Skip to main content
. 2021 Nov 20;77:103557. doi: 10.1016/j.scs.2021.103557
Require:The training data: {xi}T ∈ Rn and {ti}T ∈ Rm (xi = [xi1, xi2,…, xin]T Rn and ti = [ti1, ti2,…, tin]T Rm)
Hidden node output function g(x) and the number of hidden nodes, L;
Ensure: The output weight vector, β
Random generation hidden node parameters (wj, bj), here j = 1, …,N;
Calculate the hidden-layer output matrix H;
Calculate the output weights β: β =HT ;
End.