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Abstract

Epilepsy is a complex neurological syndrome characterized by seizures resulting from neuronal 

hyperexcitability and sudden and synchronized bursts of electrical discharges. Impaired astrocyte 

function that results in glutamate excitotoxicity has been recognized to play a key role in the 

pathogenesis of epilepsy. While there are 26 drugs marketed as anti-epileptic drugs no current 

treatments are disease modifying as they only suppress seizures rather than the development and 

progression of epilepsy. Excitatory amino acid transporters (EAATs) are critical for maintaining 

low extracellular glutamate concentrations and preventing excitotoxicity. When extracellular 

glutamate concentrations rise to abnormal levels, glutamate receptor overactivation and the 

subsequent excessive influx of calcium into the post-synaptic neuron can trigger cell death 

pathways. In this review we discuss targeting EAAT2, the predominant glutamate transporter in 

the CNS, as a promising approach for developing therapies for epilepsy. EAAT2 upregulation via 

transcriptional and translational regulation has proven successful in vivo in reducing spontaneous 

recurrent seizures and offering neuroprotective effects. Another approach to regulate EAAT2 

activity is through positive allosteric modulation (PAM). Novel PAMs of EAAT2 have recently 

been identified and are under development, representing a promising approach for the advance of 

novel therapeutics for epilepsy.
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Epilepsy

Epilepsy was first described in Mesopotamia in 2000 B.C. Although this syndrome has 

affected important people in history such as Julius Caesar, Vladimir Lenin, and Fyodor 

Dostoyevsky, it is still a disabling disease for most patients, so prevention and cure are still 

great unmet needs [1]. According to CDC data, in 2015 1.2% of the total US population 

had active epilepsy, meaning approximately 3.4 million people were either currently taking 

anti-seizure drugs (ASDs) or had a seizure within a year [2]. Worldwide, epilepsy has a 

prevalence of 1–2 % [3,4].

Epilepsy is a complex neurological syndrome characterized by seizures caused by 

hyperexcitability of neurons and sudden and synchronized bursts of electrical discharges. 

These seizures present as peculiar sensations, emotions, behavior, convulsions, muscle 

spasms, and/ or loss of consciousness [5–7].

Seizures can be classified into partial, or focal, and generalized[9]. Partial epilepsies 

represent the most common type of adult-onset epilepsy and account for more than 60% 

of all adult cases of temporal lobe epilepsy (TLE) [10]. For reviews on the pathophysiology 

of epilepsy, see [7,11,12].

Epileptogenesis

An initial injury leading to seizures may be head trauma, childhood seizures, hypoxia, or 

status epilepticus (SE), a single seizure that either lasts longer than 5 minutes or is a series 

of seizures that occur close together with no recovery of consciousness between seizures 

[13–15]. The intense seizure activity seen in SE causes excessive glutamate release resulting 

in overstimulation of glutamate receptors leading to massive influxes of Ca2+, subsequently 

triggering mass neuronal death via glutamate excitotoxicity mechanisms [7,16]. Following 

the initial insult or injury there is a latent period that may last up to several years in 

which complex molecular, biochemical, and structural changes occur, including changes in 

synaptic plasticity and neuronal connectivity reorganization of neuronal networks. Within 

minutes to days following the initial insult, acute early changes include rapid alterations 

to ion channel kinetics, post-translational modifications to existing functional proteins, and 

activation of immediate early genes. Hours to weeks after the insult, subacute changes occur, 
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including neuronal death, activation of inflammatory cascades and several transcriptional 

events. In the following weeks to months, several chronic changes will take place, including 

anatomical changes, such as neurogenesis, gliosis, mossy fiber sprouting and network 

reorganization [17,18]. These changes ultimately lead to neuronal networks being more 

susceptible to hyperexcitability and synchronous firing of these excitatory neurons, leading 

to more seizures and eventually spontaneous recurrent seizures [19,20]. This results in 

the emergence of chronic epilepsies such as TLE [8] (figure 1). Confirming this idea, an 

important recent study using an in vivo model of pentylenetetrazole (PTZ) insult, established 

that a single episode of clonic–tonic seizures affected neuronal viability in the hippocampus, 

up to 1 week after PTZ treatment. This suggests that even a single seizure episode is a 

powerful event that causes stress to hippocampal neurons and can cause intricate alterations 

in neuronal plasticity [21].

A recent study investigated whether glutamate and GABA are linked to the formation of 

epilepsy networks and the triggering of spontaneous seizures, by infusion of a glutamine 

synthetase inhibitor into rat hippocampi to create a seizure focus, a translationally rodent 

model of mTLE. Their results suggest that changes in extracellular brain levels of glutamate 

and GABA play important roles in epilepsy network formation and in the initiation and 

propagation of spontaneous seizures [22].

Collectively, these studies suggest that neuronal death due to glutamate excitotoxicity may 

be both a cause and consequence of epileptic seizures, as abnormal glutamate release by 

astrocytes is involved in the molecular mechanisms underlying the initial insults during 

the process of epileptogenesis [23]. Developmental processes play a role in the regulation 

of epileptogenesis, suggested by differences observed in epileptogenic processes between 

developing and adult brains. However, age-specific mechanisms of epileptogenesis, as well 

as specific factors associated with increased seizure susceptibility in the developing brain 

are not well known. This knowledge is needed for development of proper biomarkers that 

would allow for the identification of risk factors for developing epilepsy. Further research is 

also needed for development of therapies for the prevention of epileptogenesis, as well as for 

monitoring of the progression of epilepsy [24].

Current treatments for epilepsy

Since the early 1990s, many newer ASDs with better tolerability, reduced possibility 

for drug-drug interactions and satisfactory pharmacokinetics were approved for clinical 

use [25]. Currently there are 26 drugs marketed as ASDs, with various mechanisms of 

action including the inhibition of sodium channels to reduce the ability of neurons to 

fire at high frequencies (phenytoin, carbamazepine, valproate, and lamotrigine, among 

others), inhibition of T type and L type calcium channels (ethosuximide and gabapentin, 

respectively), inhibition of voltage-gated potassium channels (Kv7, retigabine/ezogabine) 

inhibition of glutamate release and receptors (topiramate), and enhancement of GABA 

action via activation of GABAA receptors (phenobarbital and benzodiazepines), inhibition 

of GABA transaminase (vigabatrin), and inhibition of GABA reuptake (tiagabine), and 

modulation of synaptic release, as examples modulators of the α2δ subunit of voltage­
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gated calcium channels (gabapentin, pregabalin)and the synaptic vesicle protein (SV) 2A 

(brivaracetam, levetiracetam) [26–28].

Unfortunately, current pharmacotherapies are not efficacious in approximately one third 

of patients with epilepsy [29]. Additionally, current treatments have proven successful in 

suppressing seizures, however, they do not treat the underlying epileptic syndrome, i.e., they 

are not disease modifying as they do not halt the progression of epileptogenesis. Moreover, 

many of these treatments, especially the GABAA receptor activators, can have serious 

adverse events and tolerance associated with their use [30–33].

Approximately 20% of epilepsy cases are triggered by acute injuries such as stroke, 

traumatic brain injury, and bacterial, virus and other types of brain and spinal cord 

infections. There are several opportunities for pharmacological treatment for epilepsy: the 

injury onset that triggered the epileptogenic process, medical care at the early phases of 

presentation, and intervention a latent phase between the injury and the development of 

clinical epilepsy. Unfortunately, even though there are no available treatments, no extensive 

clinical research seeking novel therapies has been conducted on the last 20 years. In 

rare cases, certain “self-limiting” childhood and adolescence epilepsy syndromes have 

remitted spontaneously. One type of treatment that seems to result in “cure” is resective 

surgery, however, this is sparsely provided. Some patients benefit of medications or dietary 

treatments, however, once the treatment is discontinued, the seizures tend to persist. At 

the present time, there is no enough knowledge on the mechanisms behind such “cures”; 

impeding the development of translational treatment paradigms to “cure” epilepsy [34].

So, despite being a common neurological disorder, epilepsy remains a serious and unmet 

medical need. Thus, novel treatments for epileptic syndromes are needed, and research 

suggests that the glutamatergic system, and in particular the glutamate transporter GLT-1/

EAAT2 (rodent/human homologues), may provide novel targets for ASDs. Several studies 

suggest that dysregulation of astrocytic glutamate transporters could be a factor to the 

development of epilepsy. The development of approaches that modulate the glial excitatory 

amino acid transporters EAAT1 and EAAT2, and glutamine synthetase could result in 

fundamental changes on the way epilepsy is treated, by providing a potential prevention of 

the epileptogenesis processes [35].

Glutamate transporters

Glutamate is the primary excitatory neurotransmitter in the mammalian CNS and is vital 

for normal brain functioning [36]. Glutamate is stored in synaptic vesicles at presynaptic 

terminals, that, in response to an action potential and increase in intracellular Ca2+, fuse 

with the plasma membrane of the presynaptic neuron and glutamate is released into the 

synaptic cleft and can then activate these receptors. Glutamate receptors fall into two 

different classes, ligand gated ion channels (ionotropic receptors) which include α-amino-3­

hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, kainate receptors, and N­

methyl-D-aspartic acid (NMDA) receptors, and G-protein coupled receptors (metabotropic 

receptors) [37,38]. Upon activation of post-synaptic glutamate receptors, Ca2+ channels are 
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opened and Ca2+ influxes into the post-synaptic neuron trigger an action potential in the 

post-synaptic neuron and further downstream signaling in physiological conditions.

Glutamate neurotransmission is terminated upon the uptake of extracellular glutamate by 

a family of five structurally distinct subtypes of high-affinity sodium dependent excitatory 

amino acid transporters (EAATs, rat/human homologue): GLAST/EAAT1, GLT-1/EAAT2, 

EAAC1/EAAT3, EAAT4 and EAAT5 [39].

The EAATs are secondary-active transporters that couple the movement of one glutamate 

with the symport of three Na+ ions and one H+ and the counter transport of one K+ [40]. 

The Na+ gradient generated by Na+ K+- ATPase activity drives glutamate transport under 

physiological conditions [41]. Glutamate taken up by astrocytes is converted into glutamine 

via glutamine synthetase and is then transported to the extracellular space, where it is 

taken up by the presynaptic neuron and converted back into glutamate via glutaminase 

[42]. Glutamate is then packaged into synaptic vesicles via vesicular glutamate transporters 

(vGLUTs) [43]. Table 1 shows the differences in the nomenclature of glutamate transporters 

between human and rodent, their main biological activity and predominant expression in 

the CNS. This review will focus on EAAT2, the most abundant subtype of EAATs [44], 

that is expressed throughout the brain and in the spinal cord. EAAT2 is present primarily 

in astrocytes, and in neurons and oligodendrocytes, accounting for about 95% of the total 

glutamate transport activity and 1% of total brain protein in the CNS [45–49]. Thus, EAAT2 

plays a central role in the CNS for maintaining the homeostasis of glutamate and therefore 

preventing excitotoxicity [37,50–52].

EAATs function is essential for fast removal of glutamate from the extracellular space 

upon its release into the synaptic cleft. It is key that extracellular glutamate concentrations 

are kept low (25-600 nM), as elevated concentrations to approximately 2-5 μM result 

in excitotoxic injury [53–55]. Glutamate excitotoxicity is the process in which failure to 

remove extracellular glutamate from the synaptic cleft results in sustained extracellular 

glutamate levels and excessive activation of NMDA receptors [55]. This results in excessive 

Ca2+ influx into the post-synaptic neuron leading to downstream activation of a cascade 

of phospholipases, endonucleases, and proteases like calpain that leads to cell apoptosis 

[56]. Additionally, the excessive Ca2+ influx and subsequent depolarization of the post­

synaptic neuron may lead to the efflux of excessive glutamate spillage promoting subsequent 

excitotoxicity [39]. Thus, the EAATs, and in particular EAAT2, are crucial for maintaining 

low extracellular glutamate concentrations to prevent NMDA receptor (NMDAR) and 

AMPA receptor (AMPAR) mediated excitotoxicity. EAATs are also present on GABAergic 

terminals, where they take up glutamate that is converted into GABA by glutamic 

decarboxylase (GAD). This function contributes to limiting spill-over of glutamate of 

active synapses, limiting the activation of extra-synaptic and neighboring synapses glutamate 

receptors [58].

In addition to the EAAT family of transporters and vesicular glutamate transporters, there 

are also glutamate-cystine exchangers (SLC7A11, xCT) present in neurons and glia that 

exchange intracellular glutamate for extracellular cystine to provide a cystine source for 

the synthesis of glutathione [59]. Extracellular accumulation of glutamate can also cause 
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toxicity through interaction with these exchangers as they become blocked and glutathione 

cannot be synthesized, leading to oxidative stress and downstream cell death [57]. These 

exchangers are relevant for epileptic seizures in the context of gliomas, as non-vesicular 

secretion of glutamate via these exchangers constitutes the main mechanism contributing to 

high extracellular glutamate concentrations [60].

Astrocytes and Epilepsy

Historically, the focus of epilepsy research has been neurocentric, since epilepsy is caused 

by aberrant synchronized firing of neuronal populations, primarily due to imbalance between 

excitatory and inhibitory neurotransmission. However, in the past two decades we have 

seen more research looking further into astrocytes and their role supporting and modulating 

neuronal activity, which has provided compelling evidence that glial cells are involved 

in pathophysiology of epilepsy [4]. Astrocytes can release may neuroactive molecules, 

including glutamate, D-serine, ATP, adenosine, GABA, TNFα (tumour necrosis factor 

α), prostaglandins, proteins and peptides that may affect neuronal activity and synaptic 

physiology [61,62]. Astrocytes regulate and respond to extracellular glutamate levels in 

the CNS via astrocytic glutamate transporters and the metabotropic glutamate receptors 

(mGluRs) 3 and 5 [63]. In epileptic tissue, reactive astrocytes utilize several mechanisms 

that regulate seizure development, which include dysregulation of astrocytic transporters and 

mGluRs [63,64]. Moreover, epileptic seizures cause neuronal cell loss and astrogliosis, a 

hallmark of epilepsy [65,66]. Inflammatory processes concomitant to SE result in changes in 

morphology and protein expression in astrocytes, including decreased expression of EAAT 

proteins, resulting in decreased glutamate uptake [67–69]. These inflammatory changes 

can also result in TNFαR and AMPA and NMDA receptors activation, further promoting 

excitotoxicity [70]. IL-1R activation by IL-1β can also promote glutamate release from the 

astrocytes [71,72].

It is strongly suggested that mTOR signaling is altered in SE [73], but just recently evidence 

of upregulation of the vascular endothelial growth factor-3 (VEGF-3) -mediated mTOR 

activation in reactive astrocytes after the onset of SE was associated with the regulation 

of GLT-1 expression. This suggests that this pathway could be involved in preventing 

hyperexcitability induced by repeated seizure activity [74].

Another area that has gathered increased recognition in the pathogenesis of epilepsy is 

energy homeostasis. Proper energy sources available to neurons are needed for excessive 

neuronal discharges to happen. On the other hand, an endogenous mechanism for seizure 

termination is energy depletion during seizures. In this sense, astrocytes play a very 

important role as they can control neuronal energy homeostasis through neurometabolic 

coupling, hence, astrocyte dysfunction in epilepsy leads to bias of key metabolic and 

biochemical mechanisms, and evidence suggests that dysfunctional glutamate metabolism in 

astrocytes contribute directly to neuronal hyperexcitability [75–77]. In early epileptogenesis, 

closure of astrocyte intercellular gap junction coupling limits activity-dependent trafficking 

of energy metabolites, resulting in impaired clearance of glutamate and K+ from the 

extracellular space. Accumulation of extracellular K+ leads to neuronal hyperexcitability, 

which can result in gap junction uncoupling, a recent finding demonstrated in a study 
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using a transgenic mouse with astrocyte specific expression of a pH sensor (Lck-E2GFP), 

that established that astrocytes react to epileptiform activity with intracellular alkalization 

[78]. Additionally, the metabolism of adenosine, a metabolic product of ATP degradation 

that largely inhibits energy-consuming processes as an evolutionary adaptation to conserve 

energy, is increased by dysfunctional astrocytes.

Metabolic therapeutic approaches that prevent the utilization of glucose could represent 

an effective therapy for epilepsy, as astroglia energy homeostasis play a critical role in 

the control of neuronal excitability. In this regard, high fat low carbohydrate “ketogenic 

diets”, as well as inhibitors of glycolysis and lactate metabolism are of increasing interest as 

antiepileptic strategy [76,79].

Additionally, loss of glutamine synthetase in the human epileptogenic hippocampus was 

suggested as possible mechanism for raised extracellular glutamate in mTLE [80], as well 

as an important causative factor for glioblastoma-associated epilepsy [81]. Indeed, a recent 

study reported that selective deletion of gene for glutamine synthetase in the mouse cerebral 

cortex induces glial dysfunction with decreased levels of EAAT1 and EAAT2, and vascular 

impairment that precede epilepsy and neurodegeneration. This study suggests that abnormal 

glutamate metabolism could cause epilepsy by initially affecting glia which then results in 

disruption of the neurovascular coupling [82].

For further information on the general role of glia and neuron-glia interactions in epilepsy, 

see [4,63,64,76,83,84].

Glutamate Excitotoxicity and Epilepsy

As described above, epilepsy has been characterized by recurrent spontaneous seizures due 

to hyperexcitability and hypersynchrony of brain encephalic neurons [4,84]. Seizures occur 

with a disbalance between excitatory and inhibitory neurotransmission, and glutamate, as 

the predominant excitatory neurotransmitter in the brain, unquestionably plays a crucial role 

in both the initiation and proliferation of seizure activity and in epileptogenesis. Studies in 

the 1980s demonstrated that intracerebral injection of glutamate into experimental animals 

induced seizures [85], Later, in vivo microdialysis studies revealed increased glutamate 

levels in the hippocampus following the seizures emergence induced by pilocarpine [86]. 

Additionally, EEG and microdialysis studies of patients with epilepsy showed significant 

increases in extracellular glutamate levels in the hippocampus. These studies described 

excitotoxic glutamate concentrations of 5.9 μM before a seizure, 17.6 μM during a seizure 

onset, and 11.7 μM up to 16.5 minutes following the termination of a seizure, i.e., 2, 

6 and 4-fold increases compared to basal glutamate concentrations, respectively [87,88]. 

A study observed that SE-induced glutamate release overstimulates glutamate receptors 

and results in sustained chronic seizure activity and development of seizure-induced brain 

damage that occurs over a dynamic process [89]. This was further validated in subsequent 

studies showing that the increase in glutamate concentrations positively correlates with the 

intensity of epileptic activity [67,90], demonstrating that increased levels of extracellular 

glutamate play a role in the initiation and spreading of seizures [23]. Other studies 

established that augmented concentration of glutamate in the synaptic cleft during the 
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initial insult is associated with excitotoxicity and is remains high during epileptogenesis 

[91,92]. Furthermore, studies demonstrated that, during SE, astroglial cells are activated by 

the presence of cytokines and reactive oxygen species. This leads to decreased glutamate 

clearance, resulting in accumulation in the extracellular space and increased risk for 

neuronal excitotoxicity [71,93]. Beyond that, it was demonstrated that abnormal release 

of glutamate through a single astrocyte was able to activate increases in intracellular Ca2+ 

mediated by NMDA receptor in many neighboring neurons [23,67]. This can lead to an 

increase in intracellular Ca2+ in the astrocytes themselves, resulting in a further intensified 

release of glutamate that promotes excitotoxicity [67,69,94].

Non-NMDA receptor-mediated excitotoxicity is also relevant in the context of glutamate 

transporter suppression. Studies in cultured organotypic spinal cord slices were very useful 

to study this matter. In early studies, slow toxicity was achieved by inhibiting glutamate 

transport continuously, raising the concentration of glutamate concentration in the medium 

and resulting in degeneration of motor neurons over several weeks. This degeneration was 

prevented by non-NMDA receptor antagonists, glutamate synthesis or release inhibitors, 

but not by NMDA receptor antagonists [95,96]. Another study identified motor neurons 

to be selective sensible to calcium- permeable AMPA/kainate receptors [97]. Other study 

investigated topiramate, an anti-convulsant compound that has anti-excitotoxic properties 

by blocking AMPA- receptor evoked currents, for potential treatment of ALS. The study 

revealed that topiramate prevented motor neuron degeneration, but it did not increase 

survival in G93A SOD1 transgenic mice, an animal model of ALS, suggesting that it 

could be useful as a neuroprotectant, but were not effective in more complex motor injury 

paradigms such as the mouse model of ALS [98]. Importantly, AMPA receptors mediate fast 

synaptic excitation in brain regions pertinent to epilepsy, and AMPA receptor antagonists, 

such as perampanel, have been shown to decrease epileptiform activity in in vitro and in vivo 
studies [99].

Several studies have also indicated a causal role for excessive glutamate release by 

astrocytes and activation of mGluRs in the excitotoxic events leading to the synchronous 

firing of large populations of neurons during seizures [19,64,71,100,101].

In addition to observing that increased extracellular levels of glutamate have been associated 

with seizures and epilepsy, it is also noted that initiation of glutamatergic hyperactivity and 

seizures are facilitated by increased expression and activity of NMDA and AMPA receptors 

[8,102]. A study found that glutamate binding is altered in hippocampus and cortex of 

rats after pilocarpine-induced SE [103], and a later study using the same model expanded 

these findings and found an increase in NMDA receptor expression and altered AMPA 

receptor activity in the epileptic areas of the hippocampus [104]. Other studies demonstrated 

that an early event in SE in rats leads to an increase in surface expression of the GluN1 

subunits of NMDA receptors along with an increase of NMDA synaptic and extra-synaptic 

currents in both kainate and pilocarpine induced models of epilepsy [102,105]. Additionally, 

autopsy samples from TLE patients have also shown that there is increased expression 

of NMDA, AMPA, and kainate receptors in the epileptic foci [106]. To further support 

this, increased NMDA channel activation in the epileptic region in the frontal cortex and 

temporal lobe in patients with epilepsy were revealed by positron emission tomography 
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(PET) analysis in situ using an NMDA tracer [105,107]. Genome wide screens have also 

shown that p38 MAPK, which is activated upon the binding of glutamate to the NMDA 

receptor and can induce apoptosis [108], is overexpressed in the hippocampus of epileptic 

rats [109]. Prolonged SE as an initial insult has been shown to result in the internalization 

of GABA receptors and migration of NMDARs to neuronal synapses [110] resulting in 

further reduced inhibition and hyperexcitability [23]. Additionally, it has been found that 

SE induces posttranscriptional modifications and epigenetic changes in NMDAR subunits, 

which contribute to long-lasting changes in circuit connectivity [111].

In this context, the development of therapeutic approaches targeting NMDARs to reducing 

glutamate excitotoxicity have been proposed to prevent seizure-induced neuronal death, 

epileptogenesis, and subsequently spontaneous recurrent seizures. This potential strategy 

is reasonable, as much of the excitotoxic damage and molecular and synaptic changes 

that further propagate epileptogenesis are mediated by NMDARs [5,7,102]. Early studies 

demonstrated that NMDAR antagonist AP-V ((2R)-amino-5-phosphonovaleric acid (AP-V) 

inhibits epileptogenesis in in vitro models of epilepsy including the three-chamber and 

low magnesium models [112]. Additionally, treatment with MK-801, another NMDAR 

antagonist, was shown to impair epileptogenesis in the kindling model of epilepsy, in which 

animals are repeatedly stimulated with electrodes to activate neural pathways inducing 

increased susceptibility to evoked seizures, resulting in the progression to spontaneous 

recurrent seizures [113]. Similar results with MK-801 have also been observed in the 

kainic acid model of epilepsy [114]. Also, this treatment was shown to impair mossy fiber 

sprouting induction, a structural change to neuronal circuits that occurs during the latent 

period that promotes epileptogenesis [17]. MK-801 and ketamine treatments have also been 

shown to suppress seizures and be neuroprotective following prolonged SE in preclinical 

studies [17,115,116].

Another potential strategy to target NMDARs was demonstrated by inhibition of brain­

specific microRNA-134, which is necessary for NMDAR-dependent spine remodeling [117]. 

This resulted in very efficacious prevention of spontaneous recurrent seizures months after 

the initial SE event in mice [17,118].

However, NMDA receptor antagonists have been found to lead to on-target side effects such 

as hallucinations and dissociative effects, due to the spectrum of activities that are mediated 

by excitatory signaling and NMDA activation [119–121]. Additionally, blockage of AMPA­

receptor activity also yield in considerable adverse events, such as CNS-depressant 

side effects [122]. This suggests that other approaches for reducing glutamate-mediated 

excitotoxicity and prevent epileptogenesis should be explored.

EAAT2 and epilepsy

Many studies provide ample evidence that epileptic seizures influence the expression 

levels of EAATs (table 2). It is suggested that enhanced glutamate release and neuronal 

activity during epilepsy may result in modulation of EAATs expression. The regulatory 

processes of EAATs during epilepsy are not fully understood, but they seem to occur over 

a dynamic process that involves several factors, including compensatory mechanisms and 
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changes in ion gradients and therefore electrochemical environment associated with epileptic 

hyperactivity. Despite decades of research, there still much to know about the functional 

characteristics of glutamate transporters and their relationship with neuropathology and 

behavior of epilepsy [123].

Below we discuss knockdown studies that were pivotal for our current understand of 

the role of EAATs in epilepsy studies, as well as studies demonstrating changes in 

EAATs expression in several animal models and human epilepsies, including temporal and 

developmental differences. Table 2 summarizes these findings, and figure 2 depicts the 

human mutation studied thus far

Knock out/down studies

One of the first studies examined loss of GLAST and GLT-1 in organotypic spinal cord 

cultures using antisense oligonucleotides, which demonstrated an essential role of these 

astroglial transporters, as their loss was toxic to motor neurons. Further, this study examined 

GLAST and GLT-1 knockdown in vivo in rats, and observed increased extracellular 

glutamate concentrations, neuronal degeneration, and progressive paralysis [124]. One year 

later, remarkable studies by Tanaka’s group show that GLT-1 knockout mice experience 

spontaneous lethal seizures at 6 weeks of age and increased susceptibility to acute cortical 

injury, directly proving the involvement of astrocytic glutamate uptake in the prevention 

epileptic seizures and neuronal death [46]. These mutant mice also showed an increase 

in synaptic concentrations of glutamate and histological analysis of brains taken from 

these mice revealed neurodegeneration in the CA1 region of the hippocampus, suggesting 

that GLT-1 plays an important role in the maintenance of low extracellular glutamate 

concentrations and prevention of excitotoxicity and seizure activity.

A study analyzed conditional deletion of astrocytic or neuronal GLT-1 in mice [125]. 

Elimination of astrocytic GLT-1 resulted in 80% loss of GLT-1 protein and of glutamate 

uptake activity, excess mortality, lower body weight, and seizures, suggesting that astrocytic 

GLT-1 is of major importance. On the other hand, neuronal GLT-1 deletion resulted in 

normal survival, weight gain, and no seizures. However, the glutamate uptake capacity into 

synaptosomes was significantly reduced, suggesting a greater contribution to synaptosomal 

glutamate uptake of neuronal GLT-1 than expected [125].

Tanaka’s group recently expanded their studies to examine the consequences of GLT-1 

dysfunction in different encephalic brain regions. Region-specific GLT-1 knockout mice 

were generated by crossing floxed-GLT-1 mice with mice expressing the Cre recombinase in 

a particular domain of the ventricular zone. Selective deletion of GLT-1 in the diencephalon, 

brainstem and spinal cord was sufficient to reproduce the phenotypes of the global GLT-1 

null mice, including excess mortality, decreased body weight, and lethal spontaneous 

seizure. On the other hand, dorsal forebrain-specific GLT-1 knockout mice had nonlethal 

complex seizures including myoclonic jerks, hyperkinetic running, spasm, and clonic 

convulsions. This suggests that GLT-1 dysfunction in the dorsal forebrain is involved in 

the pathogenesis of infantile epilepsy and GLT-1 in the diencephalon, brainstem and spinal 

cord might be very important in the prevention of seizure-induced sudden death [126].
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Although this review is focused on glial transporter EAAT2, it is noteworthy to discuss 

a study on the system xc
−, a glial transporter that mediates the release of glutamate in 

the synaptic cleft in exchange for cystine and represents the key source of hippocampal 

extracellular glutamate. A genetic knockout of xCT (the specific subunit of system xc
−) 

in a Theiler’s murine encephalomyelitis model of viral-induced epilepsy observed a small 

decrease in neuronal injury, as well as increases in astrogliosis in the CA1 hippocampal 

region and in cortical EAAT2 expression, adding to our knowledge for future development 

of novel anti-seizure therapies [127].

No changes in expression

An early study in a rodent kindling model reported that GLT-1 levels remain unchanged 

[128]. Two other studies in surgically removed tissue from temporal lobe of patients with 

epilepsy found no change in EAAT2 expression [80,129].

Further studies (below) provided abundant evidence of decreased transporter expression 

in epilepsy, and some report transient increased expression of transporters, followed by 

decreased expression. Explanations for the different observations among studies may include 

differences in tissue processing, stage of epileptogenesis development or severity of the 

epileptic disease.

Increased expression

Some studies reported that glial EAATs were increased shortly after seizures, possibly 

indicating acute activation of astrocytes but decreased in the later chronic phase. In an in 
vivo model of kainic acid-induced seizures and in hippocampal organotypic slice cultures, 

decreased immunoreactivity of EAAC1 neuronal transporter was observed in hippocampal 

regions, whereas GLT-1 expression levels were increased, indicating a differential regulation 

of neuronal and glial glutamate transporters that could be playing a role in seizure induction, 

neurotoxicity and neuronal plasticity [130]. In a chronic model of epilepsy using PTZ, 

GLAST and GLT-1 expression in the hippocampus increased within 24 h of kindling, 

however, their levels returned to baseline 30 days after the last seizure [131]. In a SE model 

triggered by intrahippocampal application of kainic acid, the levels of GLT-1significantly 

increased within 24h post-SE; but decreased to lower levels than in control brains at later 

timepoints [35].

Collectively, these studies show a temporal upregulation followed by downregulation in 

these models, providing more evidence that astrocytic glutamate transporter dysregulation 

contributes to the development of epilepsy.

A recent study implicated GLT-1 dysfunction and increased extracellular glutamate levels 

in the hippocampus in a mouse model of Lafora disease, a fatal rare disease marked the 

presence of insoluble polyglucosan accumulation in brain, epilepsy and neurodegeneration.. 

In this study, the researchers found that the minor isoform of the GLT-1 gene, GLT-1b, 

was upregulated in the hippocampus, and they suggested this to be associated with 

compensatory mechanisms triggered by neuronal disturbance. Additionally, glutamate 

clearance dysfunction was observed in Lafora mice, observed by a challenge with a 

blockade of GLT-1 that resulted in these animals to be unable to clear glutamate [132].
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Decreased expression

Human patients—Several studies have reported impaired glutamate transport function 

in human epilepsy. Decreased levels of both EAAT1 and EAAT2, increased extracellular 

glutamate levels and neuron loss were observed in the epileptogenic hippocampus of 

patients with TLE both during and after seizures [67,133,134]. One study found that 

decreased levels of EAAT2 protein and alternatively spliced forms of EAAT2 were present 

in sclerotic, but not the intact parts of the hippocampus in TLE patients [135]. One study 

reported reduced expression of EAAT1 and EAAT2 in the hippocampus CA1, which the 

authors suggest may either be an adaptive response to neuronal death or a causative 

event contributing to neuronal death [67]. Another study demonstrated down regulation 

of EAAT1 and EAAT2 expression in sclerotic hippocampi, and pronounced neuronal loss 

in the CA1, whereas in the CA2 there was no decrease or even an increase in areas with 

less neuronal loss. This suggests compensatory mechanisms of the transporters in response 

to the pathology [136]. Intriguingly, significant reductions in mRNAs and protein levels of 

EAAT3 and EAAT4 in human focal epileptic brain regions were observed, with no changes 

in EAAT2 mRNA, but decreases in EAAT2 protein expression at epileptic foci, suggesting 

regional reductions in EAAT expression associated with increased local glutamate levels 

and likely contribution to both hyperexcitability and spontaneous generation of epileptic 

discharges [137].

Human mutations—In this section we will discuss human mutations identified in EAAT1 

and EAAT2 and their relationship to epileptic phenotypes. A study looked for mutations 

in SLC1A3 (the gene encoding EAAT1, see table 1) in episodic ataxia 6 (EA6), a 

neurological disease characterized by long attack duration, absent myokymia, nystagmus, 

tinnitus, and epilepsy. Mutant P290R in EAAT1 was identified, and in vitro studies 

showed decreased EAAT1 protein expression and functionality, which could contribute to 

neuronal hyperexcitability [138]. Later, the same group identified mutation C186S in a 

patient with severe episodic and progressive ataxia, migraine headache and seizures. This 

mutant had a significant reduction in glutamate uptake [139]. Another study confirmed 

that P290R mutation resulted in reduced EAAT1 cell surface expression and decreased 

glutamate uptake, and add that it resulted in increased anion currents, even though the 

transporter expression were decreased, suggesting a gain-of-function in anion conduction 

as a pathological process in EA6 [140]. A later study also determined this mutation to 

cause glial apoptosis [141]. In a Drosophila model of ataxia, this mutation disrupted 

EAAT1-mediated chloride channel, and caused astrocyte malformation and paralysis 

episodes, suggesting that the chloride channel properties of EAAT1 is correlated to the 

pathophysiological mechanisms causing dysfunction of neural circuit, which could be an 

important and novel mechanism for epilepsy [142]. A meticulous study on several mutations 

(M128R, C186S, P290R, T3128A, A329T, V393I, R499Q) expressed in heterologous cells 

observed impairments of multiple EAAT1 properties ranging from changes in transport 

function, impaired trafficking to increased protein expression [143]. Collectively, these 

genetic and functional assays studies depict a crucial role of cerebellar transporters (as 

EAAT1 is mainly expressed in the cerebellum), and therefore cerebellar function, in 

epileptogenesis, although much still needs to be unraveled.
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Regarding EAAT2 mutants, a study reported de novo mutations in SLC1A2 (gene that 

encodes EAAT2) as an important cause of epileptic encephalopathies, a group of severe 

early-onset epilepsies. These mutations include G82R and L85P, and individuals with 

such mutations had a very severe phenotype, marked by seizures beginning in the first 

week of life and profound developmental impairment, which could be associated with 

dysregulation of EAAT2 and glutamate excitotoxicity [144,145]. A recent study further 

examined recurrent de novo L85P EAAT2 variant, which was associated with early onset 

developmental and severe epileptic encephalopathy, through a dominant negative mechanism 

that decreases the expression of EAAT2 [146]. Very intriguingly, this study suggests that 

there is a critical amount of functional EAAT2 protein (somewhere between 0 and 50% of 

wild type) that correlated to seizures development. These considerations could be crucial in 

the development of therapeutics.

The mutation sites described here are also shown in the figure 2, in which the glutamate 

transporter structure was drawn based on the structure of human EAAT1 [147]. Figure 2A 

shows the 2-D structure, and 2B the three-dimensional protein structure. Transmembrane 

domains 3 and 6-8 and two hairpin loops (HP1 and HP2) form the transport domain, shown 

in green, which contains the substrate binding sites (or orthosteric site). Transmembrane 

domains 1, 2, 4 and 5 and parts of the N-terminal surrounding the central core transport 

domain form a peripheral rigid scaffold, shown in red. This is designated the scaffolding 

domain, which provides the interaction interface between three subunits of the trimer and is 

thought to facilitate “the elevator-like movement” of the transport domain. Figure 2B also 

shows an allosteric site, which was essential for the identification of allosteric modulators, 

discussed below.

Animal studies—Animal studies have also been pivotal in examining changes in EAAT 

expression in several epilepsy models. A study on chronic seizures induced by injection 

of FeCl3 into the amygdala found that glial transporters GLAST and GLT-1 were down­

regulated at 60 days in the hippocampal tissue, indicating a disturbance of glutamate 

regulation caused by the downregulation of these glutamate transporters [148]. In a model 

of amygdala-kindled rats, levels of GLAST protein were initially downregulated in the 

piriform cortex/amygdala region, and later increased in this region and in the hippocampus, 

whereas GLT-1 levels remained unchanged, suggesting differential regulation in kindling 

[149]. Downregulation of GLT-1 was also shown in pilocarpine models [104] and correlated 

with thalamic neuronal death in kainic acid-induced models of SE as well [150]. In an 

intrahippocampal kainic acid model of SE, it was observed an initial increase in GLT-1 

immunoreactivity in the hippocampus, , followed by a downregulation of GLT-1 at 4- and 

7-days post-insult, suggesting a differential transporter regulation in the pathophysiology of 

epileptogenesis [65,81]. Recently, a microarray analysis on differentially expressed genes 

in the pilocarpine induced mTLE model determined 3,232 potential genes highly correlated 

with epilepsy. The SLC1A2 gene, that encodes the human EAAT2 protein, was shown 

to be related to brain development and its expression is significantly decreased in the 

hippocampus of epilepsy patients, suggesting EAAT2 as potential biomarker of epilepsy 

[151].
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Additionally, in agreement with findings from pharmacological epilepsy models, decreased 

expression and function of GLAST and GLT-1, associated with increased levels of 

extracellular glutamate and excitotoxic neuronal death were observed in a mouse model 

of tuberous sclerosis, a genetic disorder associated with epilepsy [152,153]. Rats subjected 

to traumatic brain injury (TBI), a condition that can also lead to the development of 

epileptic seizures, also had decreased brain expression of EAAT2 [154]. Furthermore, 

the spontaneously epileptic rat (SER, a double mutant zi/zi, tm/tm), presents both tonic 

convulsions and absence-like seizures from 8 weeks of age. Decreased expression of 

EAAT1 and mGluR1 were shown in the SERs hippocampus, whereas EAAT2 is increased, 

suggesting that epileptogenesis in SER is associated with regulation of EAAT1, EAAT2 

and mGluR1 [155]. Another study found that a conditional astrocytic knock-out of mGluR5 

during epileptogenesis impairs high-frequency glutamate uptake mediated by EAAT1 and 

EAAT2, suggesting a compensatory response to glutamate dysregulation [156].

The role of astrocytes in epileptogenesis has been investigated in a study in two models: 

blood-brain barrier (BBB)-breakdown with treatment with deoxycholic acid, and direct 

exposure of the neocortex to serum-derived albumin. These insult models result in fast 

upregulation GFAP (glial fibrillary acidic protein, a marker of astrocytes), followed by 

the development of an epileptic focus within 4-7 days, and decreased clearance capacity 

for both extracellular glutamate and potassium. Frequency-dependent synaptic facilitation 

leading to seizure-like activity were confirmed by in vitro electrophysiological recordings 

during epileptogenesis. These findings suggested that during early epileptogenesis there 

was a transcription-mediated astrocytic transformation, which was accompanied by 

downregulation of EAAT2 [157]. Recently, another study reinforced the notion that BBB 

dysfunction plays an important role in epilepsy. In an endothelial Cdk5-deficient mouse 

model, the authors observed spontaneous seizures, decreased glutamate reuptake through 

GLT-1, and increased glutamate synaptic function. Ceftriaxone, a β-lactam antibiotic that 

was previously shown to increase GTL-1/ EAAT2 protein expression levels [158], was 

shown to restore GLT-1 function and to inhibit seizures, revealing a previously unknown link 

between cerebrovascular factors and epileptogenesis [159].

Recently, a study explored sex differences in a model of pilocarpine-induced-SE in mice. 

It was found that males had shorter latency to seizures and higher prevalence of SE, which 

was accompanied by more hippocampal neuronal death, glial activation, higher levels of 

inflammatory markers, and higher levels of GABA transporter 3 (GAT-3). On the other hand, 

mRNA levels of GLAST and GLT-1 were higher in female mice. These findings suggest that 

male mice are more vulnerable to SE than female mice, and importantly, these observed sex 

differences correspond to the sex differences seen in GLAST and GLT-1 mRNA expression. 

These findings can contribute to development of tailored therapies for both sexes [160].

Collectively, these studies suggest that the involvement of downregulated or dysfunctional 

GLT-1/EAAT2 in seizure onset and epileptogenesis seems to be dependent on the 

specific epileptic syndrome or animal model. Taken together, it appears that the 

expression and functional activity of glial EAATs are decreased in the chronic phase of 

epilepsy in experimental rodent models and in patients, possibly contributing to brain 

damage and epileptogenesis. However, further studies are needed to accurately determine 
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whether transporters regulation correspond to causative or compensatory changes during 

epileptogenesis.

Upregulation of EAAT2 expression as potential therapeutics

Many studies discussed above demonstrated the involvement of downregulated or 

dysfunctional GLT-1/EAAT2 in seizure onset and epileptogenesis. In the converse situation, 

several studies show that upregulation of GLT-1/EAAT2 seems to be neuroprotective 

in epilepsy models. Table 3 summarizes the studies demonstrating potential therapeutic 

strategies involving modulation of GLT-1/EAAT2 transporter.

A study successfully demonstrated that EAAT2 transgenic mice with a 1.5-2-fold 

overexpression of EAAT2 protein levels, had decreased chronic seizure frequency, mortality, 

reduced neuronal degeneration in the hippocampus after SE, and decreased SE-induced 

neurogenesis and mossy fiber sprouting in a pilocarpine-induced model of SE. This 

suggests that this strategy can be neuroprotective against SE-induced neuropathological 

changes, chronic seizure development and SE-induced death [161]. This group later 

showed that treatment with compound LDN/OSU-0212320, a pyridazine derivative they 

previously discovered that increases EAAT2 expression through translational activation, had 

neuroprotective properties in primary cultured neurons, as well in an in vivo pilocarpine­

induced TLE model [162].

Moreover, several studies examined the effects of ceftriaxone, an GLT-1/EAAT2 protein 

enhancer that acts in the transcriptional level [158,163], in epilepsy models. Ceftriaxone 

treatment restored the levels of GLT-1 in a mouse model of tuberous sclerosis, which 

was correlated with decreased hippocampal extracellular glutamate levels and reduced 

neurodegeneration [153,164]. Similarly, ceftriaxone had protective effects by reducing 

seizure activity in a traumatic brain injury-induced epilepsy [154], in a Cdk5-knockout 

model that leads to spontaneous seizures in mice [159] and in an acute mortality in PTZ 

models of epilepsy [165–167]. A combination of treatment with ceftriaxone and valproic 

acid in the PTZ rat model dose-dependently reduced seizures and enhanced motor and 

cognitive functions [168]. A recent study reported that ceftriaxone administration in a 

pilocarpine model of mTLE led to a reduction of glutamate levels, and elevation of GS 

activity and GLT-1 expression in the acute phase. However, 4 weeks after SE glutamate 

levels and GLT-1 expression were decreased, and impairment of learning and memory 

ability were attenuated of in the chronic phase of epileptogenesis [169]. It remains to be 

determined whether ceftriaxone treatment for human epilepsy is clinically translatable.

Additionally, riluzole, an FDA- approved drug for amyotrophic lateral sclerosis (ALS) [170], 

was also investigated as potentially antiepileptic. Previously, riluzole has been reported to 

decrease presynaptic glutamate release [171,172], to increase EAAT2 levels [173–176], and 

also acts as non-specific ion channel blocker [177]. A study demonstrated that riluzole 

inhibited the development of behavioral seizures in kindling acquisition [178]. Riluzole was 

also shown to enhance the anti-seizure action of conventional ASDs, namely valproate, 

phenobarbital and ethosuximide, in an mice model of PTZ-induced convulsions [179]. 

Conversely, one study raised concerns about the repurposing of riluzole for epilepsy, as it 
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was shown to be toxic when combined with neuronal hyperexcitation, in a model of infusion 

of the K+ channel blocker 4-aminopyridine (4-AP) in the hippocampus [180]. Also, riluzole 

treatment inhibited pre-ictal spikes and spike-wave discharges in the models of gamma­

hydroxybutyrate lactone (GBL)-induced absence seizure model and in the pilocarpine­

induced limbic seizure model , These findings suggest that riluzole could be developed 

as antiepileptic treatment against limbic seizure and absence seizure [181]. Collectively, 

these studies suggest that, even though riluzole has promising neuroprotective actions in 

some studies, and this action seems to be accomplished primarily by inhibiting excitatory 

neurotransmission by modulation of presynaptic release, uptake and postsynaptic activities 

of glutamate, the mechanisms behind these actions are not well understood. Therefore, 

further studies are needed before riluzole can be proposed as candidate supplementary 

therapy for epilepsy.

Another strategy to increase GLT-1 levels in vivo is through inhibition of Hsp90, which 

was shown to prevent the degradation of this transporter and to suppress spontaneous 

recurrent seizures in a rodent TLE model [182,183]. These studies suggest the possibility 

of developing therapeutics with Hsp90 inhibitors that would prevent GLT-1/EAAT2 

degradation. Such a strategy, both for TLE and other excitotoxicity-related disorders, 

warrants future investigations.

Lastly, a study reported that inhibition of p38 MAPK signaling results in increased GLT-1 

expression in the brains of rats subjected to a lithium chloride-pilocarpine epilepsy model, 

which resulted in decreased latency of the first epileptic seizure and attenuated severity 

of seizures [184]. This study suggests a potential mechanism by which GLT-1/EAAT2 

expression is upregulated, adding to our current understanding of the regulation of this 

transporter in epilepsy.

The findings described in experimental models suggest that inducing expression of EAAT2 

could be developed as a therapeutic approach to treat epilepsy and be a disease modifying 

course of treatment. However, this approach raises a concern about unknown off target 

effects in other regions of the brain due to the prevalence of EAAT2 in the brain and 

spinal cord, as well as possible regulation of various other proteins. Thus, enhancement 

of the function of EAAT2 through a direct activation of EAAT2 emerges as an alternative 

approach. In the next section, we will discuss positive allosteric modulation of EAAT2 to 

enhance transport activity, a mechanism that may serve as a novel therapeutic to provide 

neuroprotection and prevent spontaneous recurrent seizures and epileptogenesis.

Positive Allosteric Modulation of EAAT2 as potential therapeutics

While NMDA and AMPA receptor antagonists and calcium channel blockers may reduce 

glutamate excitotoxicity in epilepsy, neither approach has been sufficient in addressing the 

unmet medical need in treating epilepsy without causing serious adverse events [5,107,119].

As many studies propose that glutamate excitotoxicity is a key event in both the initial insult 

and epileptogenic process, reducing extracellular glutamate concentrations by increasing 

glutamate uptake via glutamate transporters offers promise in preventing neuronal death 
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after initial insult and preventing epileptogenesis with treatment during the latent period. 

EAAT2, as the predominant glutamate transporter in the brain [48], appears as a promising 

therapeutic target. Our lab has pursued the development of compounds that selectively target 

EAAT2. Previous studies have demonstrated that the venom P. bistriata spider stimulates 

glutamate uptake in rat brain synaptosomes [185] and the purified compound Parawixin 

1 selectively and directly enhances the activity of EAAT2 [186]. Further, mutagenesis 

studies were performed to identify the region in EAAT2 involved in transport stimulation, 

these investigations identified an allosteric site [187]. Using this knowledge, an in-silico 
approach for screening was performed using a model based on the structure of a glutamate 

transporter homologue from Pyrococcus horikoshii. This study identified molecules that 

were characterized as positive allosteric modulators (PAMs) of EAAT2 upon evaluation in 

glutamate uptake in transfected COS-7 cells [188]. We propose that the molecules interact 

with the interface between transport and scaffolding domains (shown in figure 2B), to alter 

the equilibrium between different conformations of the transporter and result in altered 

transition dynamics, ultimately resulting in increased glutamate transport. Current studies 

using functional, structural, and biophysical approaches are aimed at understanding the 

specific mechanisms that are involved in allosteric transporter modulation. Importantly, 

these compounds were subsequently shown to have neuroprotective properties in vitro 
[189]. Medicinal chemistry efforts continue to develop further lead series based on these 

compounds to optimize their drug-like properties.

Further studies with this class of compounds in in vitro and in vivo models of epilepsy 

are needed to validate their therapeutic potential in epilepsy. Nonetheless, preliminary 

experiments suggest that this class of compounds are neuroprotective and decrease calcium 

influx in primary hippocampal cultures subjected to low magnesium insults, an in vitro 
epilepsy model.

Recently, our group elucidated the chemical structure of another purified compound isolated 

from P. bistriata venom, Parawixin10. This compound is an acylpolyamine that was 

determined to be a non-selective positive allosteric modulator of glial transporters EAAT1 

and EAAT2, with in vitro neuroprotective properties [190]. In previous studies, Parawixin10 

was demonstrated to be neuroprotective and to have anticonvulsant properties in an in 
vivo model of intrahippocampal injection of NMDA [191]. In another study, pretreatment 

with Parawixin10 prevented the onset of seizures induced by kainic acid, NMDA, and 

PTZ [192]]. Another study demonstrated that chronic administration of Parawixin10 in the 

pilocarpine-induced rat model of epilepsy resulted in neuroprotection, increased the latency 

of recurrent seizures, and decreased duration and severity of seizures, with no behavioral 

deficits analyzed by the Morris water maze approach [193]. Even though it is predicted 

that Parawixin10 does not yield well to drug development, these studies served as proof 

of concept that allosteric modulation of glial transporters EAAT1 and EAAT2 may offer 

neuroprotection and anticonvulsant properties.

Further studies with selective EAAT2 PAM in several epilepsy models, and other models 

that involve glutamatergic dysfunction, will further determine whether this class of 

compounds can be developed as therapy to provide neuroprotection, to prevent spontaneous 

recurrent seizures, and to halt epileptogenesis.
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Abbreviations:

ALS
amyotrophic lateral sclerosis

AMPA
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AMPAR
AMPA receptor

APV
(((2R)-amino-5-phosphonovaleric acid; (2R)-amino-5-phosphonopentanoate)

ASDs
anti-seizure drugs

BBB
blood-brain barrier

CDC
Centers for Disease Control and Prevention

Cdk5 
Cell division protein kinase 5

CNS
central nervous system

EAAC1
excitatory amino acid carrier 1

EAATs
excitatory amino acid transporters

EAAT1-3
human excitatory amino acid transporter subtypes 1-3

EAAT2
human glutamate transporter 2

EA6
episodic ataxia 6

EEG
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electroencephalogram

4-AP
4-aminopyridine

GAT-3
GABA transporter 3

GFAP
glial fibrillary acidic protein

GAD
glutamate decarboxylase

GLAST
glutamate and aspartate transporters

GLT-1
rat glutamate transporter 1

GluN1
subunit of NMDA receptor

HP
hairpin loop

Hsp90
heat shock protein 90

IL-1β
Interleukin 1 beta

IL-1R
Interleukin-1 receptor

i.p.
intraperitoneal

LDN/OSU-0212320
3-[[(2-Methylphenyl)methyl]thio]-6-(2-pyridinyl)-pyridazine

NMDA
N-methyl-D-aspartic acid

NMDAR
N-methyl-D-aspartic acid receptor

mTLE
mesial temporal lobe epilepsy
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MRI
Magnetic Resonance Imaging

PAMs
positive allosteric modulators

PTZ
pentylenetetrazole

p38 MAPK
p38 mitogen-activated protein kinases

SE
status epilepticus

SER
spontaneously epileptic rat

TNFαR
tumor necrosis factor α receptor

VEGF-3
vascular endothelial growth factor-3

vGluT
vesicular glutamate transporter

xCT
glutamate-cystine exchangers
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Figure 1. Representation of a tri-partite glutamatergic synapse, under physiological and 
excitotoxicity conditions, leading to the development of epilepsy.
The intense seizure activity seen in SE causes excessive glutamate release resulting in 

overstimulation of glutamate receptors leading to massive influxes of Ca2+, subsequently 

triggering mass neuronal death via glutamate excitotoxicity mechanisms. Following the 

initial insult or injury there is a latent period that may last up to several years in 

which complex molecular, biochemical, and structural changes occur, including changes 

in synaptic plasticity and neuronal connectivity reorganization of neuronal networks. Within 

minutes to days following the initial insult, acute early changes include rapid alterations 

to ion channel kinetics, post-translational modifications to existing functional proteins, and 

activation of immediate early genes. Hours to weeks after the insult, subacute changes occur, 

including transcriptional events, neuronal death, and activation of inflammatory cascades. 

The chronic changes that follow over weeks to months include anatomical changes, such as 

neurogenesis, mossy fiber sprouting, network reorganization, and gliosis. These changes 

ultimately lead to neuronal networks being more susceptible to hyperexcitability and 

synchronous firing of these excitatory neurons, leading to more seizures and eventually 
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spontaneous recurrent seizures This results in the emergence of chronic epilepsies such as 

TLE. Figure created with BioRender.com.
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Figure 2. 
A. Two-dimensional membrane topology diagram of a single protomer of glutamate 

transporter, depicting eight transmembrane domains and hairpin loops, and showing the 

spatial distribution of EA6 and epileptic encephalopathies associated missense mutations: 

M128R, C186S, P290R, T3128A, A329T, V393I, R499Q in EAAT1 (in grey circles) and 

G28R and L85P in EAAT2 (in yellow circles). The scaffolding and transport domains are 

shown in red and green, respectively.

B. The tertiary structure of a single glutamate transporter protomer shown in the plane of 

the membrane, depicting scaffolding and transport domains in red and green, respectively, 

substrate and sodium binding sites (orthosteric site or OS, in yellow), a proposed 

allosteric site (AS in pink, from reference [188]), and positions of the EA6 and epileptic 

encephalopathies mutations. Structure was modelled using the crystal structure of EAAT1 

in complex with L-aspartate (PDB 5LLM, ref [147]) as template, using PyMol Molecular 

Graphic Systems, version 2.4.1, Schrodinger, LLC.

Note: Residues G82, L85 (EAAT2 numbering), M128, C186, P290 and V393 (EAAT1 

numbering) are conserved between EAAT1 and EAAT2 transporter subtypes. However, 

T318 in EAAT1 is M317 in EAAT2, A329 in EAAT1 is G328 in EAAT2 and R499 in 

EAAT1 is K498 in EAAT2.
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