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Abstract

Immune homeostasis in peripheral tissues is to a large degree maintained by the differentiation 

and action of regulatory T cells (Treg) specific for tissue antigens. Using a novel mouse model, 

we have studied the differentiation of naïve CD4+ T cells into Foxp3+ Treg in response to a 

cutaneous antigen (OVA). We found that expression of OVA resulted in fatal autoimmunity and 

in prevention of peripheral Treg generation. Inhibiting mTOR activity with rapamycin rescued 

the generation of Foxp3+ T cells. When we varied the level of antigen expression to modulate 

TCR signaling, we found that low antigen concentrations promoted the generation of Foxp3+ 

T cells whereas high levels expanded effector T cells and caused severe autoimmunity. Our 

findings indicate that the expression level of tissue antigen is a key determinant of the balance 

between tissue-reactive effector and peripheral Foxp3+ T cells, that determines the choice between 

tolerance and autoimmunity.

Introduction

Regulatory T cells (Treg) control potentially destructive responses of self-reactive effector T 

cells (Teff) and thus prevent autoimmunity (1, 2). Treg are classically divided into thymic 

Treg (tTreg), generated in the thymus, and peripheral Treg (pTreg) that arise from naïve T 

cells activated in the periphery (3–6). The latter constitute a mechanism to regulate immune 

responses towards antigens that are not present in the thymus, such as self and microbial 
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antigens (7–9). Both tTreg and pTreg are characterized by the expression of the transcription 

factor Foxp3, which drives Treg identity (10). Mutations in the FOXP3 gene in mice and 

humans lead to loss of Treg function, causing a severe autoimmune phenotype called scurfy 

(in mice) and IPEX syndrome (in humans) (1). Foxp3 induces the expression of molecules 

related to Treg function, such as CTLA-4, while suppressing expression of inflammatory 

cytokines (11, 12).

T cell fate, including Treg differentiation, is defined by the local conditions naïve T cells 

are exposed to during their activation (13–15). Costimulatory signals and the local cytokine 

milieu regulate Foxp3 expression in activated T cells and their differentiation to pTreg (5, 

16, 17). Additionally, the amount of antigen presented to naïve T cells during activation 

modulates the strength of TCR signaling and plays a major role in T cell differentiation 

(18, 19). Specifically, low antigen doses favor induction of Foxp3 in vitro, and pTreg 

generation and/or expansion in vivo in response to immunization (20, 21). Interestingly, a 

high affinity peptide administered at a low concentration induced Foxp3 expression in a 

naïve monoclonal population whereas a low-affinity agonist showed a diminished ability 

to induce a persistent Foxp3+ population in vivo (21). These studies were performed with 

administered foreign peptides and it is therefore unknown whether similar mechanisms 

govern the response to tissue antigen.

In the present study, we utilized a unique mouse model to study pTreg induction, function 

and stability in vivo. We investigated the impact of different expression levels of a transgene

encoded tissue antigen on the activation and differentiation of adoptively transferred antigen

specific naïve T cells. Understanding the mechanisms that regulate pTreg differentiation in 

response to tissue antigens could promote the development of better clinical interventions in 

inflammatory and autoimmune settings where induction of tolerance against tissue antigens 

is desirable.

Materials and Methods

Mice

All animal studies were performed in compliance with institutional guidelines in a specific 

pathogen-free facility and were approved by the Federal Ministry of Science, Research and 

Economy of Austria.

K5/rTA (22) or INV/rTA (23) and TGO (Tg(TetO-Tfrc/EGFP/OVA)#Sfz (MGI:5503055), 

TRE-OVA) mice were crossed and designated K5/TGO or INV/TGO mice. The double

transgenic K5/TGO or INV/TGO mouse lines were crossed onto TCRα−/− mice on BALB/c 

background. DO11.10 TCR-transgenic mice were crossed with Rag2−/−/CD90.1+/+ or 

Rag2−/−/CD45.1+/+ BALB/c mice as previously described (24).

Adoptive transfer of T cells and doxycycline administration

Single-cell suspensions from skin-draining (sdLNs: auricular, brachial, axillary, inguinal, 

and popliteal lymph nodes) and mesenteric lymph nodes of DO11.10/Rag2−/−/CD90.1+/+ 

or DO11.10/Rag2−/−/CD45.1+/+ mice were prepared by mechanical disruption of LNs. 0.5 

– 2 × 106 LN cells were adoptively transferred by i.v. injection into K5/TGO/TCRα−/− 
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or INV/TGO/TCRα−/− recipient mice. Cells were stained with 10 μM CFSE where 

indicated. Doxycycline (dox) (Sigma-Aldrich) was administered in the drinking water in 

concentrations ranging from 1200 – 1.2 μg/mL in a sterile 5% sucrose solution. Dox 

treatment started a day before the transfer of DO11.10/Rag2−/− cells and mice were 

maintained on dox for the duration of the experiments.

Evaluation of skin disease

A 15-point clinical scoring scale was used to quantify skin disease. The clinical parameters 

of scaling, alopecia, erythema, level of activity, and periocular inflammation were each 

given a score of 0–3. Scores for individual clinical parameters were summed for each mouse.

Rapamycin treatment

Mice received daily i.p. injections of 1 μg/g of body weight of rapamycin (Selleckchem; 

2 mM stock solution stored in ethanol) dissolved in PBS starting one day before adoptive 

transfer of DO11.10/Rag2−/− cells.

Cell isolation from the skin

Skin from the tail, ears and shaved trunk was minced and digested for 45 min in 4 mL 

C10 medium with an enzyme mix containing collagenase XI, hyaluronidase, and DNase in 

supplemented RPMI medium as previously described (7). The cell suspension was filtered, 

washed, and stained for flow cytometry.

Restimulation for intracellular cytokine staining

Single-cell suspensions from sdLNs were stimulated with 70 ng/ml phorbol-12

myristate-13-acetate and 700 ng/ml ionomycin for 3 hours in C10 medium, with 20 μg/mL 

brefeldin A added for the last 2 h. Cells were washed with PBS before staining for flow 

cytometry.

Flow cytometry staining and evaluation

For flow cytometry staining 2×106 freshly isolated or in vitro restimulated single-cell 

suspensions from LNs or skin were stained using the Foxp3 staining kit (eBioscience) 

according to the manufacturer’s instructions. For the detection of phosphorylated S6 sdLNs 

were mechanically disrupted in PBS containing 1.6% paraformaldehyde and fixed for 10 

mins at room temperature. The cells were permeabilized by adding 4 volumes of ice-cold 

methanol and stored at −80 °C. Cells were stained in PBS with 0.5% BSA. Phosphorylated 

molecules were stained in a two-step staining (using biotin and streptavidin).

Data were acquired on FACSCanto (BD Biosciences) flow cytometer and analyzed using 

FlowJo software (Tree Star, Inc.). The following gating strategies were applied: cells were 

gated on live, singlets, and DO11.10 T cells were defined by gating on CD4, KJ1–26, 

CD90.1 or CD45.1 (as stated in the Figure legends) and Foxp3- or Foxp3+, for Teff and Treg 

cells, respectively. When data was combined from measurements on different days it was 

normalized to naïve Foxp3+ tTreg isolated from DO11.10+ Rag2-sufficient mice and stained 

alongside pTreg according to the resolution metric:
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MedianFluorescenceIntensity (sample ) − MedianFluorescenceIntensity naiveFoxp 3+tTreg

robustSD (sample ) + robustSD naiveFoxp 3+tTreg

RNA isolation and RT-PCR

Total RNA was isolated from the trunk skin using RNeasy plus mini kit (Qiagen, 74134) 

combined with a gDNA eliminator column and an on-column DNAse treatment. RNA 

(0.3–1 μg) was used for reverse transcription with the high capacity iScript™ reverse 

transcription super mix for RT qPCR (Biorad). qPCR assay was performed on a Rotor Gene 

using the GoTaq qPCR master mix 2X (Promega). HPRT expression was used as internal 

housekeeping control.

Primer sequences were: Mouse HPRT1 (forward: GTCCCAGCGTCGTGATTAGC 

reverse: GAGCAAGTCTTTCAGTCCTGTCC); TGO (forward: 

TGAAAAACTGACTGAATGGACCA, TGO reverse: TGCTGACCCTACCACCTCTC).

Statistical analysis

Statistical analysis of results was performed using GraphPad Prism Version 8.0. For 

comparison of two groups two-sample t or Mann Whitney test was used and for more than 

two groups, one-way ANOVA with Tukey’s multiple comparisons test or Kruskal-Wallis 

test with Dunn’s multiple comparisons test was used. Error bars indicate means ± SD. 

Denotation of asterisks is the following: * for p ≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001 

and **** for p ≤ 0.0001. For Fig. 4C we applied a linear regression model to the curves 

after the dose shift and asked whether the slopes were different from each other using an 

ANCOVA equivalent test using GraphPad Prism.

In all plots individual animals are represented by individual symbols.

A detailed list of antibodies and reagents can be found in supplemental table S1.

Results and Discussion

Absence of pTreg generation in INV/TGO mice correlates with lethal autoimmunity

We previously demonstrated that an endogenous skin antigen can promote pTreg generation 

and protect from autoimmune skin disease. For these studies we utilized a tetracycline

inducible system for the expression of a membrane bound GFP-OVA fusion protein, 

designated TGO, under the control of the keratin 5 promoter (K5) expressed in the basal 

cell layer of the epidermis of transgenic mice (K5/TGO) and we followed adoptively 

transferred naïve OVA-specific CD4+ T cells (DO11.10) in vivo (scheme Supplemental 

Fig. 1A) (7, 24). As previously described, adoptive transfer recipients developed cutaneous 

inflammation that quickly resolved, and resolution was associated with the development of 

OVA-specific Foxp3+ pTreg (7, 24). However, we observed a lethal autoimmune phenotype 

when we used the same adoptive transfer model but expressed OVA under the control of the 

involucrin promoter (INV) in the upper layers of the epidermis (INV/TGO). These animals 

developed progressive inflammation and had to be euthanized within 22–50 days after 
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adoptive transfer, due to disease progression without resolution (Fig. 1A, B). A significantly 

higher fraction of DO11.10 cells isolated from the sdLNs of INV/TGO mice expressed 

the proliferation marker Ki67 compared to K5/TGO recipients and significantly more T 

cells produced the effector cytokine IFN-γ in INV/TGO mice (Fig. 1C, D). In addition, no 

Foxp3+CD25+ pTreg were generated in INV/TGO recipients whereas a sizeable fraction of 

DO11.10 cells within K5/TGO mice developed into pTreg (Fig. 1E, and (7)).

mTOR signaling regulates de novo expression of Foxp3 in peripheral T cells responding to 
tissue antigen

It is well known that the PI3K/Akt/mTOR network, activated downstream of the TCR, 

regulates many metabolic and cell differentiation processes and plays a pivotal role in 

Teff cell differentiation choices via metabolic adaptation (25–30). Additionally, rapamycin 

(rapa), an immunosuppressive drug that preferentially inhibits the mTORC1 complex (31, 

32), has been utilized to generate Foxp3+ iTreg from naïve T cells in vitro (33) or expand 

tTreg in vivo. However, few studies investigated de novo expression of Foxp3 by naïve T 

cells in the periphery using rapa (34).

Strong T cell proliferation and lack of Foxp3 induction in INV/TGO mice (Fig. 1C, E) 

would be consistent with high mTOR activity. To test the role of mTOR, we administered 

rapa to the recipients of naïve DO11.10 cells (scheme Supplemental Fig. 1B). 18 of 23 

(78%) rapa treated mice did not show signs of clinical disease and survived long-term 

beyond the duration of rapa treatment, while 13 of 16 (81%) of the vehicle treated mice 

succumbed to autoimmunity (Fig. 2A). Rapa treatment inhibited T cell expansion (Fig. 

2B), an effect that has been observed before (35) and which may impact clinical disease. 

However, most notably in rapa treated mice, Foxp3+ T cells differentiated from naïve T cell 

precursors upon encountering cutaneous antigen. Foxp3+ T cells could be detected in the 

blood (Supplemental Fig. 1C, D), sdLNs, and the skin (Fig. 2C, D and Supplemental Fig. 

1E). Importantly, once generated Foxp3+ T cells were maintained over time and could be 

readily detected after up to 10 weeks (i.e. 8 weeks after rapamycin was discontinued) in the 

face of continued exposure to the tissue antigen for the duration of the experiment (Fig 2C, 

D).

Concentration of tissue antigen affects T cell activation and differentiation in vivo

We next aimed to study the endogenous regulation of mTOR activity by the dose of cognate 

antigen. We hypothesized that high levels of antigen sensed by the TCR lead to high mTOR 

activity and lack of Treg generation in INV/TGO mice. To test this, we modulated the levels 

of tissue antigen expressed under the control of a tetracycline-responsive element by varying 

the dose of the tetracycline analog, doxycycline (dox). By RT-PCR analysis we found that 

INV/TGO mice displayed about 50-fold higher TGO mRNA expression in the skin than 

K5/TGO mice (Fig. 3A), and the amount of TGO mRNA expressed by the keratinocytes 

could be reduced in a dose dependent manner with doses of dox ranging from 1200 to 1.2 

μg/mL in the drinking water. We further found that TGO mRNA levels correlated with the 

activity of mTOR pathway measured by phosphorylation of the ribosomal protein S6, a 

downstream target of mTORC1 (29, 31), in DO11.10 cells 48–96 hours after adoptive (Fig. 

3B and Supplemental Fig. 2A).
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We found that DO11.10 T cell proliferation, measured by CFSE dilution 4 days after 

transfer, correlated with the titrated antigen levels (Fig. 3C, D). The expression of activation 

markers and IFN-γ was similarly dependent on the dose of dox (Supplemental Fig. 2B, C).

Mice that received reduced doses of dox developed little clinical disease (Fig. 3E) and in line 

with the dose-dependent activation of responding T cells, the absolute numbers of DO11.10 

cells isolated from the sdLNs of INV/TGO recipients at low doses of dox were comparable 

to the K5/TGO model (Fig. 3F). Most importantly, at lower antigen doses in INV/TGO 

recipients, Foxp3+ T cells were detectable in the periphery (Fig. 3G, H) similar to animals 

treated with rapa, which permitted expression of Foxp3 even at high antigen concentration 

(Fig. 2D). Thus, de novo Foxp3 expression in peripheral T cells can be achieved through 

expression of endogenous tissue antigen at low levels.

Foxp3+ T cells induced by low dose of tissue antigen are stable

Treg generated from naïve T cells can be insufficiently functional or lose Foxp3 expression 

upon inflammatory challenge thus converting into Teff cells (36). To investigate whether 

Foxp3+ T cells generated at permissive doses of dox (12 and 1.2 μg/mL) in the INV/TGO 

model were functional and stable, we first interrogated their phenotype by flow cytometry. 

The in vivo generated Foxp3+ T cells expressed the canonical Treg markers GITR and 

CTLA-4 (Fig. 4A, B). The expression of these molecules was even higher than that of naïve 

thymic Treg (Fig. 4A).

To functionally test the suppressive activity and stability of Foxp3+ T cells generated at 

permissive doses, we challenged these cells by increasing the dose of dox to 1200 μg /mL 

after 35 days of low dose exposure. At the same time, we adoptively transferred a second 

bolus of congenically marked naïve DO11.10 cells (scheme Supplemental Fig. 1F) which 

cause lethal disease at the high dose of dox (Fig. 3E). Recipients without Foxp3+ T cells 

from the first bolus were not protected from autoimmunity (0% survival at initial dose of 

120 μg dox/mL), while 33%, 3/9 animals, survived in hosts where the first bolus of DO11.10 

cells was primed at 12 μg dox/mL and 100% survived after receiving 1.2 μg dox/mL in 

the initial dox treatment (Fig. 4C). In line with reduced or absent disease, Foxp3+ T cells 

generated from the first bolus of DO11.10 cells in response to low dose tissue antigen (12 

and 1.2 μg dox/mL dox) retained Foxp3 expression in vivo and could be recovered from the 

sdLNs as well as from the skin up to 8 weeks after increasing the dose of dox and exposing 

T cells to high levels of antigen (Fig. 4D, E).

Taken together, using a system in which de novo expression of Foxp3 can be studied in 
vivo in the absence of any potentially confounding impact of expanding tTreg (37), we show 

that reducing antigen-induced signals in T cells is permissive for the development of Foxp3+ 

T cells in the periphery. Although similar conclusions have been reached using titrated 

administration of foreign antigens (with and without rapamycin) and by in vitro studies 

(20, 21, 33), we now show that Foxp3 expression is induced in response to low levels of 

endogenous tissue antigen in vivo. Our results also show that Foxp3+ T cells induced under 

conditions of limiting TCR signals are stable in vivo long-term. These findings suggest that 

this approach may be beneficial in protocols for therapeutic tolerance induction to treat 

autoimmunity.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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dox doxycycline

Foxp3 forkhead boxP3

GITR glucocorticoid-induced TNFR-family-related gene

INV involucrin

IPEX syndrome Immune dysregulation, polyendocrinopathy, enteropathy, 

X-linked syndrome

K5 keratin 5

mTOR mammalian target of rapamycin

rapa rapamycin

(sd)LN (skin-draining) lymph node

Teff cells effector T cell

TGO TGO construct encodes a fusion protein linking the 

transferrin receptor transmembrane domain, GFP, and aa 

230–359 of chicken OVA

tTreg or pTreg thymic or peripheral regulatory T cell
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Key points:

Expression level of tissue antigen determines the fate of responding T cells in vivo

Rapa rescues the generation of peripheral Foxp3+ T cells even at high antigen dose

Low level of endogenous tissue antigen differentiates stable Foxp3+ T cells in vivo
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Figure 1: INV/TGO mice developed a lethal autoimmune disease in contrast to the self-resolving 
disease in the K5/TGO model.
OVA expression in the skin was induced by 1200 μg dox/mL and 0.8–1×106 LN cells 

from DO11.10 Rag2−/− animals were transferred to K5/TGO or INV/TGO mice. (A) 

Representative pictures of K5/TGO and INV/TGO mice at the height of disease (15 and 

32 days after transfer, respectively). (B) Clinical disease course over the duration of the 

experiment (representative of 3 experiments, N ≥ 8/group in total). (C, D) sdLNs were 

analyzed by flow cytometry 22–57 days after transfer. Graphical summary of the Ki67 

expression and IFN-γ production by live gated CD4+Foxp3-DO11.10-TCR+ Teff cells. 

Cumulative data from 4 experiments, N ≥ 8/group. (E) Representative flow plots of Foxp3 

and CD25 expression by live gated CD4+DO11.10-TCR+ T cells in the sdLNs of recipient 

animals 22 days after transfer. Mean and SD is shown.
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Figure 2: High mTOR activation inhibits pTreg generation in INV/TGO mice.
OVA expression in the skin was induced with 1200 μg dox/mL and 0.5–0.9×106 LN cells 

from DO11.10 Rag2−/− animals were transferred into INV/TGO mice. Starting a day before 

adoptive transfer, mice were treated with either rapamycin (1 μg/g of body weight) or 

vehicle i.p. injections daily for 16 days. (A) Clinical disease course over the duration of the 

experiment (representative of 4 experiments, N ≥ 16/group in total). (B) Absolute number of 

recovered DO11.10 cells from sdLNs between 41–89 days. (C) Representative flow plots of 

DO11.10 cells recovered from sdLNs or skin (67 and 89 days after transfer in vehicle and 

rapa treated groups, respectively). (D) Percentages of Foxp3+ DO11.10 cells recovered from 

the sdLNs (top) and the skin (bottom) between days 41–67 (vehicle) and 71–89 (rapa). B, D 

show Cumulative data from 4 experiments, N ≥ 8/group. Mean and SD is shown.
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Figure 3: T cell activation and differentiation depends on dose of tissue antigen in INV/TGO 
mice.
OVA expression was induced by the indicated doses of dox (1200 – 1.2 μg/mL) and 0.9–

2×106 CFSE-labeled (A-D) or 0.8–1×106 unlabeled (E-H) LN cells from DO11.10 Rag2−/− 

mice were transferred to K5/TGO or INV/TGO mice. (A) TGO mRNA expression in the 

skin analyzed by RT-PCR 2–4 days after dox administration. (B) sdLNs were isolated after 

2–4 days, immediately fixed ex vivo and pS6 stained for flow cytometry. The Median 

fluorescence intensity (MFI) of pS6 in transferred DO11.10 cells is plotted (representative 
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of 2 experiments, N ≥ 4/group in total). (C, D) Representative overlay of the CFSE dilution 

and summary graph of the MFI of CFSE in live DO11.10 cells in the sdLNs after 2–4 

days (representative of 2 experiments, N ≥ 4/group in total). (E) Clinical disease course 

over the duration of the experiment (representative of 2 experiments, N ≥ 5/group in 

total) (F) Absolute number of live CD4+ DO11.10 cells in sdLNs after 22–57 days. (G) 

Representative flow plots of the expression of Foxp3 and CD25 by live CD4+ DO11.10 cells 

from sdLNs 46 days after transfer. (H) Percentages of live CD4+ Foxp3+ DO11.10 cells in 

the sdLNs after 22–57 days. F-H show cumulative data from 4 experiments, N ≥ 4/group. 

Mean and SD is shown.
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Figure 4: Low dose of tissue antigen favors the generation of stable Foxp3+ cells.
(A and B) OVA expression was induced by the indicated doses of dox (1200, 12, 1.2 μg/mL) 

and 0.875–1×106 LN cells from DO11.10 Rag2−/− mice were transferred to K5/TGO or 

INV/TGO mice. Cells were isolated from sdLNs between 22–57 days after transfer. (A, 
B) Representative overlays (on day 50) and summary graphs displaying the intracellular 

expression of CTLA-4 (left) or the surface expression of GITR (right) by Foxp3+ DO11.10 

cells compared to naïve Foxp3+ tTreg and Foxp3- cells isolated from DO11.10+ Rag2

sufficient mice (all populations gated on live CD4+ DO11.10+). Cumulative data from 
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3 experiments, N ≥ 3/group. (C, D and E) OVA expression in the skin was induced 

by different doses of dox (120 – 1.2 μg/mL) and 0.5–0.9×106 LN cells from DO11.10 

Rag2−/−CD90.1+/+ mice were transferred into INV/TGO mice. On day 35, 0.9 ×106 LN cells 

from DO11.10 Rag2−/−CD45.1+/+ mice were transferred into the mice as a second bolus and 

the dose of dox was shifted to 1200 μg/mL for all groups. (C) Clinical disease course over 

the duration of the experiment (N ≥ 2/group). The slopes of the curves after the dose shift 

are significantly different (p= 0.0004). Survival was determined by day 54 after transfer. (D) 

Representative flow plots of the CD90.1+/+ DO11.10 population (i.e. first bolus) isolated 

from sdLNs or skin 56–90 days after transfer (from left to right). (E) Percentages of Foxp3+ 

cells of CD90.1+/+ DO11.10 cells isolated from the sdLNs (left) and the skin (right) 56–90 

days after transfer. Cumulative data from 3 experiments, N ≥ 3/group. Mean and SD is 

shown.
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