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Abstract: Diffuse correlation spectroscopy (DCS) is a non-invasive optical technology for
the assessment of an index of cerebral blood flow (CBFi). Analytical methods that model the
head as a three-layered medium (i.e., scalp, skull, brain) are becoming more commonly used to
minimize the contribution of extracerebral layers to the measured DCS signal in adult cerebral
blood flow studies. However, these models rely on a priori knowledge of layer optical properties
and thicknesses. Errors in these values can lead to errors in the estimation of CBFi, although the
magnitude of this influence has not been rigorously characterized. Herein, we investigate the
accuracy of measuring cerebral blood flow with a three-layer model when errors in layer optical
properties or thicknesses are present. Through a series of in silico experiments, we demonstrate
that CBFi is highly sensitive to errors in brain optical properties and skull and scalp thicknesses.
Relative changes in CBFi are less sensitive to optical properties but are influenced by errors in
layer thickness. Thus, when using the three-layer model, accurate estimation of scalp and skull
thickness are required for reliable results.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Adequate cerebral blood flow (CBF) is critical for the delivery of oxygen and nutrients necessary
to maintain neuronal health and function. Quantification of CBF can provide a biomarker that
can aide in diagnosis, management, and prognosis, particularly in the context of brain injury and
diseases associated with ischemia or inadequate cerebrovascular autoregulation [1,2].

Diffuse correlation spectroscopy (DCS) is an optical modality that can be used to quantify an
index of cerebral blood flow (CBFi, cm2/s) non-invasively at the bedside. In DCS, a coherent
near-infrared source is placed on the forehead, and a photon counting detector is placed some
distance away to detect temporal fluctuations in the intensity of multiply scattered reflected light.
These measured fluctuations are traditionally related to an index of blood flow in the underlying
tissue by modeling the head as a semi-infinite, homogeneous medium [1,2]. Unfortunately, this
gross oversimplification of the head geometry can lead to significant signal contamination from
extracerebral (skull/scalp) layers, particularly when the depth to the brain is non-negligible [3–7].
To minimize extracerebral signal contributions, multiple studies have highlighted the importance
and validated the accuracy of multi-layered models that approximate the head as a series of
infinite slabs to separate cerebral signal contributions from extracerebral artifacts [3,4,8–11].

Multi-layered models rely on a priori knowledge of layer optical properties and thicknesses to
estimate blood flow within each layer. In theory, layer optical properties (namely, the absorption
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and reduced scattering coefficients) can be measured with near-infrared spectroscopy (NIRS),
and scalp and skull thickness can be assessed from anatomical images obtained via Magnetic
Resonance or Computed Tomography [4,10]. In reality, these measures are often not readily
available. Thus, optical properties and layer thickness are most commonly assumed from
literature. Unfortunately, errors in these assumed values can lead to appreciable errors in the
estimation of brain blood flow. Indeed, when using the two-layer model wherein the head is
modeled as a cerebral (gray and white matter) and extracerebral (skull, scalp, cerebrospinal
fluid) layer, Gagnon et al. demonstrated that errors in the assumed absorption coefficient of
the cerebral layer as well as errors in the thickness of the extracerebral layer can significantly
confound estimations of CBFi [3].

Although a handful of publications have utilized a two-layer model of the head, recent work
suggests that a three-layer model that accounts for scalp, skull, and brain provides a superior fit to
measured DCS data and is able to more accurately estimate brain blood flow [4,10]. While it is
assumed that the three-layer model would be similarly susceptible to the confounding influences
of errors in optical properties and layer thickness as seen by Gagnon et al. in the two-layer
model [3], the magnitude of these confounds has yet to be determined. Herein, we investigate the
sensitivity of both CBFi and relative changes in CBFi (rCBFi) to inaccuracies in layer optical
properties and thicknesses when fitting DCS data to the three-layer solution of the correlation
diffusion equation. We hypothesize that while errors in optical properties and layer thickness will
significantly confound estimations of CBFi, relative changes in CBFi will be largely insensitive
to these errors. To test this hypothesis, we employ a series of in silico experiments wherein
data is simulated with either the three-layer slab model or Monte Carlo simulation of photon
propagation in a realistic human head geometry.

2. Methods

2.1. Three-layer analytical model simulations

The flow chart of our overall experimental protocol is outlined in Fig. 1. To investigate the
influence of inaccuracies in layer optical properties and thicknesses on the estimations of CBFi
and rCBFi, we first simulated data across a wide range of physiologically-relevant layer optical
properties, thicknesses, and flow indices using the three-layer solution to the correlation diffusion
equation. We next fit these simulated data using assumed optical properties and layer thicknesses
that differed from the "true", i.e., simulated, values to obtain an estimate for scalp and cerebral
blood flow indices. Finally, we calculated the percentage error between the estimated and true
values of CBFi, and we also investigated errors between estimated and true rCBFi. Below we
detail these experimental steps.

Data simulation In practice, accurate estimation of layer optical properties and thickness is
challenging; thus, values for these parameters are typically assumed from literature. However, the
true values for any given subject are likely off from these assumed values. To simulate this typical
experimental reality, we first compiled a range of optical properties in the near-infrared range and
skull/scalp thicknesses that have previously been reported for the adult human head (Table 1)
[12–20]. We independently explored the influence of each parameter in Table 1 by manipulating
one parameter at a time and holding all others constant at the middle of the reported ranges. For
each parameter, we sampled 11 evenly spaced values within the reported range. For each of these
11 values, we simulated 12 evenly spaced values of CBFi ∈ [2e-8, 9e-8] cm2/s [10,21] and 6
values of scalp blood flow index (SBFi) ∈ [1/8, 1/3]×CBFi [22–26]. For each of these parameter
combinations, normalized field autocorrelation functions g1(r, τ) were simulated at 1 and 2.5
cm, which are commonly used source-detector separations in other DCS studies [21,27–30].
This data was then converted to an intensity autocorrelation function, g2(r, τ), using the Siegert
relation with β = 0.5 [31]. Thus, in total, we simulated 12,672 g2(τ) curves (8 parameters × 11
values/parameter × 12 CBFi × 6 SBFi × 2 separations = 12,672).
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Fig. 1. Flow chart of experimental protocol. First, we simulated g1(τ) at 1 and 2.5 cm
for a wide range of physiologically relevant layer optical properties and thicknesses using
the three-layer solution to the correlation diffusion equation. Next, simulated data were
simultaneously fit for SBFi and CBFi using the three-layer model with assumed optical
properties/thicknesses. Finally, we assessed the accuracy of both CBFi and relative changes
of CBFi by comparing the estimated and true CBFi and rCBFi.

Table 1. Optical properties (µa and µ′s) and thickness (L) for scalp, skull, and brain. For each
parameter, we report the range of values that we simulated, the value we assumed when fitting

simulated data, and the range of error between simulated and assumed values.

µa µ′s L
Range
(cm−1)

Assumed
value (cm−1) % Error

Range
(cm−1)

Assumed
value (cm−1) % Error Range (cm)

Assumed
value (cm) % Error

scalp 0.05, 0.15 0.10 −33, 100 8,12 10 −16, 25 0.15, 0.53 0.34 −36, 127

skull 0.05, 0.15 0.10 −33, 100 8,12 10 −16, 25 0.35, 1.10 0.73 −34, 107

brain 0.05, 0.25 0.15 −33, 200 2,6 4 −33, 100 ∞

Data were simulated using the three-layer solution to the correlation diffusion equation for the
normalized electric field autocorrelation function, g1(r, τ), at delay time τ and source-detector
separation, r [8]:

g1(r, τ) =

∫ ∞

0 G̃0
1(s, τ)sJ0(sr)ds∫ ∞

0 G̃0
1(s, 0)sJ0(sr)ds

, (1)

where J0 is zero order Bessel function, and

G̃0
1(s, τ) =

numerator
denominator

,
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numerator = β1D1 cosh(β1(L1 − zs))[β2D2 cosh(β2L2) + β3D3 sinh(β2L2)]

+ β2D2[β3D3 cosh(β2L2) + β2D2 sinh(β2L2)] sinh(β1(L1 − zs)),
denominator = β2D2 cosh(β2L2)[β1(D1 + β3D3z0) cosh(β1L1)

+ (β3D3 + β
2
1D1z0) sinh(β1L1)]

+ sinh(β2L2)[β1(β3D1D3 + β
2
2D2

2z0) cosh(β1L1)

+ (β2
2D2

2 + β
2
1β3D1D3z0) sinh(β1L1)].

Here, Li is the thickness of layer i, z0 = 1/(µa,1 + µ
′
s,1), zs = 1/µ′s,1, and βi = s2 + 3µa,iµ

′
s,i +

6µ′2s,ik
2
0,iPi⟨∆r2

i (τ)⟩, µa,i and µ′s,i are the absorption and reduced scattering coefficients of layer i,
k0,i is the wave number of layer i (k0,i = 2πni/λ, where λ is wavelength of light, ni is the reflect
index of layer i), Pi is the probability of scattering off of a moving scattering in the layer i (set to
1 for these simulations), and ⟨∆r2

i (τ)⟩ is the mean-square displacement of the moving scatters in
layer i, which we assume takes the form of Diτ, where Di is the effective diffusion coefficient
(cm2/s) of layer i. Herein, we assumed layer 1 was scalp, layer 2 was skull, and layer 3 was brain.
We assumed flow dynamics in the skull layer were negligible, i.e., D2 = 0. We define scalp blood
flow index (SBFi) as D1 and cerebral blood flow index (CBFi) as D3.

Estimating CBFi and rCBFi Each simulated data set (consisting of g2(τ) at r =1 and 2.5cm)
was fit to Eq. (1) for CBFi and SBFi simultaneously using a single cost function:

χ2 =

Nr∑︂
j=1

Nτ∑︂
k=1

[g2(rj, τk, CBFitrue, SBFitrue) − g2(rj, τk, CBFiestimated, SBFiestimated)]
2

Here Nr is the number of detectors (2 for our simulations) and Nτ is the number of τs. We
minimized χ2 using fminsearchbnd [32] in MATLAB (Mathworks) with bounds for both CBFi
and SBFi ∈ [1e-11,1e-6] cm2/s. For these fits, we assumed fixed values for µai, µ′si and Li reported
in Table 1.

Because DCS is often used to measure relative changes in cerebral blood flow, we also used
our simulated data set to estimate relative changes in CBFi (rCBFi). We define rCBFitrue =

(CBFitrue − CBFi0)/CBFi0 × 100%, where CBFi0=5.2e-8 cm2/s. This choice of baseline CBFi,
which led to a simulated range of rCBFitrue ∈ [−61, 74]%, was chosen somewhat arbitrarily, as we
found that the choice of baseline does not influence our findings (see Appendix 1). We also define
rCBFiestimated = (CBFiestimated − CBFiestimated,0)/CBFiestimated,0 × 100%, where CBFiestimated,0 is
the value obtained by fitting the simulated data at CBFi0.

Finally, we evaluated the accuracy in CBFi and rCBFi. For each simulated dataset, the
percentage error in CBFi was defined as (CBFiestimated − CBFitrue)/CBFitrue × 100%. The error
in the rCBFi was calculated as rCBFiestimated − rCBFitrue.

2.2. Monte Carlo simulations with a realistic human head geometry

To confirm the results from our three-layer slab simulations, we next performed voxel-based
Monte Carlo (MC) simulations [33] using a realistic MRI-based human head atlas from BrainWeb
[34,35]. This atlas is segmented into five tissue types: scalp, skull, cerebrospinal fluid (CSF),
gray matter, and white matter. For our purposes, we merged CSF, gray matter, and white matter
into one tissue type that we refer to herein as brain. The overall experimental protocol for the
MC simulated data followed that outlined in Fig. 1; however, instead of using the three-layer
model to simulate data, simulations were performed with Monte Carlo eXtreme (MCX) [33]
with the head atlas geometry. As in the three-layer simulations, we independently explored the
influence of µa and µ′s of scalp, skull, and brain layers by manipulating one parameter at a time
and holding all others constant at the middle of the literature-reported ranges (Table 1). Unlike
the three-layer simulations, we did not simulate a range of scalp and skull thickness given the
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fixed anatomy of the head atlas. In total we performed 66 simulations with MCX (6 parameters
× 11 values/parameter). For these simulations, the anisotropic factor (g) and index of refraction
(n) were set to 0.89 [33] and 1.4 [36], respectively, for all layers. Five hundred million photons
were launched from a 1 mm diameter source positioned over the right frontal cortex. Detectors
(1 mm in diameter) were placed 1 and 2.5 cm from the source. Because MCX limits the total
number of detected photons per simulation to 1 million, simulations were run separately for each
source-detector separation to ensure a sufficient number of photons were detected by the 2.5 cm
detector.

For each detected photon, MCX records the total pathlength traveled and total number of random
walk steps. This information was used to calculate the unnormalized electric autocorrelation
function G1(r, τ) [37],

G1(r, τ) =
1

Np

Np∑︂
n=1

exp(
Ntis∑︂
i=1

−
1
3

Yn,ik2
0⟨∆r2(τ)⟩i)exp(−

Ntis∑︂
i=1
µa,iLn,i). (2)

Here Np is the number of detected photons at separation r, Ntis is the number of tissue types (3
for our simulations), Yn,i is the dimensionless momentum transfer for the nth photon in the ith
tissue type, Ln,i is the total path length of nth photon in ith tissue type, and µa,i is the absorption
coefficient of the ith tissue type. As in our three-layer simulations, we assumed the mean square
displacement of the ith layer (⟨∆r2(τ)⟩i) took the form of 6Diτ, where Di is the effective diffusion
coefficient of the ith layer. As in the three-layer simulations, we simulated 12 values for CBFi
(i.e., D3) ∈ [2e-8, 9e-8] cm2/s and 6 values of SBFi (i.e., D1) ∈ [1/8, 1/3]×CBFi. We assumed
blood flow in the skull is negligible, i.e., D2 = 0 [25,38]. Thus, in total, we simulated 864 G1(τ)
curves (6 parameters × 12 CBFi × 6 SBFi × 2 separations = 864). Each simulated G1(r, τ) was
normalized to G1(r, 0), and then the Siegert relationship with β=0.5 was used to estimate g2(r, τ)
[31].

Simulated data sets were fit to Eq. (1) for CBFi and SBFi using assumed layer optical properties
(Table 1) and measured layer thickness (Lscalp=0.6 cm and Lskull=0.6 cm). Error in CBFi and
rCBFi were calculated as in Section 2.1.

3. Results

3.1. CBFi is most sensitive to layer thicknesses and brain optical properties

For all 72 CBFi and SBFi combinations tested, we found that inaccuracies of the absorption and
reduced scattering coefficients in both the scalp and skull layers have a negligible influence on
the estimation of CBFi (average error < 10%, Fig. 2(a,b)). However, inaccuracies of µa and µ′s of
the brain layer can significantly affect the accuracy of CBFi. Specifically, we found the error in
CBFi is approximately linearly proportional to errors in brain µa and inversely proportional to
errors in brain µ′s. Further, we found that CBFi is highly sensitive to inaccuracies in both scalp
and skull thickness (Fig. 2 c). On average, error in CBFi increases monotonically with error in
skull thickness, while errors in scalp thickness always lead to an overestimation of CBFi.

3.2. Relative changes in CBFi are sensitive to layer thickness

In contrast to CBFi, relative changes in CBFi are insensitive to errors in µa and µ′s of all layers
(average error < 10%, Fig. 3(a,b)). However, rCBFi can be significantly influenced by errors in
layer thickness. While on average, the error in rCBFi as a function of error in assumed skull/scalp
thickness is small, there is a large standard deviation across samples of varying rCBFi/rSBFi
(Fig. 3(c)). As shown in Fig. 4, the error in rCBFi is heavily influenced by the magnitude of
rSBFi.
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Fig. 2. Error in cerebral blood flow index (CBFi). Error in estimated CBFi as a function
of (a) error in assumed absorption coefficient (µa), (b) error in assumed reduced scattering
coefficient (µ′s), and (c) error in thickness (L) of scalp (blue), skull (red) and brain (yellow)
layers. Data are reported as mean/standard deviation across all combinations of simulated
CBFi and SBFi using the three-layer model. The horizontal dotted grey line denotes no error
in CBFi.

Fig. 3. Error in relative change in cerebral blood flow index (rCBFi). Error in estimated
rCBFi as a function of (a) error in assumed absorption coefficient (µa), (b) error in assumed
reduced scattering coefficient (µ′s), and (c) error in thickness (L) of scalp (blue), skull
(red) and brain (yellow) layers. Data are reported as mean/standard deviation across all
combinations of simulated rCBFi and rSBFi.

Fig. 4. Color map of the error in estimated rCBFi obtained when underestimating scalp
thickness by ∼35% as a function of the true rCBFi and rSBFi.
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3.3. Validation in Monte Carlo simulated data

As shown in Fig. 5, results from Monte Carlo simulations with a realistic head geometry largely
confirm the conclusions from the three-layer simulations. Of note, however, we found that
when fitting MC data to the three-layer model and using the known layer optical properties and
thickness, the estimated CBFi was always underestimated from the true CBFi by ∼30%. The
origin of this underestimation is not known, although we posit it may arise from the curvature of
the head. This underestimation notwithstanding, we found that errors in µa and µ′s of the skull
and scalp have a negligible influence on error in CBFi, while errors in brain µa and µ′s confound
CBFi in the same manner (Fig. 5(a,b)), as observed in Fig. 2 with the three-layer simulations.
Despite these errors in CBFi, relative changes of CBFi were minimally influenced by errors in µa
and µ′s within all layers (Fig. 5(c,d)).

Fig. 5. Error in CBFi and rCBFi with Monte Carlo simulated data on realistic head geometry.
(a-b) Error in estimated CBFi as a function of (a) error in assumed absorption coefficient (µa)
and (b) error in assumed reduced scattering coefficient (µ′s) of scalp (blue), skull (red) and
brain (yellow) layers. Data are reported as mean/standard deviation across all combinations
of simulated CBFi and SBFi. The horizontal dotted grey line denotes no error in CBFi. (c-d)
Error in estimated relative changes of CBFi (rCBFi) as a function of (c) error in assumed µa
and (d) error in assumed µ′s of scalp (blue), skull (red) and brain (yellow) layers. Data are
reported as mean/standard deviation across all combinations of simulated rCBFi and rSBFi.

4. Discussion

When estimating brain blood flow in the adult with DCS, a handful of work has demonstrated the
relative superiority of modeling the head as a 3-layer slab consisting of scalp, skull, and brain
over the homogeneous model that lumps these layers together [4,8,10,25]. However, the added
complexity of the 3-layer model requires additional a priori knowledge of numerous parameters,
including layer optical properties and thicknesses. While Li et al. qualitatively discussed the
influence of uncertainties in these parameters on the determination of blood flow in the bottom
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layer through intuitive deduction, the magnitude of these influences and how they translate to
errors in relative change in CBFi are lacking [8]. In this work, we build upon Li’s preliminary
findings to rigorously quantify the influence of inaccuracies in layer optical properties and
thicknesses on estimation of cerebral blood flow index and relative changes in this index when
using the three-layer analytical model to fit measured DCS data taken on the human head.

We find that CBFi is largely insensitive to errors in optical properties (µa, µ′s) of the skull
and scalp layers; however, CBFi is greatly influenced by errors in µa and µ′s of the brain layer
(Fig. 2(a,b)). Specifically, error in CBFi is positively correlated with errors in brain µa and
inversely correlated with errors in brain µ′s. In contrast, relative changes in CBFi are insensitive
to errors in optical properties of all layers (Fig. 3(a,b) and Fig. 5(c,d)). This result aligns well
with Li et al. [8], which posited that the influence of scalp and skull optical properties on
CBFi should be minimal since it mainly affects the decay of g2(τ) at long delay times, and that
underestimations of brain µa will lead to underestimation of CBFi.

Another significant source of error in the estimation of both CBFi and relative change in CBFi
came from errors in scalp and skull thickness. Error in CBFi is positively correlated with errors
in skull thickness, with an underestimation of skull thickness leading to an underestimation of
CBFi, whereas both under- and over-estimations in scalp thickness can lead to overestimations of
CBFi (Fig. 2(c)). For rCBFi, the average error across all combinations of rSBFi and rCBFi is
negligible despite errors in skull and scalp thickness; however, there is a large standard deviation
in this rCBFi error, meaning that for some combinations of rSBFi and rCBFi, the error in rCBFi
due to errors in skull and/or scalp thickness can be quite large (>50%, Fig. 4). These results
align with a former investigation of the two-layer model that found estimation of relative changes
of blood flow index of the deep layer are most sensitive to the inaccuracies in thickness of the top
layer [3].

Taken together, when employing the three-layer model to fit for CBFi, these results suggest it is
best practice to measure the optical properties of the brain layer (e.g., via frequency-domain near-
infrared spectroscopy [17] or time-domain near-infrared spectroscopy [26,39]) and the thickness
of scalp and skull layers (e.g., via anatomical images obtained from computed tomography or
magnetic resonance [4,10]). For recovery of relative changes in CBFi, accurate estimation of
brain optical properties is not necessary; however accurate quantification of skull and scalp
thicknesses is needed if quantification of rCBFi to within ∼25% is desired. If this information is
not available, results should be interpreted with caution.

Several investigations have demonstrated that the homogeneous model leads to underestimation
of relative changes of CBFi because of signal contamination from extracerebral layers, thus
emphasizing the importance of the three-layer model [4,10]. Nevertheless, numerous DCS
validation studies have employed the homogeneous model and have shown strong agreement
between relative changes in blood flow measured with DCS and relative changes in brain blood
flow measured by other perfusion modalities [40–42]. We observed a special case that help explain
this apparent discrepancy, i.e., an underestimation of brain blood flow with the homogeneous
model yet strong agreement with other perfusion modalities. In our simulations, we found
that when scalp and brain blood flow change by the same fractional amount, the homogeneous
model can accurately estimate relative changes in CBFi (Appendix 2). Given that several DCS
validation studies were performed with interventions that alter both scalp and cerebral blood flow,
e.g., manipulation of arterial blood pressure or carbon dioxide tension [40,41,43], this finding
may help explain the good agreement observed in former validation experiments that used the
homogeneous model.

Our study has several limitations. First, we note that our relative changes in estimated CBFi do
not account for changes in optical properties between baseline and activation states. Certainly,
brain µa may change due to various interventions (e.g, functional activation) that are also known
to influence perfusion, and these changes may induce further uncertainty in rCBFi if they are
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not adequately accounted for. If the absorption coefficient in the brain increases from baseline,
we would overestimate relative changes of CBFi by assuming a fixed µa. In contrast, changes
in µa of the scalp will have significantly less influence on the estimation of relative changes
of CBFi. Second, while the three-layer model is a vast improvement over the more commonly
employed homogeneous model, it ignores the curvature of the head, heterogeneity in layer optical
properties and perfusion, as well as heterogeneity in skull and scalp thickness. Moreover, it
does not consider the influence of cerebral spinal fluid, a non-scattering layer of low-absorbing
fluid with negligible blood flow that may significantly confound the estimation of CBFi [7].
Recently, Wu et al. employed a Monte Carlo-based fitting method using a realistic head geometry
to estimate brain blood flow that overcomes several of these limitations [25]. However, given
the complexity of this approach, which requires segmentation of anatomical MR images, and
considering the relative ease of implementing the three-layer model, we find that the three-layer
model is a good choice for estimating relative changes of CBFi. Another limitation of our study
is that the simulations are limited to two source-detector separations (1 and 2.5cm). Of course,
the error in CBFi and rCBFi will be dependent on the choice of source-detector separations; this
influence of source-detector separation will be rigorously characterized in future work. Finally,
we note that we did not consider measurement noise in our simulations. Because both noise in
the measured signal and inaccuracies in the assumed parameters can cause errors in estimation
of CBFi, an investigation without noise enables us to isolate the influences caused by errors in
optical properties/thickness from that of noise. Future work can investigate the influence of noise
on the accuracy of CBFi and rCBFi estimations with the three-layer model by using the noise
model developed in [44] or through in vitro experiments with layered optical phantoms with
known dynamic properties.

5. Conclusion

In summary, this investigation demonstrates that accurate estimation of CBFi with the three-layer
solution to the correlation diffusion equation relies on a priori knowledge of brain optical
properties as well as skull and scalp thickness. Estimation of relative changes in cerebral blood
flow index is insensitive to layer optical properties, although it can be influenced by errors in
scalp and skull thickness. Thus, we recommend that without measurement of layer thickness and
brain optical properties, results obtained form the three-layer model should be interpreted with
caution.

Appendix 1: Choice of baseline CBFi does not influence estimation of errors in
relative change in CBFi

For the results shown in Fig. 3, we arbitrarily chose one baseline to calculate rCBFi. To
demonstrate that the choice of baseline does not the influence error in rCBFi, we focus on
the case when scalp thickness is underestimated by ∼35%, i.e., when the largest variation in
error of rCBFi is observed in Fig. 3. Using the 72 datasets simulated at this scalp thickness
underestimation (consisting of 12 CBFi × 6 CBFi/SBFi ratios), we calculate the relative
change in CBFi of the ith sample using the jth sample as baseline: rCBFitrue,ij = (CBFitrue,i −
CBFitrue,j)/CBFitrue,j × 100%. We then calculate the estimated relative change in rCBFi as
rCBFiestimated,ij = (CBFiestimated,i−CBFiestimated,j)/CBFiestimated,j×100%, where here CBFiestimated,i
is the value of CBFi obtained when fitting the sample with CBFitrue,i. Finally, we calculate the
error in rCBFi as Errorij = rCBFiestimated,ij − rCBFtrue,ij. We find that the standard deviation in
this error across samples with the same rCBFitrue and rSBFitrue (but different baselines) is <5%
(Fig. 6(b)), suggesting that the choice of baseline does not affect the error in rCBFi.
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Fig. 6. Error in relative change in cerebral blood flow (rCBFi) when underestimating scalp
thickness by ∼35%. (a) Mean error in estimated rCBFi across samples of differing baseline
CBFi and SBFi as a function of true rCBFi and true rSBFi. (b) Standard deviation of the
error in estimated rCBFi across samples of differing baseline CBFi and SBFi as a function
of true rCBFi and rSBFi. Missing data points are due to the limited combinations of CBFi
and SBFi that were simulated.

Appendix 2. Semi-infinite homogeneous model can be used to accurately esti-
mate relative changes in CBFi under unique conditions

In this section, we demonstrate that the semi-infinite homogeneous model can accurately estimate
relative changes in CBFi in the special case wherein SBFi and CBFi change by the same fractional
amount. We used the three-layer model (Eq. (1)) to simulate 72 g2(r = 2.5cm, τ) curves (12
CBFi × 6 SBFi/CBFi ratios), assuming layer optical properties and thicknesses fixed at the
assumed values in Table 1. Next, we fit each simulated curve for a blood flow index (BFi) using
the semi-infinite, homogeneous solution to the correlation diffusion equation [31], assuming a
homogeneous absorption coefficient (µa = 0.2 cm−1) and reduced scattering coefficient (µ′s = 10
cm−1). For each simulated curve, we calculated a true relative change in CBFi of the ith sample

Fig. 7. Homogeneous model accurately estimates relative change in BFi (rBFi) when scalp
and brain flow change by the same fractional amount. Color map of the error in estimated
rBFi obtained with the homogenous model as a function of true rCBFi and rSBFi. Missing
data points are due to the limited combinations of CBFi and SBFi that were simulated.
Dotted line denotes the line of unity where rCBFi = rSBFi
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using the jth sample as baseline as rCBFitrue,ij = (CBFitrue,i − CBFitrue,j)/CBFitrue,j × 100%.
We then calculated the corresponding estimate of relative change in BFi as rBFiestimated,ij =
(BFiestimated,i − BFiestimated,j)/BFiestimated,j × 100%, where here BFiestimated,i is the value of BFi
obtained when fitting the sample with CBFitrue,i. Finally, we calculated the error in rBFi as
Errorij = rBFiestimated,ij − rCBFtrue,ij. We found that the while the Errorij in rBFi can be quite
appreciable, in the unique case where rCBFitrue = rSBFitrue, the error in rBFi is negligible (< 5%,
Fig. 7), suggesting that the semi-infinite homogeneous model can accurately relative changes in
CBFi when CBFi and SBFi change same fractional amount.
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