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ABSTRACT
Conformational sampling of biomolecules using molecular dynamics simulations often produces a large amount of high dimensional
data that makes it difficult to interpret using conventional analysis techniques. Dimensionality reduction methods are thus required to
extract useful and relevant information. Here, we devise a machine learning method, Gaussian mixture variational autoencoder (GMVAE),
that can simultaneously perform dimensionality reduction and clustering of biomolecular conformations in an unsupervised way. We
show that GMVAE can learn a reduced representation of the free energy landscape of protein folding with highly separated clus-
ters that correspond to the metastable states during folding. Since GMVAE uses a mixture of Gaussians as its prior, it can directly
acknowledge the multi-basin nature of the protein folding free energy landscape. To make the model end-to-end differentiable, we use
a Gumbel-softmax distribution. We test the model on three long-timescale protein folding trajectories and show that GMVAE embed-
ding resembles the folding funnel with folded states down the funnel and unfolded states outside the funnel path. Additionally, we show
that the latent space of GMVAE can be used for kinetic analysis and Markov state models built on this embedding produce folding
and unfolding timescales that are in close agreement with other rigorous dynamical embeddings such as time independent component
analysis.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0069708

I. INTRODUCTION

In recent years, computer simulations of biomolecular systems
have gained huge attention due to advances in theoretical methods,
algorithms, and computer hardware. This enabled efficient explo-
ration of processes in atomic scale using molecular dynamics (MD)
simulations.1 In a MD simulation, one integrates Newton’s equa-
tions of motion where the forces between atoms in the system are
described by a parameterized force field. Exploration of the high-
dimensional space typically requires long-timescale simulations or
the use of some enhanced sampling techniques.2,3 These simulations
usually generate a large amount of high dimensional data, mak-
ing analyzing the important features of protein folding such as free
energy landscape (FEL) and identifying metastable states a challeng-
ing task.4 Therefore, dimensionality reduction techniques are often

used to describe the processes such as folding and conformational
transitions of proteins.5

The ideal FEL should consist of heavily clustered data points,
where each cluster is positioned in a local free energy minimum
and corresponds to long-lived metastable states separated by kinetic
bottlenecks (i.e., free energy barriers).6 This ideal FEL is the cor-
nerstone of many kinetic models that describe the dynamics of the
system using, for example, Markov state models (MSMs).7–9 Tra-
ditional methods to capture FEL rely on identifying relevant col-
lective variables (CVs) that are well-suited to describe the physical
processes or to distinguish different states. However, finding the
right collective variables for the system of interest requires a phys-
ical/chemical intuition about the process of interest.10,11 This makes
it necessary to define a low-dimensional representation of the system
that can capture the essential degrees of freedom or the important
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CVs of the system of interest. There are various methods for dimen-
sionality reduction and finding optimal representation of complex
FEL, such as principal component analysis (PCA),12 time indepen-
dent component analysis (TICA),13,14 Isomap,15 sketch map,16 and
diffusion map.17 PCA-based methods assume an underlying linear
manifold, which is generally not correct. Some of the nonlinear
manifold methods such as Isomap assume data to be isomorphic
to a hyperplane, which leads to topological instabilities. Moreover,
these methods involve computation of distances (geodesic or other
kernel based) between all pairs of points, which makes it unscal-
able to larger MD simulation trajectories. In diffusion maps, one
needs to calculate the Gaussian kernels, which can be computa-
tionally expensive and not scalable to large-scale MD simulation
data.

Machine learning (ML) has recently emerged as a power-
ful alternative tool for learning informative representations, and
in particular, variational autoencoder (VAE) have shown great
potential for unsupervised representation learning.18 An autoen-
coder has two parts: encoder and decoder. The encoder net-
work reduces the input data to a low-dimensional latent space,
and the decoder maps the latent representation back to the orig-
inal data. In the VAE framework, regularization is added to
the model by forcing the latent space to be similar to a pre-
defined probability distribution (e.g., Gaussian), which is called
a prior. VAEs have recently been used for CV discovery in MD
simulations,19–21 enhanced sampling,22,23 and dimensionality reduc-
tion methods.24,25

In a simple VAE, the prior is a simple standard distribution,
which can lead to over-regularization of the posterior distribu-
tion and results in posterior collapse.26 This makes the output of
the decoder almost independent of the latent embedding and can
result in poor reconstruction and highly overlapping clusters in
the latent space.24 On the other hand, a Gaussian prior is limited
since the learnt representation can only be unimodal and cannot
capture multimodal nature of data such as protein folding simula-
tion where there exist multiple metastable states during the folding
process.27

In this work, we employ a Gaussian mixture variational autoen-
coder (GMVAE) that directly acknowledges the multimodal nature
of protein folding simulations and can construct the ideal multi-
basin FEL. This is achieved by modeling the latent space as a
mixture of Gaussians by using a categorical variable that identi-
fies which mode each data point comes from. Therefore, GMVAE
model simultaneously performs dimensionality reduction and clus-
tering.28 The features in our model are the normalized distance
map between Cα atoms of the protein. We test our model on three
long-timescale protein folding simulations taken from the work
of Lindorff-Larsen et al.29 These include Trp-cage (208 μs), BBA
(325 μs), and villin (125 μs). We show that the model can learn
the funnel-shaped landscape of protein folding and cluster the con-
formational space with high accuracy that corresponds to different
structural features of protein. Furthermore, we show that despite
the fact that the GMVAE embedding does not make use of any
dynamical information, it is able to describe the kinetics of pro-
tein folding and the folding and unfolding timescales obtained by
making a Markov model on this embedding are in close agreement
with other works using a rigorous dynamical model to describe the
kinetics.

II. METHODS
Variational inference methods convert an intractable infer-

ence problem into an optimization one. While the classical varia-
tional methods are limited to conjugate priors and likelihood, VAEs
allow for the use of arbitrary function approximators (i.e., neural
networks) as the conditional posterior.18

VAEs can be approached from two different perspectives: vari-
ational inference and neural networks. In the variational inference,
the main idea is to learn a distribution in the latent space that truly
captures the distribution of the dataset. In particular, given a dataset
x, the goal of variational inference is to infer the latent space rep-
resentation z, i.e., to accurately model p(z∣x). The Bayes theorem
gives the relation between the posterior p(z∣x), the prior p(z), and
the likelihood p(x∣z) as

p(z∣x) =
p(x∣z)p(z)

p(x)
. (1)

The denominator in this equation p(x) is called the evidence,
which requires marginalization over all latent variables and thus is
intractable. Therefore, in variational inference, one seeks an approx-
imate posterior qϕ(z∣x) with learnable parameters ϕ and minimizes
the Kullback–Leibler divergence (KL) between the approximate and
the true posterior. The KL divergence shows the difference between
two probability distributions and is defined as

DKL(qϕ(z∣x)∥p(z∣x)) = Eq log(
qϕ(z∣x)
p(z∣x)

). (2)

By re-writing this equation and using the Bayes rule, we get the
following:

log p(x) = DKL(qϕ(z∣x)∥p(z∣x)) − Eq log(
qϕ(z∣x)
p(x, z)

). (3)

Due to Jensen’s inequality, the KL divergence is a non-negative
term, which makes the last term in the equation called evidence
lower bound (ELBO) to act as a lower bound for the log-likelihood
of the evidence,

ELBO = Eq log(
p(x, z)
qϕ(z∣x)

). (4)

Therefore, we can now write Eq. (3) as

log p(x) = DKL(qϕ(z∣x)∥p(z∣x)) + ELBO. (5)

This has the implication that minimizing the KL divergence or
maximizing the log-likelihood of evidence can done by maximizing
the ELBO.

The graphical model of GMVAE is shown in Fig. 1(a). In the
generative part (decoder) of the network, a sample z is drawn from
the latent space distribution pβ(z∣y) of cluster y, which is parameter-
ized by parameters β using the decoder part of the neural network.
This can be used to generate the conditional distribution pθ(x∣z)
parameterized by another neural network θ. The generative process
for GMVAE can be written as

pβ,θ(x, z, y) = pθ(x∣z)pβ(z∣y)p(y), (6)
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FIG. 1. (a) Graphical model for inference and generative parts of GMVAE. The gray circles represent the observed data (b) Schematic of the GMVAE architecture. In this
architecture, q(y∣x) refers to cluster assignment probabilities, q(z∣x, y) is the approximate posterior, and μ and σ are the mean and variance of each Gaussian in the
approximate posterior of the encoder network. p(z∣y) is the prior Gaussian, and μp and σp are the mean and Gaussians of the prior Gaussians in the decoder network.

pβ(z∣y) = N(z∣μβ(y), σ2
β(y)), (7)

pθ(z∣x) = N(x∣μθ(z), σ2
θ(z)), (8)

p(y) = Cat(π). (9)

In these equations, π = 1/K is the uniform categorical distri-
bution, where K is the number of clusters, and Cat(π) refers to
the categorical distribution for discrete variable y. N() refers to the
normal distribution, where μθ, μβ, σ2

θ , and σ2
β are the means and

variances learned by the neural nets parameterized by θ and β. Vari-
ational inference of GMVAE can be done by maximizing the ELBO,
which can be written as

ELBO = Eq log
pβ,θ(x, z, y)
qϕ,ψ(z, y∣x)

. (10)

The approximate posterior of the inference model qϕ,ψ(z, y∣x) can be
factorized into two distributions as follows:

qϕ,ψ(z, y∣x) = qϕ(y∣x)qψ(z∣x, y), (11)

where qϕ(y∣x) gives the cluster assignment probabilities, and thus,

∑
K
k=1qϕ(y∣x) = 1. qψ(z∣x, y) is a Gaussian mixture where the param-

eters of each Gaussian (μψ , σ2
ψ) are learned by the encoder part

of neural network. In this model, categorical variable y repre-
sents a discrete node for each categorical distribution, which
cannot be backpropagated and thus is substituted with a Gumbel-
softmax distribution, which approximates this categorical distribu-
tion with a continuous one. This can be written as

yi =
e

log(πi)+gi
τ

∑
K
j=1e

log(πj)+gj
τ

for i = 1, . . . , K, (12)

where τ is called the temperature parameter that controls the
smoothness of distribution where at small temperatures samples are

close to one-hot encoded and at large temperatures the distribu-
tion is more smooth. gi are the samples drawn from a Gumbel (0,1)
distribution.

Using the generative and inference model, the ELBO can be
written as

ELBO = Eq log
pθ(x∣z)pβ(z∣y)p(y)

qϕ(y∣x)qψ(z∣x, y)
, (13)

ELBO = Eq[log p(y) − log qϕ(y∣x) + log
pβ(z∣y)

qψ(z∣x, y)
+ log pθ(x∣z)].

(14)

The second term in the loss is called the cross-entropy and
the last term is the mean squared error between the true and the
reconstructed data.

A. Model parameters
The model architecture is shown in Fig. 1(b). The GMVAE

model was implemented in Tensorflow. Convolutional layers were
applied along with pooling for their ability to recognize features in
images. The exponential linear unit (Elu) activation function was
used in each layer, and a softmax activation was used for the clus-
ter assignment probability. The means and variances of distributions
were obtained using no activation and softplus activation, respec-
tively. Adam was used as an optimizer in all models.30 We have opti-
mized the hyperparameters of the model based on the reconstruc-
tion loss. The chosen hyperparameters for each protein are shown
in Table I. During training, we split the data into a train/validation
set with a fraction of 0.8 for the training set and 0.2 for the valida-
tion set. The latent space dimension was chosen using a grid search
for minimizing the reconstruction loss of the validation set for each
protein.

The number of clusters is another hyperparameter that must be
specified for training the model. Varolgüneş et al.25 used a thresh-
olding scheme to pick the clusters that have class probabilities more
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TABLE I. Chosen hyperparameters for each protein.

Systems
Number
of layers

Number
of neurons

Latent
dimension

Number
of clusters Batch-size Temperature

Kernel
size

Learning
rate

Number
of filters

Pooling
sizes

Trp-cage 2 64 5 8 5000 0.1 [3,3] 0.001 [64,64] [1,1]
BBA 2 64 6 9 5000 0.1 [3,3] 0.001 [64,64] [2,2]
villin 3 64 5 6 2500 0.05 [3,3,3] 0.001 [64,64,32] [2,2,1]

than a pre-defined cutoff. In this paper, we adapted a similar pro-
cedure. To select this hyperparameter, we first started with a ran-
dom number of clusters (e.g., 10) and computed the membership
probability of each point in the input. Then, we used a cutoff value
(0.95) to count the number of clusters with membership probabil-
ities higher than the cutoff. We then trained the model with the
recovered number of clusters from the previous training. We found
that this number is highly robust to the other hyperparameters of
the model. We also found that after the first round of training, the
number of recovered clusters do not change using the same proba-
bility assignment cutoff. Each model was trained for 100 epochs of
training. The temperature parameter in Gumbel-softmax controls
the smoothness of distribution. We also tried annealing the temper-
ature parameter starting with a high value (5) and lowering it to 0.1
during the first 40 epochs of training and then keeping it the same for
the rest of training. However, we found that the model would diverge
after a few epochs of training and having a fixed and small value
of temperature parameter gives the best results. Since the GMVAE
model gives a probabilistic cluster assignment that is the probability
of each data point belonging to each cluster (fuzzy-clustering), we
used a k-nearest neighbor method to compute a hard-cluster assign-
ment using the neighborhood of each point in the embedding. For
the kinetic analysis, we used the PyEMMA package31 to build the
transition matrix. In each case, the embedding was discretized using
500 K-means cluster points and the transition probability matrix
was built by counting the number of transitions between different
states at lag-time τ. The implied timescales are computed from the
eigenvalues of the transition probability matrix,

ti(τ) = −
τ

ln ∣λi(τ)∣
. (15)

To test the Markovianity of the transition matrix, the implied
timescales are plotted against the lag-time and then the smallest τ

is chosen such that the implied timescales have converged. A coarse-
grained transition matrix is later built by assigning the K-means
points to the closest GMVAE clusters, yielding a coarse-grained
view of dynamics. The folding and unfolding timescales are obtained
from this coarse-grained matrix.

III. RESULTS
Here, we tested the performance of the GMVAE model for

dimensionality reduction and clustering of three protein folding sys-
tems, including Trp-Cage (pdb: 2JOF),32 BBA (pdb: 1FME),33 and
villin (pdb: 2F4K).34 The native folded structure of these proteins
is shown in Fig. 2. We show that the GMVAE embedding captures
the free energy landscape of these proteins with well-separated clus-
ters. We analyze the structural properties of each cluster and show
that each cluster corresponds to a different structural feature in the
protein. The total loss, cross-entropy loss, and reconstruction loss
show a decreasing behavior for both the train and validation sets
in all three proteins and are shown in the supplementary material,
Figs. S1–S3. For visualizing the latent space of GMVAE, we used
a low-dimensional latent space (2 or 3) and show that this embed-
ding mimics the funnel-shaped landscape of protein folding where
the folded state resides down the funnel and the unfolded states are
outside the funnel. For the rest of our analysis on each protein, we
used an optimized number for latent-space dimension based on a
cross-validated reconstruction loss. Figure 3 shows a cross-validated
reconstruction loss as a function of latent space dimension for each
protein. Higher dimensional embeddings result in better reconstruc-
tion loss for all proteins. This means, to capture the complex protein
folding landscape, we need a high dimensional latent space in our
GMVAE model. To test whether the GMVAE clusters give mean-
ingful structural information, we sampled 5000 data points from
the center of each cluster and compared the distribution of root
mean squared deviations (RMSDs) of the whole protein and spe-
cific domains of each cluster to the folded state. Moreover, we show

FIG. 2. Native folded structure of studied
proteins. (a) Trp-cage, (b) BBA, and (c)
villin headpiece.
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FIG. 3. Reconstruction loss vs latent space dimension for (a) Trp-cage, (b) BBA, and (c) villin headpiece.

that building a Markov model on the embedding of GMVAE pro-
duces folding and unfolding timescales that are in close agreement
with the timescales obtained from constructing a Markov model on
a dynamical embedding such as TICA.

A. Trp-cage
As the first example, we test our GMVAE model on an ultra-

long 208 μs explicit solvent simulation of the K8A mutation of the
20-residue Trp-cage TC10b at 290 K by Lindorff-Larsen et al.29

Numerous experimental and computational studies have been per-
formed on Trp-cage.35–37 The folded state of Trp-cage shown in
Fig. 2(a) contains an α-helix (residues 2–8), a 310-helix, and a
polyproline II helix, and the tryptophan residue is caged at the cen-
ter of the protein. Two different folding mechanisms have been
identified for Trp-cage to date:38 one where Trp-cage goes through
a hydrophobic collapse into a molten globule followed by the
formation of N-terminal helix and the native core (nucleation-
condensation) and second the pre-formation of the helix from the
extended conformation and the joint formation of the 310-helix and
hydrophobic core (diffusion–collision). The second mechanism is
identified as the dominant folding pathway for Trp-cage.

Here, we investigated Trp-cage folding trajectories using the
GMVAE model for embedding and clustering. The features are
the normalized distances between the Cα atoms of Trp-cage in the
trajectories. Hyperparameter K that identifies the number of clus-
ters is unknown a priori. To choose a reasonable number for each
cluster, we started from a higher estimate for the number of clus-
ters (e.g., 10) and trained the model. Then, we used a cutoff (0.95)
to find the number of clusters with membership probability more
than the cutoff value. We found that only 8 out of 10 clusters
had higher than 0.95 membership probability. Next, we trained the
model again with eight clusters. At this stage, we found that all
clusters had membership probabilities higher than our original cut-
off. Moreover, we found the same number of clusters regardless
of the other hyperparameters for the model such as the number
of layers. Although the 2D or 3D latent spaces are used for visu-
alization purposes, higher latent space embeddings are needed to
describe the folding energy landscape more accurately. To choose
an optimum latent-space dimension, we computed a cross-validated
reconstruction loss for different values of latent space dimension
from 2 to 10. The results for Trp-cage are shown in Fig. 3(a). We
chose a five-dimensional latent space for clustering this protein.

Other hyperparameters such as the batch-size, learning rate, num-
ber of layers, temperature of Gumbel-softmax, kernel size, num-
ber of filters, and pooling sizes were optimized using a grid search
method based on reconstruction loss. The chosen hyperparameters
for each protein are listed in Table I. The total, reconstruction,
and cross-entropy losses using the determined hyperparameters in
Table I are shown in Fig. S1. Reconstruction and cross-entropy
losses for both training and validation data show a decreasing behav-
ior, demonstrating the convergence of the model after 100 epochs of
training.

Figure 4(a) shows the three-dimensional embedding (z-dim
= 3) of Trp-cage trajectories colored based on the RMSD with
respect to the crystal structure. The gradual change in color from
high RMSD (red) to low RMSD (blue) in the landscape demon-
strates that the low-dimensional embedding can capture the protein
folding process. Figure 4(b) shows the first two dimensions of the
latent embedding colored based on RMSD. The high RMSD and
low RMSD regions are well separated on this landscape. The folded
state has a narrow distribution and is the narrow wedge of the fold-
ing funnel. We computed the free energy landscape on the first two
dimensions of the latent space [Fig. 4(c)]. The free energy landscape
shows multiple wells that are separated by diffuse regions in between
them. The wells correspond to the centers of GMVAE clusters, and
the diffuse region is the transition region between different con-
formational states. Hard-cluster assignment in the 3D latent space
is shown in Fig. S4(A). Next, based on Fig. 3(a), we used a five-
dimensional latent space for clustering Trp-cage. To visualize the
5D latent space, we only take data points with membership assign-
ment probabilities higher than 0.75 and used t-distributed stochas-
tic neighborhood embedding (T-SNE)39 for transforming the five-
dimensional embedding into two dimensions. The T-SNE results for
Trp-cage are shown in Fig. 4(d). The clusters are highly separated
on this landscape. To ensure that GMVAE clusters corresponds to
different structures during folding, we sampled 5000 points from
the center of each cluster and computed the RMSD distribution of
the protein with respect to the folded state [Fig. 4(e)]. The folded
state (cluster 5) has a narrow distribution, while other unfolded and
misfolded states have wider distributions with higher RMSD values.
Representative structures of each cluster are shown in Fig. 5. We
have also computed the RMSD distribution of residues 11–15 com-
prising the 310-helix for different states. The results are shown in Fig.
S4(B).
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FIG. 4. Results of GMVAE for Trp-cage. (a) 3D embedding (zdim = 3) colored with RMSD with respect to the folded state. (b) First two dimensions of latent space (zdim
= 3) colored with RMSD. (c) Free energy landscape of the first two dimensions of embedding (zdim = 3). (d) TSNE visualization of 5D latent space colored based on the
argmax of their cluster assignment probabilities (only points with more than 0.75 membership probability are shown). (e) RMSD distribution of Trp-cage in different clusters.
(f) Implied timescale (ITS) plot for MSM construction.

Next, we built a MSM on the 5D embedding by choosing
300 K-means points and discretizing the trajectories based on this
clustering on the GMVAE embedding. The implied timescales for
this transition matrix are shown in Fig. 4(f). Based on this, we
chose a lag-time of 160 ns to build the MSM. To compute the

FIG. 5. Trp-cage folding transitions: the thickness of lines corresponds to the tran-
sition probability between the two states. Transitions with probabilities less than
0.05 are not shown for clarity.

mean-first passage time (MFPT) between different GMVAE clus-
ters, we coarse-grained the 300-state transition matrix into eight
states that corresponded to the GMVAE clusters. The folding and
unfolding times based on the coarse-grained Markov model are
11.62 and 4.85 μs, respectively. The folding and unfolding times
are in good agreement with the values reported by Lindorff-Larsen
et al.29 who reported 14.4 and 3.1 μs as the folding and unfold-
ing times of this protein using the average lifetime in the folded
and unfolded states observed in trajectories using a contact based
definition of folded and unfolded states. A visualization of the eight
metastable states found by GMVAE model is shown in Fig. 5. The
arrows between different states show the transition between differ-
ent conformations, and the arrow thickness relates to the transi-
tion probability between different clusters obtained by coarse gain-
ing the Markov model into eight GMVAE clusters. The native
folded state S5 accounts for about 18% of the total distribution,
and the unfolded ensemble represents the remaining 82%. Folding
mostly proceeds via the molten globule state S0 or the near-folded
state S4.

B. BBA
The second example is the ββα fold protein (BBA), which is

a 28-residue fast folding protein. The nuclear magnetic resonance
(NMR) structure of this protein is shown in Fig. 2(b). This pro-
tein contains an antiparallel β sheet at the N terminal and a helical
conformation at its C terminus. For finding the optimum number
of clusters, we first trained the model with 10 clusters and only
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FIG. 6. (a) 2D embedding of BBA colored based on RMSD to the folded state. (b) 2D free energy landscape of BBA based on 2D embedding. (c) Clusters in 2D embedding
of BBA using kNN for cluster assignment. (d) TSNE visualization of 6D latent space colored based on the argmax of their cluster assignment probabilities (only points with
more than 0.75 membership probability are shown). (e) Histograms of RMSD for different clusters. (f) ITS plot based on 6D latent space.

nine clusters were recovered using a 0.95 cutoff. Next, we trained
the model with nine clusters and found that all the clusters have
probabilities higher than our cutoff. We also observed that train-
ing the model with different hyperparameters would yield the same
number of clusters. To better visualize the latent space, we trained
the model with two dimensions. The resulting latent space colored
based on RMSD with respect to folded state is shown in Fig. 6(a).
Unfolded and folded states are well separated on this 2D embed-
ding. The free energy landscape on this embedding is shown in
Fig. 6(b). It is observed that all clusters reside in the wells of the
free energy landscape. There are also some diffuse and high energy
states between the wells, which correspond to transitions between
different metastable states. These regions are also where the model
is least certain about cluster assignment. To transform the fuzzy clus-
tered output of GMVAE into hard-cluster assignment, we used a
k-nearest neighbor algorithm and assigned each point to the most
likely cluster in its neighborhood using 500 neighbors. The result
is shown in Fig. 6(c), which exhibits highly separated and non-
overlapping clusters in the 2D embedding. In this embedding, state
8 corresponds to the folded state and state 6 is the near-folded
(misfolded) state, and all the other states are the unstructured or
unfolded conformations. The highly non-overlapping clusters in the
GMVAE landscape show the ability of this model to separate a
vastly diverse set of protein conformations from a protein folding
trajectory.

The 2D embedding latent space cannot fully capture
the complex folding landscape. Therefore, we optimized the
latent space dimension based on a cross-validated reconstruc-
tion loss in Fig. 3(b). Next, based on this result, we used a

six-dimensional latent space for the rest of our analysis. The T-SNE
visualization of this six-dimensional landscape is shown in Fig. 6(d).
We have studied the structural properties of each cluster by sam-
pling 5000 data points from the center of each cluster. Figure 6(e)

FIG. 7. BBA transitions: the arrows show the transition between different clus-
ters, and the arrow thickness represents the transition probability between the
corresponding clusters. Transition with probabilities less than 0.1 is not shown for
clarity.
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shows the distribution of RMSD of each cluster with respect to
the folded state. Cluster 0 is the folded state with the sharpest and
lowest RMSD distribution. Other clusters have wider and higher
RMSD distributions and correspond to misfolded or unfolded
states. Representative structures for each cluster are shown in Fig. 7.
We also investigated the details of structural features for each cluster
by calculating the RMSD distribution of specific domains in BBA.
Figure S5 shows the distribution of RMSD of the antiparallel β-sheet
(residues 7–14) (left panel) and the α-helical (right figure) parts
of BBA (residues 16–26) with respect to the folded structure. The
folded state (cluster 0) has the lowest RMSD in both domains, while
cluster 4 has a low RMSD in the antiparallel β-sheet domain but a
higher RMSD in the α-helical domain.

To perform a Markov model on this embedding, we first clus-
tered this embedding using 500 K-means and discretized the tra-
jectories based on the points. To choose the proper lag-time for
the MSM model, we plotted the implied timescales [Fig. 6(f)] and
picked 220 ns and built the transition probability matrix. Next, to
compute the transition timescale between different GMVAE clus-
ters, we assigned each of the 500 K-means clusters to the clos-
est cluster in GMVAE and then computed the mean-first pas-
sage times (MFPTs) between clusters. The folding and unfolding
timescales calculated here are 15.2 and 7.42 μs, respectively, which
are in close agreement with the values reported by Lindorff-Larsen
et al.29 Figure 7 illustrates the representative structures of each clus-
ter, which are sampled from the mean of each distribution in the
latent space. The transition between different states is shown with
the arrow where the width of each arrow represents the transition
probability.

C. Villin

The last example is a 35-residue villin-headpiece subdomain,
which is one of the smallest proteins that can fold autonomously.
It is composed of three α−helices denoted as helix 1 (residues 4–8),
helix 2 (residues 15–18), and helix 3 (residues 23–32) and a com-
pact hydrophobic core. The observed experimental folding timescale
for wild-type villin is about 4 μs, and the replacement of two lysine
residues (Lys65 and Lys70) with uncharged Norleucine (Nle) yields
a mutant with a folding time of less than one microsecond.40 The
folding landscape of the villin double mutant has been studied by
both experiments and computer simulations.41–44 Folding a dou-
ble mutant of villin was studied using long-timescale molecular
dynamics by Lindorff-Larsen et al. and is used here.29

The number of clusters for villin was found as described for
other proteins. We started with seven clusters and found that only
six clusters were recovered using a 0.95 cutoff for cluster probabil-
ity. The training and validation losses for this protein are shown in
Fig. S3. The latent embedding using a 3D latent space is shown in
Fig. 8(a) where each point is painted based on RMSD with respect to
the folded structure. The first two dimensions of this 3D embedding
colored based on RMSD are shown in Fig. 8(b). Figure 8(c) shows
the free energy landscape on the first two dimensions of the embed-
ding. Due to fast transitions between different states in villin, unlike
BBA, the FEL has larger diffuse regions with smaller basins at the
center of each cluster. The presence of large diffuse regions on this
landscape means that the metastable states in the folding of villin are
short lived and transition between each other quickly. The optimum
latent space dimension for villin was found to be 5 [Fig. 3(c)]. Other

FIG. 8. GMVAE embedding results for villin. (a) 3D latent space (zdim = 3) colored with RMSD. (b) First two dimensions of 3D latent space colored based on RMSD. (c)
FEL based on first two dimensions of latent space. (d) TSNE plot for 5D latent space (only points with more than 0.75 membership probability are shown). (e) Distribution
of RMSD for villin with respect to the folded state. (f) ITS plot for Markov model construction based on 5D embedding.
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hyperparameters for villin were optimized based on a cross-
validated reconstruction loss, and the chosen hyperparameters are
shown in Table I. The T-SNE visualization of this 5D latent space
is shown in Fig. 8(d), which shows highly separated clusters.
Figure 8(e) shows the RMSD distribution of each cluster in 5D latent
space with respect to the folded structure. Cluster 3 corresponds to
the folded state where the RMSD distribution is the narrowest and
smallest. Figure 9 shows the representative structure of each cluster
in 5D latent space. Structural properties of specific domains in differ-
ent clusters were studied using the RMSD distribution of helices 1,
2, and 3 with respect to the folded structure. The results are shown
in Fig. S6. Each cluster has a different distribution for the helical
residues of the protein, which are Gaussian. Cluster S0 has a low
RMSD for helices 1 and 2 but higher RMSD values for helix 3. Sec-
ondary structure calculations showed that S0 has folded helix 1 and
helix 2 but unfolded helix 3. Most clusters have folded or near-folded
helix 1, except for cluster S4. Cluster S3 is the folded state where are
helices are folded with more than 80% probability. Helix 3 is only
folded in S3 and S5, which shows the importance of this helix in
proper folding of villin.

Next, we built a Markov model on this embedding by choos-
ing 500 K-means cluster points for discretizing the trajectories. The
implied timescales for this discretization are shown in Fig. 8(d). A
lag-time of 220 ns was chosen to build the transition matrix. The
500 K-means clusters were then assigned to their nearest GMVAE
clusters to build a coarse-grained transition matrix. The folding and
unfolding times obtained based on the constructed MSM on this
embedding are 2.25 and 1.54 μs, respectively, which are in good
agreement with the values reported by Lindorff-Larsen et al. (2.8 μs)
and others building a Markov model using TICA.29,45,46 Figure 9
shows the structures of each cluster and the transition probability
between different states. The highest transition probability S3 → S0
corresponds mostly to unfolding of helix 3. Therefore, proper fold-
ing of helix 3 leads to the formation of native contacts and native

FIG. 9. Transitions between different states in villin-headpiece simulation. The
thickness of the arrows corresponds to the transition probability between the two
states. Transitions with less than 0.1 probability are now shown for clarity.

helices. Piana et al.47 studied the double mutant (Nle/Nle) of villin
and found a sparsely populated intermediate that involved the for-
mation of helix 3 and the turn between helices 2 and 3. This corre-
sponds to cluster S2 in our analysis that has near-folded helix 3. Mori
and Saito48 studied the molecular mechanics for folding of villin and
the Nle/Nle double mutant. They found that the mutation Lys→Nle
speeds up the folding transition by rigidifying helix 3.

D. Discussion and conclusion
Here, we demonstrated the use of a deep learning algorithm,

Gaussian mixture variational autoencoder (GMVAE), to help ana-
lyze and interpret the highly complex landscape of protein fold-
ing trajectories. The variational autoencoder framework has been
extensively used in the field of molecular dynamics simulations for
dimensionality reduction,24,25 enhanced sampling,22,23 and collective
variable discovery.19–21 Noe and co-workers proposed a time-lagged
autoencoder (TAE) that can find the low-dimensional embedding
for high dimensional data while capturing the slow dynamics of the
underlying processes.49 Although Chen et al.50 showed that TAE is
limited in finding the optimal embedding for the dynamical system,
in general, it finds a mixture of slow and maximum variance modes.
Ward et al. introduced DiffNets, which are deep autoencoders that
identify structural features for predicting biochemical differences
between protein variants from MD simulation trajectories.51

The GMVAE model acknowledges the multi-basin nature of
protein folding by enforcing a mixture of multiple Gaussian as the
prior model for the variational autoencoder. We applied our model
to three long-timescale protein folding trajectories, namely, Trp-
cage, BBA, and villin headpiece, all of which have been extensively
characterized in previous studies.29 In all cases, we showed that
the model is able to characterize different features of the structure
that could correspond to folded, misfolded, or unfolded states. The
low-dimensional embedding obtained by GMVAE for these pro-
teins resembles the folding funnel where the folded states lay down
the funnel and unfolded ensemble states are outside the funnel.
This can be intuitively described from the conformational entropy
point of view. The unfolded state has larger variations in the struc-
ture, which causes the variance of Gaussian learned by GMVAE
to be larger than the folded cluster having a narrower distribu-
tion. This along with the continuity of the latent space makes the
landscape funnel-shaped. To verify that the clusters obtained by
GMVAE correspond to different structural features of proteins dur-
ing folding, we computed the global and local RMSD of each clus-
ter with respect to the folded structure. As expected, the distri-
bution of RMSD for different clusters follows a Gaussian where
the folded state has the lowest and narrowest RMSD and the
unfolded (extended) structure has the highest and widest RMSD
distribution.

We used normalized distance maps as the features in our
machine learning model, which are practical ways to represent the
simulation dataset of proteins. Other features such as contact maps
can also be used as the input to the model, which would give a
lower resolution embedding due to the amount of information in the
contact maps relative to distance maps. Specifically, in our model,
we used convolutional operations, which are known for their great
ability to recognize and process the image dataset. It is worth not-
ing that our GMVAE model is different from a simple Gaussian
mixture model (GMM). In a GMM, the parameters of the model are
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optimized iteratively through the expectation-maximization algo-
rithm.52 GMM has been used to cluster the FEL of proteins. West-
erlund and Delemotte used GMM to construct and cluster the FEL
of binding Ca2+ to calmodulin and found a novel pathway involv-
ing salt bridge breakage and formation.53 However, GMM requires
the use of a few handcrafted features and a high number of col-
lective variables can lead to over-fitting the model. On the other
hand, since the GMVAE model is trained by gradient descent and
is a deep learning architecture, it does not suffer from the same
shortcomings of GMM. Unlike the GMVAE model proposed by
Varolgüneş et al.25 that learns the cluster assignment through a
stochastic layer, we replace this with a deterministic layer using
Gumbel-softmax distribution, which makes the model end-to-end
differentiable and leads to better performance.54,55 The temperature
parameter in Gumbel-softmax was tuned along with other model
hyperparameters during training. The best hyperparameters for each
protein were chosen based on a cross-validated reconstruction loss.
The number of clusters is a hyperparameter in the GMVAE. How-
ever, we showed that to find an optimum number of clusters, we
first start with a higher estimate of the number of clusters in each
protein. Then, using a cutoff for cluster assignment probability, we
find the number of clusters with membership probability higher
than a defined cutoff. Next, we train the model with the recov-
ered number of clusters from the previous step. We showed that
at this stage, all clusters have membership probabilities higher than
the chosen cutoff (0.95). This also means that the model has con-
verged to the optimum number of clusters in the system. Notably,
the number of recovered clusters was found to be the same regard-
less of other hyperparameters in the model. However, the number
of clusters can be dependent on the chosen cutoff. On the other
hand, this can be viewed as a hierarchical clustering where based on
the clustering resolution, which correlates with the cutoff value in
our process, different structures are embedded in the same cluster.
The latent space dimension is another important hyperparameter
that needs to be optimized. To find the optimum latent space dimen-
sion for each protein, we calculated a cross-validated reconstruction
loss for different values of latent-space dimension for each pro-
tein. The reconstruction loss reduces as the latent space dimension
increases and it reaches a plateau. For each protein, we pick the
latent space dimension where the reconstructions loss reaches this
plateau.

Beyond the static characterization of the protein folding
trajectories, we tested whether the model is able to character-
ize the kinetics of protein folding. We built a high resolution
Markov model on the embedding obtained by GMVAE and com-
puted the MFPTs between different states. Interestingly, the fold-
ing timescales obtained by the model are in good agreement
with the folding times reported by other groups constructing
a MSM on a TICA landscape, which characterizes the dynam-
ics of folding. We should note that our model does not uti-
lize any lag-time for the construction of the low-dim embedding;
however, it is able to describe the folding timescales with rea-
sonable accuracy. However, for some of the most dynamic pro-
teins such as villin with fast folding timescales, only the first two
implied timescales converge after 220 ns and the other implied
timescales are below the maximum likelihood threshold, which
makes the model unable to give meaningful information about
these faster processes. This might be remedied by adding dynamical

information to the model by using a lag-time in the training process.
Further improvements to the model could include graph embedding
of protein structures instead of using a distance map. This will be
studied in our future work.

SUPPLEMENTARY MATERIAL

See the supplementary material for the training and validation
loss and the results of the GMVAE model with different number of
clusters for Trp-cage, BBA, and villin.
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