Require:The training data: {xi}T ∈ Rn and {ti}T ∈ Rm (xi = [xi1, xi2,…, xin]T∈ Rn and ti = [ti1, ti2,…, tin]T∈ Rm) Hidden node output function g(x) and the number of hidden nodes, L; Ensure: The output weight vector, β Random generation hidden node parameters (wj, bj), here j = 1, …,N; Calculate the hidden-layer output matrix H; Calculate the output weights β: β =H†T ; End. |