between municipalities was not forbidden 
(similar restriction as during light quarantine) and the period between 
first and second waves of Covid-19 when quarantine was cancelled. The 

monitored periods are presented in Fig. 2 
Measurement equipment characteristics are given in Table 2. 3D 

camera, used in Building A, is counting the number of persons entering 
and leaving the room and generates hourly reports. The camera is 
mounted at the entrance door (Fig. 3), and it is connected to a Wi-fi 
network enabling remote access. Alternatively, for desk occupancy 
measurement PIR + temperature sensors are used. The data of these 
sensors are considered as more precise as they are mounted under the 
desk (Fig. 4) and use double-check methodology – when occupants take 
a seat at the desk, PIR sensor reacts and temperature sensor additionally 
confirms the occupancy and just then signal is sent to the server. On the 
opposite, double-check is used when the occupant leaves the desk. The 
signals are also transferred remotely through Wi-fi for 1 min. time step. 
These sensors cannot monitor the overall occupancy of the room, 
compared to the 3D camera. In Building B, just desks occupancy is 
monitored. 

The amount of data for one PIR + temperature sensor for building A 
is equal to 299 521 and for all 14 sensors, it results in 4 193 294 of data 
recorded with 1 min. time step. CO2 concertation measurements were 
performed every 5 min. with 1 sensor in the room and resulted in 59 662 
of data records. All the data gathered from Building A are processed and 
used further for actual occupancy schedules generation as well as for 
occupancy simulation with ELM-SA model. 

For Building B, one PIR+temp sensor recorded up to 830 877 of data. 
Overall from 75 sensors recorded data every 1 min. constituted 62 315 
775. These data were also processed and used for actual occupancy 
schedules generation. 

2.2. Analysis of the actual occupancies 

Actual occupancies are analysed for different periods of pandemic 
generating average hourly occupancies for one working day and ana-
lysing hourly occupancies on separate weekdays’ basis. In addition, 
occupancy frequencies, expressed in persons/m2 for different periods 
are compared for both buildings. Comparison between buildings is 
possible just for 3 periods, where measurement time overlaps (Fig. 2). 
For Building B analysis of the 6 pandemic periods is informative, as it 
shows occupancy fluctuations before the pandemic and through the 
whole pandemic. 

2.3. Prediction of the occupancy with ELM-SA model 

Hypothesis, that prediction reliability may be influenced by a drastic 

Fig 2. Measured periods for both offices in relation to the Covid-19 pandemic.  

Table 2 
Measurement equipment used for monitoring.  

Equipment 
model 

Measured 
parameter 

Measurement 
limits 

Accuracy Time 
step 

HOBO MX102A CO2 0 – 5000 ppm 1 ppm 5 min 
Hikvision ids- 

2cd6412fwd/c 
Room 
occupants 

Maximum 10 
persons 

Up to 
98% 

60 min 

TABLEAIR SBL 
UNI SET 

Desk 
occupancy 

0 – +50 ◦C 0.5 ◦C 1 min  

Table 3 
Weeks for weekly analysis.  

Before quarantines (pre-pandemic) 2020, week No. 10 
First quarantine 2020, week No. 16 
Between the quarantines 2020, week No. 33 
Strict second quarantine 2021, week No.7 
Light second quarantine 2021, week No. 19 
Post-quarantine 2021, week No. 28  

V. Motuzienė et al.                                                                                                                                                                                                                             
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decrease of the occupancy of the building during pandemics, is checked 
on Building A, as it has long-term measurement both for occupancy and 
for CO2. CO2 is considered the most suitable indoor parameter for oc-
cupancy prediction (Bielskus et al., 2020; Motuzienė et al., 2021). All 
the data gathered for this building are processed dividing them into 5 
min. intervals. Afterwards they are imported into the ELM-SA model into 
Matlab software. The mathematical methods and models are described 
below. As both methods – ELM and SA are widely used and known, just 
principle description with created mathematical pseudocodes is given. 
The pseudocode of the ELM-SA is employed from Loopez-Fandino, 
Quesada-Barriuso, Heras and Arguello (2015); Ruiz-Torrubiano et al. 
(2010). 

2.3.1. Extreme learning machine 
ELM is a learning algorithm linked with Artificial Neural Networks 

(ANNs) and it was first introduced by Huang, Zhu and Siew (2004). Due 

to its extremely short calculation time and simplicity ELM is applied in 
various fields, such as medicine, marine, etc. (Chen, Song, Liu, Yang & 
Li, 2020; Storn et al., 1995, etc.). Different improvements of the algo-
rithm have been proposed, thus enabling its applications also for big 
data analysis Chen, Li, Duan and Li (2017). Hence, the potential of the 
ELM until now is not sufficiently exploited in the field of the building’s 
occupancy prediction, where both prediction accuracy and speed of the 
prediction is important as it is related to the control of the building 
services systems (Motuzienė et al., 2021). 

Single-layer Feedforward Networks (SLFNNs) architecture is con-
structed for N – arbitrary distinct samples (where xi – CO2 concentration 
and ti – occupancy) with hidden nodes L and activation function g(x). 
The activation function is sigmoidal and it is infinitely differentiated. 
SLFNN is made up of three layers: input neurons, hidden neurons, and 
output neurons. For a set number of L hidden nodes input (w) and bias 
weights (b) are randomly generated and the output weight (β) matrix (H) 

Fig. 3. Occupancy measurement with 3D camera.  

Fig. 4. Measurement of desks occupancy with PIR + temperature sensors.  

Fig. 5. Pseudocode for the ELM algorithm.  
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is solved by minimizing the approximation error in the squared error 
sense and the smallest norm least-squares solution is reached by the 
Moore-Penrose generalization of the inverse matrix β=HyT. ELM stan-
dard pseudocode is given in Fig. 5. 

Mostly common proportions of the data used in neural networks 
models for training, testing, and validation accordingly are 60/20/20% 
or 50/25/25% (Chen et al., 2020), but in this study, we use 70/10/20% 
based on recommendations given by )(Nguyen et al., 2021). 

Assumptions for the simulations with SA-ELM model:  

• Number of hidden neurons – 25;  
• Maximums number of iterations (MaxIter) – 100.   

Require: The training data: {xi}T ∈ Rn and {ti}T ∈ Rm (xi = [xi1, xi2,…, xin]T∈ Rn and ti =
[ti1, ti2,…, tin]T∈ Rm) 
Hidden node output function g(x) and the number of hidden nodes, L; 
Ensure: The output weight vector, β 
Random generation hidden node parameters (wj, bj), here j = 1, …,N; 
Calculate the hidden-layer output matrix H; 
Calculate the output weights β: β =HyT ; 
End.  

2.3.2. Simulated annealing optimisation algorithm 
Simulated Annealing (SA) is a metaheuristic method, which was first 

presented by Kirkpatrick, Gelatt and Vecchi (1983) and is applied when 
solving different optimization problems Roshani, Salehi and Esfandyari 
(2013). It is based on the search of the global minimum of the specific 
objective function attempting to avoid local minimums by performing 

the random search (movements in the searched neighbourhood). 
Before starting the SA - initial temperature (t0), which is the main 

control parameter and is reduced during the optimisation process, must 
be set (Sieniutycz et al., 2018). Annealing starts when an initial solution 
(x0) is generated and it is considered as the best present solution. Af-
terwards the neighbourhood structure is created - two positions i and j 
are selected and reverse, insert, and swap operators (N) are used to 
produce neighbouring solutions. The list of input data is created and the 
probability p of a candidate’s decision is calculated. If the decision 
function f(x) is worse than the candidate decision function ((f(y)> f(x)), 
then the probability of acceptance is calculated. In each iteration, the 
maximum data are used from the list. Each time a bad candidate solution 
is met, a random number r is generated. If r < p, then the bad candidate 
solution will be accepted (Zhan, Lin, Zhang & Zhong, 2016). To update 
the data list the average of all data tav is used. The optimisation stops 
when the lowest limit of the temperature is reached or a predefined 
number of iterations is reached. 

SA algorithm pseudocode is given in Fig. 6.  
Fix initial temperature, t0; 

Generate initial solutions, x0; 
While convergence criteria are not met do 
Fix temperature t 
For j = 1, …, N, 
Choose randomly an element y ∈ N(x). 
If f(y) < f(x), then x ← y. 

Else, with probability p(x, y; t) = exp
(
− (f(y) − f(x))

t

)

, then x ← y 

End for 
End while 
Return the best solution found   

Fig. 6. Pseudocode for the SA algorithm (Ruiz-Torrubiano et al., 2010).  

Fig. 7. Hourly working day actual average occupancy schedules for building A and building B based on PIR sensors measurements.  
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Occupancy prediction simulations are performed for the whole 
measurement period and for 3 pandemic periods separately to compare 
ELM-SA model performance reliability in terms of Root Mean Square 
Error (RMSE) (Carbone et al., 1982) and R-square (R2). 

3. Results 

3.1. Average working day occupancy profiles 

After processing measurement data, hourly occupancy profiles for 
the typical working day for both buildings were presented based on 
average values for separate the monitored periods (Fig. 7) (the same 
colours of lines in both graphs represent the same measured period). 

Building A. It is seen from the building A profiles, that actual oc-
cupancy during the strict quarantine and light quarantine was very 
similar and low – peaking on average at 0.12 (12% of the maximum 
possible occupancy) and even after the quarantine was cancelled it has 
raised, but not as significant as it was expected (just 0.2 – 20% of the 
maximum possible occupancy). This can be explained by two reasons: 1) 
summer period when part of the employees were on holidays and 2) 
changes in the working culture – switching more to the remote work. 

Building B. A much longer monitoring period for Building B shows 
that average peak occupancy during the working day does not exceed 
0.23, showing a low office area utilisation rate. It is also interesting that 
during the first quarantine office was occupied even more than before 
the pandemic, but this can be explained by the fact that the company 
was expanding at that time and people still worked in offices applying 
different safety strategies, e.g. leaving every second desk empty. And the 
maximum daily occupancies for the “light quarantine” and “post- 

quarantine” periods show tendencies to decrease to 0.06 and 0.02 
accordingly and this may have similar explanations as for Building A. 
This office also has specifics – occupation duration (in hours) is much 
longer than for office A. In general, this office data does not reflect some 
specific influence of the pandemic on the occupancy. 

Comparing for this building all of the periods’ occupancies with 
standard ones proposed by ASHRAE 90.1 (peak occupancy fraction 0.9) 
or EN 16,798–1 (maximum occupancy fraction 0.7), occupancies are 
much lower than measured values. Therefore, this causes a certain en-
ergy performance gap related to occupants when comparing calculated 
and actual energy consumption as real occupancy has not much in 
common with the theoretical standard values. 

3.2. Occupancy profiles analysis on separate weekdays’ basis 

As average daily profiles do not always give the full view of the real 
situation if there are high fluctuations in occupancies within the week, a 
more detailed analysis was performed for each working day of the week 
(Fig. 8). To compare fluctuations of the occupancies within the week 
during the different pandemic periods, one week for each period was 
taken and presented (Table 3). Fig. 8 presents occupancies for both 
buildings and Fig. 9 presents occupancy just for building B with addi-
tional measurement periods, also the period before the pandemic 
started. 

Analysing actual occupancy schedules for separate measured 
pandemic periods day-by-day for Building A it can be noticed that for 
post-quarantine periods (Fig. 8) peak occupancy fraction reaches 0.34 
on Wednesday and this is more than the average peak value of 0.23 
discussed above. This period shows an obvious occupancy increase 

Fig. 8. Hourly occupancy schedules for separate working days for the Building A and B.  
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compared to both quarantine periods, but it is still low compared to the 
maximum possible. The occupancy, compared to the periods of quar-
antines, starts earlier in the morning – from 6:00 a.m. and ends between 
3:00–5:00 p.m. 

In contrast to Building A, for Building B occupancies were higher for 
the strict lockdown period peaking at 0.4 and being around 0.3 even 
during the weekend. Accordingly, the contrast is also noticed during the 
light quarantine and post-quarantine periods, when occupancies were 
extremely low (Fig. 8). 

In Building B day-by-day data analysis revealed occupancy schedules 
different to typically found in literature or practise offices’ working 
schedules (Fig. 9). This building data enables us to compare fluctuations 
during the pre-pandemic period (2020 week No. 10). Same as discussed 
above (Fig. 7), the obvious relation of occupancy fluctuations to the 
pandemic cannot be noticed for this office. Occupation reaches 
maximum values within the first quarantine and surprisingly highest 
daily peak is on Sunday - 0.62. Before the pandemic highest peak was 
just 0.29 (the reasons for that were explained). 

It is obvious that Building B is a very atypical office and its occupancy 
varies chaotically regardless of whether there is a quarantine in the 
country or not. For this reason, this building, other similar ones, where 
occupancy is difficult to predict, and constantly fluctuating, cannot be 
subject to building services systems management according to pre-set 
schedules, as this is simply energy inefficient and may not meet occu-
pants’ needs. Here occupancy prediction models and their integration 
into BMS (Building Management systems) are recommended to operate 
systems sustainably, based on real demand. 

Measurements with 3D camera. Fig. 8-9 present results based on 
desks occupancy measurements with PIR+temperature sensors, but in 
Building A also 3D camera was used to measure the number of em-
ployees entering and leaving the office. The principle of how occupancy 

is calculated according to camera is based on Eq. (1): 

Ot = Ot− 1 + Oten + Otex, (1)  

where: Ot – number of occupants at time t, Ot− 1 – occupants present in 
the room before time t, Oten, Otex - number of occupants entering and 
exiting the room at time t. At midnight, the camera recordings are 
deleted and the new day starts with 0 occupancies. Occupancies 
measured with the 3D camera and PIR sensors were compared on an 
hourly basis for one week of “light second quarantine”. As it is seen from 
Figure 10, there is almost no correlation with the results of the PIR 
sensors, which use double-check methodology. Also, 3D cameras show 
negative occupancies or high occupancies late in the evening, when the 
room was empty. Therefore, in the authors’ opinion, occupancy mea-
surement with a 3D camera in a monitored office failed as measured 
values do not correspond to ground truth data. There may be different 
problems influencing the accuracy, e.g. occupant is counted 2 times 
(Hakan Cetinkaya & Muammer Ackay, 2015), with less than 6 people in 
a view camera may overestimate occupancy due to the shadows and 
non-human objects (Zhang, Venetianer & Lipton, 2008), etc. Specific 
algorithms might be required to increase the accuracy of cameras and to 
correct erroneous count data (Sangoboye & Kjærgaard, 2016). As an 
application of such algorithms is out of the scope of the study, just 
PIR+temperature sensors with double check methodology data are 
further considered as reliable. 

3.3. Occupancy densities analysis 

Some less sophisticated buildings’ energy efficiency calculation 
methodologies or tools require to enter into the model as input just one 
number – occupant per area instead of hourly schedules. Therefore, 

Fig. 9. Hourly occupancy schedules for separate working days for the building B.  
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histograms were produced to present what densities are common for the 
analysed buildings (Fig. 11). These values are easy to convert into the 
number of persons as they just need to be multiplied by the area of the 
room. Considering all the measurement periods for Building A occu-
pancy density never reached more than 0.049 persons/m2 and 92% of 
the time it did not exceed 0.016 persons/m2. For Building B occupancies 
reached 0.113 persons/m2, but occupancy between 0.066–0.113 was 
recorded just 1.5% of the time during 1 year and 8 months measurement 
period and 83% of the time it did not exceed 0.016 persons/m2. Fig. 11 
shows the occupancy densities comparison for both buildings. For both 
buildings dominant within all 3 pandemic period’s occupancy density is 
up to 0.016 persons/m2. And obviously, taking into account previously 
discussed results, for Building A it has slightly increased during the post- 
quarantine period, and for Building B it shows opposite tendencies. 

Measurements show low occupancy densities even for non- 

quarantine periods. For comparison, default density used in Design-
Builder simulation software for open-office buildings – 0.11 persons/m2, 
in Lithuanian standard for Buildings energy performance assessment 
(STR, 2.01.02:2016) proposes one common value for all types of offices 
– 0.05 persons/m2 average for the whole building area, so it would be 
even more for one office room. So results of the study indicate that the 
density of persons in offices is strongly overestimated and it has a ten-
dency to decrease in the future. Low occupancies were also noted by the 
authors in their previous study, performed before the pandemic (Biel-
skus et al., 2020). 

3.4. Occupancy prediction with ELM-SE model 

Fig. 12 presents actual measured CO2 concentrations and occupancy 
with PIR+temperature sensors in Building A. it is obvious that CO2 

Fig. 10. Occupancy of building A measured with PIR sensors and 3D camera.  

Fig. 11. Occupancy density frequencies for separate pandemic periods.  
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correlates with the occupancy (as people are the main sources of CO2 in 
the room) and it was previously proven, that this parameter fits the best 
for the occupancy prediction with ELM models (Bielskus et al., 2020). It 
can be noted that maximum occupancy within the measured period is 8 
persons and maximum CO2 concentration – about 1100 ppm. Mostly 
maximum CO2 concentration in the room is around 600–700 ppm and 
this is even less than required for IDA 1 indoor air category (limit 800 
ppm). The room is over-ventilated and is not controlled according to 
demand thus wasting energy. Here BMS system with an occupancy 
prediction model would enable energy savings for ventilation. 

Occupancy prediction is performed for different periods of pandemic 
(Fig. 13) and the whole measurement period (Fig. 14). All the periods 
include data from more than 2 months. As it was concluded in previous 
studies (Bielskus et al., 2020; Motuzienė et al., 2021), a sufficient 
measurement period is 4 weeks. Here periods are much longer, but 
prediction accuracy is low (R2=0.27) for the period of strict quarantine 
and increases for light quarantine and post-quarantine accordingly up to 
R2=0.50; 0.56. That prediction accuracy of the model is low, compared 
to the once defined for the same model at pre-pandemic conditions, and 
the hypothesis, that ELM-SA model prediction reliability at pandemic 
conditions drops – is confirmed. It can be noticed, that predictability is 
lower at the periods when occupancy is very low (see also Fig. 7 for 
actual occupancies). 

Fig. 14 also confirms that problem is not an amount of data, as even 
simulating with measurement data from all 8 months prediction reli-
ability is even lower (R2=0.46; RMSE=0.70) than for “light quarantine” 

and “post-quarantine” periods. Again, confirms that the problem is low 
occupancy, which is related to low CO2 values and if air mixing in the 
rooms is not ideal (and usually this is the case), the sensor does not 
record any changes in CO2 concentration. 

4. DISCUSSION 

Office building‘s occupancy was always difficult to predict if an of-
fice has no strictly established working hours (e.g. as banks or govern-
mental institutions). But during different pandemic periods related to 
quarantines, it fluctuates, but not as much as expected, and stays low 
even after quarantine. Analysis proves that the actual office area utili-
zation rate depends on industry specifics and one common occupancy 
cannot be assumed during the design stage, it must be differentiated 
when possible. In the analysed buildings Building A is a professional 
services building and Building B is a manufacturing building. Building B 
has higher peak occupancies and they are not even dependant on 
pandemic conditions, this building has much longer occupancy hours 
and is occupied even during weekends (Fig. 7 and 10). Also for both 
offices it was found that occupancy densities are very low (Fig. 11) for 
different pandemic periods thus showing tendencies that offices’ area 
utilisation rates are low and more sustainable office area utilisation 
solutions are required. 

Occupancy of Building B is a very good example of the office 
building, where occupancies are fluctuating without any clear ten-
dencies (chaotically) and therefore such buildings cannot be sustainably 

Fig. 12. Measured CO2 concentration and occupancies for the building A for different pandemic periods.  
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controlled if pre-defined schedules are used in the Building management 
system (BMS). Such buildings required predictive dynamic control and 
here such models as ELM-SA have the potential to be integrated to in-
crease the sustainable operation of the building. Building A is also 
obviously over-ventilated (Fig. 12), showing that the ventilation system 
does not react to actual occupancies and here demand-controlled 
ventilation also has a high potential for energy savings. 

The hypothesis, that ELM-SA model prediction reliability at 
pandemic conditions drops (compared to previously found R2 = 0.74) – 
is confirmed, as even long measurement periods give low accuracies 
(Fig. 13, 14) - R2 = 0.27–0.56. It was noticed, that predictability is lower 
at the periods when occupancy is very low. This shows that occupancy 
prediction based on CO2 concertation when occupancy is very low and 
air mixing in the room is not ideal is not very sufficient. The pandemic is 
the case when occupancy is low and potentially will stay lower in the 
future after the pandemic ends. 

5. Conclusions  

1 Analysis of the actual occupancies for different pandemic periods 
shows, that occupancies are very low during all the periods: average 
peak occupancy for Building A for different pandemic periods fluc-
tuates from 12 to 20% and for Building B – from 2 to 23%. Occu-
pants’ density for all the measurement periods for Building A never 
reached more than 0.049 persons/m2 and 92% of the time it did not 
exceed 0.016 persons/m2. For Building B - occupancies never 
exceeded 0.113 persons/m2, but occupancies between 0.066–0.113 

persons/m2 were recorded just 1.5% of the time during 1 year and 8 
months measurement period, 83% of the time it did not exceed 0.016 
persons/m2. For both buildings dominant within all 3 pandemic 
period’s occupancy density is up to 0.016 persons/m2.  

2 Occupancies and their fluctuations depend on the office industry. 
Building A representing professionals services office show occupancy 
decreases related to pandemic situation and manufacturing industry 
Building B – no tendencies at all and is occupied chaotically with 
different periods of pandemic and also within the weekdays.  

3 Both analysed buildings show the potential for energy savings if a 
predictive control system based on real demand, e.g. with an inte-
grated ELM-SA occupancy prediction model, would be employed.  

4 ELM-SA occupancy prediction model reliability is influenced by 
pandemic conditions, as it showed dependency on occupancy – with 
low occupancies caused by pandemic its reliability has significantly 
dropped compared to normal (pre-pandemic) conditions and is 
found to be R2 = 0.27–0.56 depending on a number of occupants. 
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Bielskus, J., Motuzienė, V., Vilutienė, T., & Indriulionis, A. (2020). Occupancy prediction 
using differential evolution online sequential extreme learning machine model. 
Energies, 13(15), 4033. https://doi.org/10.3390/en13154033 

Carbone, R., & Armstrong, J. S. (1982). Evaluation of extrapolative forecasting methods: 
Results of a survey of academicians and practitioners. Journal of Forecasting, 1, 
215–217. https://doi.org/10.1002/for.3980010207 

Cetinkaya, H. H., & Akcay, M. (2015). People counting at campuses. Procedia-Social and 
Behavioral Sciences, 182, 732–736. https://doi.org/10.1016/j.sbspro.2015.04.821 

Chen, C., Li, K., Duan, M., & Li, K. (2017). Chapter 6 - Extreme learning machine and its 
applications in big data processing. Intelligent data-centric systems (pp. 117–150). 
Cambridge: Academic Press. https://doi.org/10.1016/B978-0-12-809393-1.00006-4 

Chen, Y., Song, L., Liu, ., Yang, L., & Li, D. (2020). A review of the artificial neural 
network models for water quality prediction. Applied Sciences, 10(17), 5776. https:// 
doi.org/10.3390/app10175776 

Chen, Z. H., Xu, J. M., & Soh, Y. C. (2015). Modeling regular occupancy in commercial 
buildings using stochastic models. Energy & Buildings, 103, 216–223. https://doi. 
org/10.1016/j.enbuild.2015.06.009 

Delzendeh, E., Wu, S., Lee, A., & Zhou, Y. (2017). The impact of occupants’ behaviours 
on building energy analysis: A research review. Renewable and Sustainable Energy 
Reviews, 80, 1061–1071. https://doi.org/10.1016/j.rser.2017.05.264 
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