
Highly sensitive spatial transcriptomics at near-cellular 
resolution with Slide-seqV2

Robert R. Stickels1,2,3,*, Evan Murray1,*, Pawan Kumar1, Jilong Li1, Jamie L. Marshall1, 
Daniela J. Di Bella5, Paola Arlotta5, Evan Z. Macosko1,4,**, Fei Chen1,5,**

1Broad Institute of Harvard and MIT, Cambridge, MA, 02142

2Graduate School of Arts and Sciences, Harvard University, Cambridge, MA, 02138

3Division of Medical Science, Harvard Medical School, Boston, MA, 02115

4Massachusetts General Hospital, Department of Psychiatry, Boston, MA, 02114

5Department of Stem Cell and Regenerative Biology, Harvard University, 7 Divinity Avenue, 
Cambridge, MA 02138, USA

Abstract

Measurement of the location of molecules in tissues is essential for understanding tissue formation 

and function. Previously, we developed Slide-seq, a technology that enables transcriptome-wide 

detection of RNAs with a spatial resolution of 10 μm. Here, we report Slide-seqV2, which 

combines improvements in library generation, bead synthesis, and array indexing to reach an RNA 

capture efficiency of ~50% of single cell RNA sequencing data (~10x greater than Slide-seq) 

approaching the detection efficiency of droplet-based single-cell RNA-seq techniques. First, we 

leverage the detection efficiency of Slide-seqV2 to identify dendritically localized mRNAs in 

neurons of the mouse hippocampus. Second, we integrate the spatial information of Slide-seqV2 

data with single-cell trajectory analysis tools to characterize the spatiotemporal development of 

the mouse neocortex, identifying underlying genetic programs that were poorly sampled with 
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the Slide-seq. The combination of near-cellular resolution and high transcript detection efficiency 

makes Slide-seqV2 useful across many experimental contexts.

The ab initio identification of spatially defined gene expression patterns can provide 

insights into the development and maintenance of complex tissue architectures, and the 

molecular characterization of pathological states. We recently developed Slide-seq1, a 

spatial genomics technology that quantifies expression genome-wide with 10-micron spatial 

resolution. While recent developments in imaging-based transcriptomics have enabled the 

identification of tens to hundreds of pre-selected genes in fixed specimens2,3,4,5, array-based 

approaches6,7,1 such as Slide-seq critically decouple the imaging from molecular sampling, 

while simultaneously allowing for transcriptome-wide identification of molecular patterns in 

diverse tissue sections6,7,1,. In Slide-seq, densely barcoded bead arrays, termed “pucks,” 

are fabricated by split-pool phosphoramidite synthesis, and indexed up front using a 

sequencing by ligation strategy. Once the arrays are indexed, Slide-seq assays are performed 

with equipment found in a standard molecular biology laboratory, enabling the facile 

reconstruction of 3D tissue volumes that are tens or even hundreds of cubic millimeters 

in size.

However, Slide-seq’s low transcript detection sensitivity limited the range of biological 

problems to which the technology could be applied. Through improvements to the barcoded 

bead synthesis, the array sequencing pipeline, and the enzymatic processing of cDNA, we 

report here a version of Slide-seq with an order of magnitude higher sensitivity. With our 

new protocol, termed Slide-seqV2, we demonstrate a range of new analytical possibilities by 

leveraging its improved capture efficiency, including the identification of process-localized 

genes in neurons, and the analysis of developmental trajectories in situ.

We increased the yield of Slide-seq capture by improving the array generation pipeline as 

well as the library preparation strategy (Figure 1a). First, we developed a novel strategy to 

spatially index barcoded bead arrays using a monobase encoding scheme with sequencing 

by ligation using sequential interrogation by offset primers8,9 (Supplementary Figure 1a–

c, Methods). We were motivated to develop the monobase encoding scheme for two 

reasons: first, SOLiD di-base encoding utilizes proprietary cleavage chemistry that is not 

commercially available; and second, computational matching between dibase sequenced 

barcodes and Illumina sequencing requires conversion between color and base space and is 

not error robust. Our open-source monobase sequencing strategy, which uses only readily 

available reagents, performed equivalently to SOLiD in array indexing (Supplementary 

Figure 1d,e). In addition, we optimized the conditions for split-pool synthesis of the 10 

μm polystyrene barcoded beads (Methods), which improved the clonality of our barcodes 

(Supplementary Figure 2). Together, these strategies enabled more efficient recovery of gene 

expression on Slide-seqV2 arrays per Illumina read.

Next, we optimized the enzymatic library preparation steps of Slide-seqV2. We 

hypothesized that, due to the tissue’s inhibitory presence during reverse transcription, 

the template-switching reaction that adds a 3’ priming site for whole-transcriptome 

amplification was inefficient. We therefore added another second strand synthesis step10 

after reverse transcription to increase the number of cDNAs that can be amplified by PCR. 
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We performed Slide-seqV2 on E12.5 mouse embryos, obtaining ~9.3x more transcripts 

(UMIs) per bead, compared to the original Slide-seq protocol (Figure 1b, median 550 UMIs 

Slide-seqV2, 59 UMIs Slide-seq). Similarly, in the adult mouse hippocampus, we observed 

an 8.9x increase in the number of UMIs per bead, with the majority of the improvement 

(4.6x, Supplementary Table 1), attributable to the additional second strand synthesis step, 

and the remaining improvement largely due to improvements in bead barcode synthesis. 

In the mouse hippocampus, the capture efficiency of Slide-seqV2 was higher than that of 

a recently released commercial spatial transcriptomics (ST) technology (mean UMIs: Slide

seqV2 = 45,772, Visium = 27,952, for equal feature size, Supplementary Figure 3a–d) while 

maintaining 30x improved spatial resolution (30.25x by area per feature, 10 μm feature size 

for Slide-seqV2 compared to 55 μm feature size for Visium data). We also compared the 

sensitivity of Slide-seqV2 to HDST, another ST technology with high spatial resolution7. We 

found that in the mouse olfactory bulb, Slide-seqV2 recovered significantly more transcripts 

per 10 μm feature than HDST (44.9-fold mean difference; 494 UMIs Slide-seqV2 versus 

11.5 UMIs for HDST; Supplementary Figure 3e,f).

Next, we sought to quantify the absolute sensitivity of Slide-seqV2 relative to other 

molecular technologies that measure RNA content in cells and tissues. We compared counts 

of CA1 marker genes (Atp2b1, Ocaid2, Slc17a7) in an equal number of cells, measured 

by: (1) Slide-seqV2; (2) Drop-seq, a high-throughput scRNA-seq method11,12; and (3) 

smFISH5,13,14 (Methods). We found that Slide-seqV2 detected similar patterns to smFISH 

(Figure 1C, Supplementary Figure 4, Supplementary Figure 5a) as well similar numbers 

of UMIs when compared to Drop-seq for the three genes measured (equivalent area in Slide

seqV2 to cells taken from Drop-seq) (mean +/− std. scRNAseq = 33.5±1.4, 2.1±1.5,1.2±1.5, 

Slide-seqV2 = 15.7±1.5, 2.3±2.4, 1.9±2.6, Figure 1D, N = 6, Supplementary Table 2). 

To more thoroughly characterize the sensitivity of Slide-seqV2, we compared the total 

UMI counts per gene for all genes detected in CA1 excitatory neurons in Drop-seq11 

to an equivalent number of CA1 cells by area in Slide-seqV2. We found that, genome

wide, Slide-seqV2 detects approximately 44% ± 26% of the counts of Drop-seq (median 

+/− MAD, Supplementary Figure 5b) demonstrating that Slide-seqV2 capture efficiency 

approaches that of modern single cell technologies. Lastly, we found Slide-seqV2 to be 

highly reproducible between replicates (⍴=.98, Supplementary Figure 5c).

We next applied Slide-seqV2 to gain insight into biological problems where higher 

capture sensitivity is important. Neurons actively transport specific mRNAs to dendrites 

and postsynaptic densities, where they play critical roles in synaptic development and 

plasticity15–17. Previous studies have explored dendritic enrichment through physical 

microdissection or cell culture, but none has systematically identified the distribution of 

dendritically localized transcripts in situ. Dendritic mRNAs constitute only a tiny fraction 

of neuronal transcripts18, necessitating higher sensitivity methods for their detection. To 

identify dendritically localized mRNAs from our mouse hippocampal Slide-seqV2 dataset, 

we took advantage of the stereotyped architecture of the CA1 neuropil to reduce the spatial 

localization of transcripts to a 1D profile perpendicular to the CA1 soma layer (from stratum 

oriens (s.o.) to stratum pyramidale (s.p.) across stratum radiatum (s.r.), Figure 2a,b). For 

each gene detected in Slide-seqV2 (N=4 sections), we calculated the spatial expression as 
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a function of distance from the soma (representative spatial expression profiles shown in 

Figure 2b, bottom).

To select for dendritically localized mRNA, we performed differential expression analysis, 

comparing the proximal neuropil (s.r.) to the soma (s.p.). The CA1 neuropil contains 

glial cell types (i.e. microglia and astrocytes) that also contribute RNA and interfere 

with analysis; we therefore included only genes expressed in CA1 pyramidal cells (>0.5 

TPM in CA1 pyramidal neurons) and excluded those that are markers of non-neuronal 

cell types (Online Methods, Supplementary Table 3), based on existing scRNA-seq 

data of the hippocampus11. After filtering, differential expression between the proximal 

neuropil and the soma revealed 213 significant genes with greater than 2-fold dendritic 

enrichment (Figure 2c, unpaired t-test, N =4 sections, Supplementary Table 3). These genes 

overlapped significantly (p<10−16, hypergeometric test, Supplementary Figure 6a) with lists 

of dendritically enriched RNAs from two previous studies19,20, suggesting Slide-seqV2 can 

discover dendritically enriched genes.

Next, we asked whether functionally related genes showed similarities in their dendritic 

enrichment. First, we grouped dendritically enriched genes according to their 1D spatial 

expression profile (Figure 2d). Using unsupervised clustering, we identified 4 clusters 

of spatial expression of dendritically localized genes in CA1 neuropil, with clusters 

having different degrees of dendritic enrichment (Figure 2e, Supplementary Table 3). 

To identify whether this observed spatial diversity in localization was related to protein 

function, we used gene ontology (GO) to determine the cellular components of each spatial 

cluster (Supplementary Figure 6b, Methods). We found that each cluster was enriched 

for ontologically distinct groups of genes. Specifically, the first 2 clusters were enriched 

for components of the cellular respiration machinery, as well as ubiquitin ligases, while 

clusters 3 and 4 were enriched for ribosomal subunits. Slide-seqV2’s genome-wide capture 

allowed us to visualize the heterogeneity in dendritic trafficking across two synaptic and 

two cytoskeletal genes chosen from each cluster (Figure 2f, spatial reconstructions of all 

213 genes are shown in Supplementary Dataset 1). Taken together, these data demonstrate 

Slide-seqV2’s ability to characterize process-localized mRNAs, which appear to display 

significant heterogeneity amongst the various trafficked synaptic mRNA components.

The specificity of dendritically enriched genes for specific cell types (e.g. CA1 versus other 

pyramidal cells) has not been widely examined, in part because traditional approaches have 

measured dendritic trafficking in vitro or only from a single in vivo cell type. To explore 

this question, we integrated Slide-seqV2 data, which spans multiple hippocampal fields, 

with single-cell RNA-seq data from the same tissue. From an existing hippocampal single 

cell dataset11, we computed differential expression between CA1 and other hippocampal 

pyramidal cells for all genes (Methods). The dendritically localized set identified by 

Slide-seqV2 showed a significant depletion of differentially expressed genes relative to 

somatically enriched genes (p < 0.05, Wilcoxon rank sum test; Figure 2g). These results 

suggest that in the hippocampus, dendritically localized transcripts are more likely to be 

broadly expressed genes, rather than markers of specialized neuronal cell types.
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Dendritically enriched genes are expressed and trafficked from the soma compartment; we 

therefore additionally asked whether cell-type specific expression changes are reflected in 

the dendritic compartment. When dendritically enriched genes are examined in Slide-seqV2 

in both CA3 and CA1 neurons, the variance in fold change in the soma for dendritic genes is 

much larger than the variance in fold change observed for dendrites (Figure 2h, Two sample 

F-test, p=3 × 10−9). Furthermore, soma fold change only explains 13% of the variance in 

dendritic expression between CA3 and CA1 dendrites. These results indicate expression in 

dendrites is relatively buffered from the soma, suggesting the existence of distinct regulatory 

mechanisms in these two neuronal compartments.

During development, dynamic changes in gene expression across time and space help 

give rise to complex tissue architectures and terminally differentiated cell types. An array 

of computational strategies have been developed to identify and explore developmental 

trajectories from scRNA-seq data21–24, based upon similarities in gene expression between 

individual profiles. More recently, an additional approach called RNA velocity was 

developed that dynamically models expression trajectories by the relative quantities of 

spliced and unspliced transcripts for each gene25. Inspired by this work, we reasoned that 

the combination of Slide-seqV2’s enhanced capture efficiency--which approaches that of 

scRNA-seq technologies--and its near-single-cell resolution--may allow us to exploit these 

powerful algorithms directly on our spatial data to learn how developmental processes are 

proceeding across a tissue section.

In the embryonic mouse neocortex, neuronal development progresses along a radial axis 

that begins in the Ventricular Zone (VZ) and moves through the Subventricular Zone 

(SVZ), Intermediate Zone (IZ), and finally the Cortical Plate (CP), where neurons integrate 

into cortical layers in a birthdate-dependent manner26. We wondered whether Slide-seqV2 

data could be used to successfully recover this highly spatially organized developmental 

trajectory27. We first applied unsupervised clustering28 to Slide-seqV2 data from an 

embryonic day 15 (E15.5) developing mouse brain to characterize gene expression gradients 

in the neocortex. We annotated clusters corresponding to cell types in different developing 

brain regions, including cortex and striatum (Figure 3a, Supplementary Figure 7a–b). 

Segregating just the radially developing cortex (Figure 3a, black box), we reclustered the 

beads to reveal populations representing the VZ, SVZ, IZ, CP, early cortical layers (L5/6) 

and Cajal Retzius cells (CR) (Figure 3a).

To determine whether Slide-seqV2 data can identify developmental trajectories, we first 

applied scVelo29, a recently developed trajectory inference method that leverages splicing 

information25, to order our beads along a predicted latent time (LT). Projection of each 

bead’s LT value onto spatial coordinates successfully recapitulated the established radial 

developmental axis of the neocortex (Figure 3b). A very similar trajectory was recovered 

using the pseudotime ordering generated by Monocle322,30(Supplementary Figure 7c).

During the course of a developmental process, each stage of maturation can proceed at a 

different rate. We wondered whether Slide-seqV2’s spatial information could be exploited to 

identify the relative rates of differentiation across the radial axis of neocortical development. 

To accomplish this, we took the spatial derivative of the scVelo-generated LT (Methods), 
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recovering regions where LT changes most dramatically (Figure 3b, magnitude of arrows 

representing magnitude of the derivative). We found that the spatial rate of change was most 

pronounced at the earlier stages of the trajectory, decreasing as cells progress from VZ to 

SVZ/IZ, and largely terminating in the cortical plate.

Since each bead’s physical position is strongly predictive of its LT value, we reasoned that 

combining spatial and LT information could give us considerably greater statistical power to 

identify gene expression changes across this developmental process. The scVelo method was 

able to identify 179 genes with significant loading on LT, while the Monocle3 approach 

identified 377 genes. We previously demonstrated that we could leverage the spatial 

dimension of Slide-seq to systematically discover non-random spatial gene expression 

patterns1. Leveraging this, we identified 1349 spatially varying genes in the developing 

neocortex (P<0.005, Methods, Supplementary Table 4), spatial expression plots of all genes 

are in Supplementary Dataset 2). Among these were genes that are known to be involved in 

cortical development and are shared among Slide-seq and the trajectory inference methods 

including Sema5b and Nrp1, both of which encode proteins involved in axonal guidance31,32 

(Figure 3c). We noted that these genes correlated strongly with the spatial LT axis. Thus, 

to systematically find genes that varied along this axis, we correlated the expression of 

these 1349 nonrandom genes with a spatial LT axis that was created by fitting a surface 

to the LT values in physical space (Methods). Of the 1349 spatially variable genes, 1043 

correlated significantly with LT (pFdr <0.005), while very few of the non-spatially variable 

genes showed significant LT relationship (Figure 3d). In addition, the 1043 genes were 

highly overlapping with the trajectory inference methods across the range of expression 

levels (Figure 3e): amongst these were 76.5% of the scVelo-identified genes (137/179, 

Supplementary Figure 8, Supplementary Table 5), and 75.6% of the Monocle3-defined 

genes (285/377, Supplementary Figure 8, Supplementary Table 5). These results gave us 

confidence that the 1043 genes found using our spatial LT approach were truly associated 

with neocortical development.

We applied this spatial latent time approach to the embryonic eye at E12.5, a critical 

period of cell differentiation and migration33. We recovered the radial axis of ocular lens 

development, with strong spatial trajectories from the lens placode inward to the developing 

lens (Supplementary Figure 7d–e). Similarly to the cortex, we found spatial latent time 

provides a highly sensitive method to detect developmental genes along this trajectory. 

With this approach we identified >1000 genes as uniquely spatially variable (Supplementary 

Figure 7f;S8). Many genes recovered are important in ocular development, including genes 

essential to the development of the lens, and associated structures such as the lens placode 

(Pax6)34 and the primordial optic cup (Vax2)35. This list also includes many from the 

crystallin (Crybb3)36 and aldehyde dehydrogenases (Aldh1a1)37,38 gene families whose 

products form the fiber network of the lens36 and pattern signalling networks across the 

optic area37,38. Additionally, we found genes (Aldh1a3, Col9a1) identified as genetic drivers 

of disorders of ocular development39,40 that are spatially enriched, and whose protein 

products differentially pattern the lens placode, giving rise to distinct structures within the 

eye 33 (Supplementary Figure 7g). These results suggest spatial latent time, in combination 

with Slide-seqV2, can add spatial context to understanding the molecular signatures of 

genetic drivers of disease.
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Inspired by the spatial enrichment of molecular signatures of genetic diseases in the 

developing eye, we next focused on neurodevelopmental disorders (DD), a class of diseases 

frequently caused by pathogenic mutations in protein coding genes41 that often disrupt the 

normal process of neocortical development. We asked how a set of 299 DD-associated 

genes, recently discovered by exome sequencing of DD parent-offspring trios42, distributed 

on our spatial LT trajectory. A total of 74 of the 299 DD-associated genes were found in 

the spatial LT gene set (1.87-fold enrichment, p = 3.2×10−8). These genes were expressed 

later in average LT compared with all spatial LT genes (Figure 3f, left). Interestingly, the 

average expression of the 74 DD-associated spatial LT genes was much higher than all 

spatial LT genes (Figure 3f, right). These 74 genes could be clustered into five groups 

based on their spatial expression patterns (Figure 3g, Methods). The individual clusters were 

enriched for distinct GO functional terms, suggesting that these genes participate in distinct 

developmental processes and pathways (Figure 3h), ranging from chromatin modification to 

establishment of neuronal states. Once additional phenotypic data becomes available about 

the relative clinical differences amongst these DD-associated genetic disorders, it will be 

revealing to understand how such phenotypes differentially load onto the spatial LT axis.

Here, we describe Slide-seqV2, a highresolution spatial genomics technology with nearly 

an order of magnitude higher sensitivity compared to the original Slide-seq protocol. In 

particular, we demonstrated how the higher capture efficiency of Slide-seqV2 significantly 

expands the scope of possible analyses, including the discovery of genes with distinct 

patterns of subcellular localization, and the tracing of developmental programs involved in 

fate specification through space.

To facilitate adoption of the technology, we have generated a streamlined pipeline for image 

processing and merging of short read sequencing and imaging data which is available on our 

Github repository (https://github.com/MacoskoLab/slideseq-tools)(Supplementary Figure 9, 

Methods). This pipeline provides statistics on the alignment of imaging and short read data, 

in addition to the gene expression matrix and spatial locations of each barcode, with minimal 

user intervention. The combination of efficient molecular biology workflows, open-source 

sequencing chemistry for array indexing, and easy-to-use software for merging imaging 

and sequencing data should support wide application of Slide-seq. We anticipate that the 

technical and computational improvements here will significantly accelerate the adoption of 

Slide-seqV2 across the academic community.

Online Methods

Barcoded beads

Bead barcodes were either synthesized by the Chemgenes Corporation or in-house on an 

Akta Oligopilot 10 on one of two polystyrene supports (Agilent PLRP-S-1000A 10 μm 

particles or 10 μm custom polystyrene from AMBiotech). Oligonucleotide synthesis was 

performed as described below. Beads were used with one of the two following sequences:

Chemgenes corporation beads:
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5’-

TTTTTTTTCTACACGACGCTCTTCCGATCTJJJJJJJJTCTTCAGCGTTCCCGAGAJJJJJJJ

NNNNNNNNT30

Custom synthesis beads:

5′-
TTT_PC_GCCGGTAATACGACTCACTATAGGGCTACACGACGCTCTTCCGATCTJJJJJJ

JJTCTTCAGCGTTCCCGAGAJJJJJJJTCNNNNNNNNT25 (vs1)

5′-
TTT_PC_GCCGGTAATACGACTCACTATAGGGCTACACGACGCTCTTCCGATCTJJJJJJ

JJTCTTCAGCGTTCCCGAGAJJJJJJNNNNNNNVVT30 (vs2)

“PC” designates a photocleavable linker; “J” represents bases generated by split-pool 

barcoding, such that every oligo on a given bead has the same J bases; “N” represents 

bases generated by mixing, so every oligo on a given bead has different N bases; and “TX” 

represents a sequence of X thymidines. “V” represents bases which contain A,C,G and no T.

Bead synthesis

PLRP-S resin (~10 μm mean particle diameter) from Agilent Technologies were 

functionalized with a non-cleavable linker by Chemgenes Corp. The functionalized beads 

were then used as a solid support for reverse-direction phosphoramidite synthesis (5’ to 

3’) on an Akta OligoPilot 10 using standard solid-phase DNA synthesis protocol. 5’-CE 

(b-cyanoethyl) phosphoramidites were purchased from Glen Research and were dissolved 

in anhydrous acetonitrile to obtain a concentration of 0.1M. Successive phosphoramidites 

were coupled for 5 minutes using 5-Benzylmercaptotetrazole (0.30 M in acetonitrile) as 

an activator. Oxidation of phosphite backbone to phosphate backbone was achieved using 

iodine. Failure sequences were capped using acetic anhydride. Dichloroacetic acid was used 

as detritylation reagent. For split-pool synthesis cycles, beads were suspended in acetonitrile 

and were divided into 4-equal portions. These bead aliquots were then placed in 4 separate 

synthesis columns and were reacted with either dG, dC, dT, or dA phosphoramidites. After 

each cycle, beads were pooled, suspended in acetonitrile and aliquoted into 4 equal portions. 

The split pool procedure was repeated 15 times in total (two blocks of 8 and 7 cycles) 

to obtain 415 (~109) unique barcode sequences. After completion of the synthesis, the 

protecting groups from the nucleobases and phosphate backbone were removed by treating 

beads with 30% Ammonium Hydroxide containing 10% diethylamine for 40 h at room 

temperature. The beads were centrifuged and supernatant was discarded. Following this, 

beads were washed with 1% acetone in acetonitrile (3 times), water (3 times) and a buffer 

consisting of 10 mM tris,1mM EDTA (pH = 8, 3 times).

Puck Preparation

Puck preparation was performed as described previously1, with the following modification:

Beads were pelleted and resuspended water+ 10% DMSO at a concentration between 20,000 

and 50,000 beads/μL , and 10μL of the resulting solution was pipetted into each position on 
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the gasket. The coverslip-gasket filled with beads centrifuged at 40C, 850g for at least 30 

minutes until the surface was dry.

Puck Sequencing

Puck sequencing was performed in a Bioptechs FCS2 flow cell using a RP-1 peristaltic 

pump (Rainin), and a modular valve positioner (Hamilton MVP). Flow rates between 1 

mL/min and 3 mL/min were used during sequencing. Imaging was performed using a Nikon 

Eclipse Ti microscope with a Yokogawa CSU-W1 confocal scanner unit and an Andor 

Zyla 4.2 Plus camera. Images were acquired using a Nikon Plan Apo 10x/0.45 objective. 

After each ligation, images were acquired in the following channels: 488nm excitation with 

a 525/36 emission filter (MVI, 77074803); 561 nm excitation with a 582/15 emission 

filter (MVI, FF01-582/15-25); 561 nm excitation with a 624/40 emission filter (MVI, 

FF01-624/40-25); and 647 nm excitation with a 705/720 emission filter (MVI, 77074329). 

The final stitched images varied in size depending on the size of the Slide-seq array.

Pucks were sequenced using a sequencing-by-ligation approach, both with the SOLiD 

dibase-encoding strategy previously described1,45 and with a monobase-encoding strategy 

developed for this work. Fluorescent oligonucleotides were synthesized on an Akta 

OligoPilot 10 or obtained from IDT (Supplementary Table 6). A total of 8 fluorescent 

oligonucleotides were used and are referred to as 5(base) or 3(base) to indicate the 

corresponding mode of ligation and identity of the interrogated base. Each sequencing 

oligonucleotide interrogates the +2 base from the ligation junction, with each base identity 

corresponding to a fluorescent channel: A: FAM, C: Cy3, T: Cy5, G: Texas Red or AqP593.

The monobase sequencing strategy interrogates 14 split-pool bases using 3 modes of 

sequencing by ligation. This strategy is motivated by the need to eliminate the use of 

proprietary cleavage reagents from SOLID and allow for sequencing using commercially 

available oligonucleotides. The overall sequencing strategy (Supplementary Figure 1A) 

consists of a ligation to interrogate a split-pool base, followed by dehybridization using 

formamide before moving onto the next ligation. The 3 ligation modes are: 5’ ligation 

(ligation at the 5’ end of a hybridized sequencing primer), 3’ Ligation (ligation at the 3’ 

end of a hybridized sequencing primer), and SEDAL (ligation with a degenerate primer in 

solution).

On each bead sequence, there are two primer binding sites: Truseq primer site (T), and 

Universal Primer (UP) (Supplementary Figure 1B). All primer sequences are listed in 

Supplementary Table 6. Sequencing starts with 5’ ligation on the Truseq primer. First, 

the T-1 primer (Primer T shortened by 1 base on the 5’ end) is hybridized, and a ligation 

is performed to interrogate the first J. After stripping with formamide, the T primer is 

hybridized (Primer T), and the second J is interrogated. After stripping with formamide, 

the T+1 primer is hybridized (the + primers represent the T primer with an added N 

(representing all 4 bases) on the 5’ end). For the rest of the 5’ ligations, the same steps 

are repeated with T+2, UP-1, UP, UP+1 and UP+2, where UP primers follow the same 

conventions as Truseq.
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Next, sequencing proceeds with 3’ ligations using the 3UP primer series and 3(base) 

sequencing oligonucleotides. These ligations are performed for 3UP+1, 3UP, and 3UP-1 

(3UP+1 is UP plus an N base on the 3’ end, 3UP is the UP primer, and 3UP-1 is primer UP 

shorter by 1 base on the 3’ end.

Lastly, sequencing is performed with SEDAL, which utilizes degenerate primers in solution 

with the 5’ sequencing oligonucleotides. As the number of N bases added to the end of 

the hybridized primer increases, the sequencing efficiency decreases. Empirically, we find 

that we cannot use pre-hybridized + primers beyond 2 bases (T+2 and UP+2). To overcome 

this, we include shortened primers with additional N bases (+3 and +4) in solution with 

the fluorescent sequencing oligonucleotides. We perform 3 bases of SEDAL with 3 seperate 

primers (T+3, UP+3, and UP+4).

This sequencing approach is outlined schematically in Supplementary Figure 1B. For both 

5’ and 3’ ligation modes, a primer was injected into the flow cell at 5 μM concentration in 

4x SASC for 40 minutes. Subsequently, the flow cell was washed in 5 mL of wash buffer (50 

mM Tris-Acetate + 0.05% Triton-X 100). Ligation mix (recipes below) was then flowed into 

the chamber and allowed to sit for 40 minutes, at which point flow was reversed to return the 

ligation mix to its original reservoir. Ligation mix was reused for a complete sequencing run 

before being replenished. After a subsequent wash, pucks were imaged as described above 

and then stripped using 10 mL of 80% formamide for 20 minutes. For SEDAL ligations, a 

primer was added at 5 μM concentration to the ligation mix and this mixture was flowed into 

the chamber and allowed to sit for 2 hours.

Bead barcodes consisted of 15 “J” bases, of which 14 were used. In order to sequence 

these barcodes, we performed 3 rounds of SEDAL, 8 rounds of 5’ ligation, and 3 rounds of 

3’ ligation (Supplementary Figure 1A,B). The 14 primers necessary for this process were 

obtained from IDT (Supplementary Table 6). The ligation mix recipes are given below:

5’ Ligation mix:

1x T4 DNA Ligase Buffer (NEB)

6 U/μL T4 DNA Ligase (NEB)

20 μM each of 5T, 5A, 5G, and 5C oligonucleotides

3’ Ligation mix:

1x T4 DNA Ligase Buffer (NEB)

6 U/μL T4 DNA Ligase (NEB)

20 μM each of 3T, 3A, 3G, and 3C oligonucleotides

SEDAL Ligation mix:

1x T4 DNA Ligase Buffer (NEB)
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6 U/μL T4 DNA Ligase (NEB)

5 μM primer

5 μM each of 5T, 5A, 5G, and 5C oligonucleotides

Microscopy

Imaging was performed using a Nikon Eclipse Ti microscope with a Yokogawa CSU-W1 

confocal scanner unit and an Andor Zyla 4.2 Plus camera. Images were acquired using a 

Nikon Plan Apo 10x/0.45 objective. After each ligation, we acquired four images: one using 

a 488 nm laser and a 525/36 emission filter (MVI, 77074803); one using a 561 nm laser 

and a 582/15 emission filter (MVI, FF01-582/15-25); one using a 561nm laser and a 624/40 

emission filter (MVI, FF01-624/40-25); and one using a 647nm laser and a 705/72 emission 

filter (MVI, 77074329). The final stitched images were 6030 pixels by 6030 pixels.

Image Processing and Basecalling

Image processing was performed as previously described, and we have made an easy to 

use image processing and base calling Matlab package that has been deposited into https://

github.com/MacoskoLab/PuckCaller/. Input images are 4 channel sequencing images for 

each puck for each timepoint of sequencing. The outputs are, for each bead, a sequence 

string for the bead barcode. For monobase imaging the images are directly convertible to 

basespace rather than colorspace thus we omit the step of conversion of illumina reads to 

colorspace prior to comparison to the in situ indexing data as previously described. Metadata 

on all pucks used are shown in Supplementary Table 7.

Slide-seq tools

We developed the Slide-seq tools pipeline for processing Slide-seq data. The scripts, 

documentations and example data are available at https://github.com/MacoskoLab/slideseq

tools. The Slide-seq tools include several analysis steps and the workflow is illustrated in 

Supplementary Figure 9:

1) Extract Illumina barcodes: this step runs run_barcodes2sam.py and calls the 

ExtractIlluminaBarcodes function in Picard tools (https://github.com/broadinstitute/picard) 

to extract the barcode for each read in an Illumina lane from Illumina BCL files.

2) Convert Illumina basecalls to bam: this step runs run_processbarcodes.py and calls the 

IlluminaBasecallsToSam function in Picard tools to collect, demultiplex and sort reads 

across all of the tiles of a lane by barcode to produce an unmapped BAM file.

3) Pre-Alignment: this step runs run_alignment.py, calls the functions of 

TagBamWithReadSequenceExtended, FilterBam, TrimStartingSequence and PolyATrimmer 

in the Drop-seq tools (https://github.com/broadinstitute/Drop-seq) to tag unmapped bam 

files with a bead barcode (XC) and a molecular barcode (a.k.a. UMI, marked by tag XM), 

filter low-quality reads, trim reads with starting sequence and polyA tail, and calls the 

SamToFastq function in Picard tools to convert bam files to fastq files.

Stickels et al. Page 11

Nat Biotechnol. Author manuscript; available in PMC 2021 November 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/MacoskoLab/PuckCaller/
https://github.com/MacoskoLab/PuckCaller/
https://github.com/MacoskoLab/slideseq-tools
https://github.com/MacoskoLab/slideseq-tools
https://github.com/broadinstitute/picard
https://github.com/broadinstitute/Drop-seq


4) Align reads to genome reference: this step runs run_alignment.py and calls the STAR 

aligner44 to align reads in the fastq to a reference genome.

5) Post-Alignment: this step runs run_alignment.py to call SortSam and 

MergeBamAlignment in Picard tools to sort aligned bam files and to merge unmapped 

bam and aligned bam files, and calls the functions of TagReadWithInterval and 

TagReadWithGeneFunction in Drop-seq tools to tag reads with interval and gene identity.

6) Generate alignment reports and plots: this step runs generate_plots.py and calls the 

CollectRnaSeqMetrics function in Picard tools, and the functions of BamTagHistogram, 

BaseDistributionAtReadPosition and GatherReadQualityMetrics in Drop-seq tools, to 

generate a few reports based on the aligned bam file, such as read quality and mapping 

rate, base distribution across the reads, and data on the composition and quality of the bead 

nad molecular barcodes.

7) Select top cells by the number of transcripts: this step runs run_analysis_spec.py and calls 

the SelectCellsByNumTranscripts function in the Drop-seq tools to select top cells by the 

number of transcripts that the user specifies when submitting a request.

8) Match Illumina barcodes to bead barcodes: this step runs cmatcher.cpp to calculate 

hamming distances between each Illumina barcode and all of the bead barcodes from in situ 
sequencing. The list of uniquely matched Illumina barcodes with hamming distance <= 1, 

along with the matched bead barcodes, are outputted.

9) Generate reports and plots on matched barcodes: this step runs 

generate_plots_cmatcher.py and calls the CollectRnaSeqMetrics function in Picard tools 

and the functions DigitalExpression, BamTagHistogram, BaseDistributionAtReadPosition, 

GatherReadQualityMetrics and SingleCellRnaSeqMetricsCollector in Drop-seq tools to 

generate the digital gene expression matrix, along with quality metrics that include a 

histogram of hamming distance between Illumina and bead barcode matches, a color-scaled 

number of UMIs per bead, and other reports.

Supplementary Table 8 shows running time of the Slide-seq tools on four libraries: 

190926_01, 190926_02, 190926_03 and 190926_06. The Illumina platform is NovaSeq, and 

there are two lanes in the experiment. Reads were aligned to GRCm38.81 genome sequence. 

The read base quality for alignment was set to 10. The minimum number of transcripts per 

cell for selecting top cells was set to 10 as well. Reads aligned to both exons and introns 

were involved in the gene expression analysis. In order to speed up the process, the Slide-seq 

tools split each lane of NovaSeq data into 10 slices, parallel ran the alignment steps on the 

slices and combined the alignment outputs together.

Slide-seqV2 library preparation

RNA Hybridization: Pucks in 1.5 mL tubes were immersed in 200 μL of hybridization 

buffer (6x SSC with 2 U/μL Lucigen NxGen RNAse inhibitor) for 30 minutes at room 

temperature to allow for binding of the RNA to the oligos on the beads.
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First Strand Synthesis—Subsequently, first strand synthesis was performed by 

incubating the pucks in RT solution for 1.5 hours at 52 C.

RT solution:

115 μL H2O

40 μL Maxima 5x RT Buffer (Thermofisher, EP0751)

20 μL 10 mM dNTPs (NEB N0477L)

5 μL RNase Inhibitor (Lucigen 30281)

10 μL 50 μM Template Switch Oligo (Qiagen #339414YCO0076714)

10 μL Maxima H-RTase (Thermofisher, EP0751)

Tissue Digestion: 200 μL of 2x tissue digestion buffer was then added directly to the RT 

solution and the mixture was incubated at 37C for 30 minutes.

2x tissue digestion buffer: 200 mM Tris-Cl pH 8

400 mM NaCl

4% SDS

10 mM EDTA

32 U/mL Proteinase K (NEB P8107S)

Second Strand Synthesis: The solution was then pipetted up and down vigorously to 

remove beads from the surface, and the glass substrate was removed from the tube using 

forceps and discarded. 200 μL of Wash Buffer was then added to the 400 μL of tissue 

clearing and RT solution mix and the tube was then centrifuged for 3 minutes at 3000 RCF. 

The supernatant was then removed from the bead pellet, the beads were resuspended in 200 

μL of Wash Buffer, and were centrifuged again. This was repeated a total of three times. The 

supernatant was then removed from the pellet. The beads were then resuspended in 200μl of 

ExoI mix and incubated at 37 °C for 50mins.

Wash Buffer:

10 mM Tris pH 8.0

1 mM EDTA

0.01% Tween-20

ExoI mix:

170μl H20

20μl ExoI buffer

10μl ExoI (NEB M0568)
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After ExoI treatment the beads were centrifuged for 3 minutes at 3000 RCF. The supernatant 

was then removed from the bead pellet, the beads were resuspended in 200 μL of Wash 

Buffer, and were centrifuged again. This was repeated a total of three times. The supernatant 

was then removed from the pellet. The pellet was then resuspended in 200μl of 0.1 N NaOH 

and incubated for 5 minutes at room temp. To quench the reaction 200μl of Wash Buffer 

was added and beads were centrifuged for 3 minutes at 3000 RCF. The supernatant was then 

removed from the bead pellet, the beads were resuspended in 200 μL of Wash Buffer, and 

were centrifuged again. This was repeated a total of three times. Second Strand Synthesis 

was then performed on the beads by incubating the pellet in 200μ of Second Strand Mix at 

37 °C for 1 hour.

Second Strand Synthesis mix:

133 μl H2O

40 μl Maxima 5x RT Buffer

20 μl 10 mM dNTPs

2μl 1mM dN-SMRT oligo

5μl Klenow Enzyme (NEB M0210)

After Second Strand Synthesis 200μl of Wash Buffer was added and the beads were 

centrifuged for 3 minutes at 3000 RCF. The supernatant was then removed from the bead 

pellet, the beads were resuspended in 200 μL of Wash Buffer, and were centrifuged again. 

This was repeated a total of three times.

Library Amplification: 200μl of water was then added to the bead pellet and the beads 

were moved into a 200 μL PCR strip tube, pelleted in a minifuge, and resuspended in 200 

μL of water. The beads were then pelleted and resuspended in library PCR mix and PCR was 

performed as outlined below:

Library PCR mix:

22 μL H2O

25 μL of Terra Direct PCR mix Buffer (Takara Biosciences 639270)

1μl of Terra Polymerase (Takara Biosciences 639270)

1 μL of 100 μM Truseq PCR handle primer (IDT)

1 μL of 100 μM SMART PCR primer (IDT)

PCR program:

95 °C 3 minutes

4 cycles of:

98 °C 20 s

65 °C 45 s
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72 °C 3 min

9 cycles of:

98 °C 20 s

67 °C 20

72 °C 3 min

Then:

72 °C 5 min

4 °C forever

PCR cleanup and Nextera Tagmentation: The PCR product was then purified by 

adding 30 μL of Ampure XP (Beckman Coulter A63880) beads to 50 μL of PCR product. 

The samples were cleaned according to manufacturer’s instructions and resuspended into 50 

μL of water and the cleanup was repeated resuspending in a final concentration of 10μl. 1 μL 

of the library was quantified on an Agilent Bioanalyzer High sensitivity DNA chip (Agilent 

5067-4626). Then, 600 pg of PCR product was taken from the PCR product and prepared 

into Illumina sequencing libraries through tagmentation with Nextera XT kit (Illumina 

FC-131-1096). Tagmentation was performed according to manufacturer’s instructions and 

the library was amplified with primers Truseq5 and N700 series barcoded index primers. 

The PCR program was as follows:

72°C for 3 minutes

95°C for 30 seconds

12 cycles of:

95°C for 10 seconds

55°C for 30 seconds

72°C for 30 seconds

72°C for 5 minutes

Hold at 10°C

Samples were cleaned with AMPURE XP (Beckman Coulter A63880) beads in accordance 

with manufacturer’s instructions at a 0.6x bead/sample ratio (30 μL of beads to 50 μL of 

sample) and resuspended in 10μL of water. Library quantification was performed using 

the Bioanalyzer. Finally, the library concentration was normalized to 4nM for sequencing. 

Samples were sequenced on the Illumina NovaSeq S2 flowcell 100 cycle kit with 12 samples 

per run (6 samples per lane) with the read structure 42 bases Read 1, 8 bases i7 index read, 

50 bases Read 2. Each puck received approximately 200-400 million reads, corresponding to 

3,000-5,000 reads per bead.
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Animal Handling

All procedures involving animals at the Broad Institute were conducted in accordance 

with the US National Institutes of Health Guide for the Care and Use of Laboratory 

Animals under protocol number 0120-09-16. All procedures involving animals at Harvard 

University were handled according to protocols approved by the Institutional Animal Care 

and Use Committee (IACUC) of Harvard University (protocol number 11-03) and followed 

the guidelines set forth in the National Institute of Health Guide for the Care and Use 

of Laboratory Animals. Wild-type C57Bl/6 mice (from Charles River Laboratories) were 

housed in a 12:12 light-dark cycle with ad libitum access to food and water. We set harem 

breeding cages and defined morning of plug detection as E0.5.

Transcardial Perfusion

C57Bl/6 mice were anesthetized by administration of isoflurane in a gas chamber flowing 

3% isoflurane for 1 minute. Anesthesia was confirmed by checking for a negative tail pinch 

response. Animals were moved to a dissection tray and anesthesia was prolonged via a nose 

cone flowing 3% isoflurane for the duration of the procedure. Transcardial perfusions were 

performed with ice cold pH 7.4 HEPES buffer containing 110 mM NaCl, 10 mM HEPES, 

25 mM glucose, 75 mM sucrose, 7.5 mM MgCl2, and 2.5 mM KCl to remove blood from 

brain and other organs sampled. The appropriate organs were removed and frozen for 3 

minutes in liquid nitrogen vapor and moved to −80C for long term storage.

Tissue Handling

Fresh frozen tissue was warmed to −20 °C in a cryostat (Leica CM3050S) for 20 minutes 

prior to handling. Tissue was then mounted onto a cutting block with OCT and sliced at a 

5° cutting angle at 10 μm thickness. Pucks were then placed on the cutting stage and tissue 

was maneuvered onto the pucks. The tissue was then melted onto the puck by moving the 

puck off the stage and placing a finger on the bottom side of the glass. The puck was then 

removed from the cryostat and placed into a 1.5 mL eppendorf tube. The sample library 

was then prepared as below. The remaining tissue was re-deposited at −80 °C and stored for 

processing at a later date.

Diffusion Analysis

Determination of diffusion was determined as previously described by measuring features 

across CA1 mouse hippocampus1 for Slide-seqV2 data (Puck 200115_08).

Comparison of counts for Slide-seq, Slide-seqV2, FISH, and scRNAseq

For Slide-seq and Slide-seqV2 we subsetted a region of CA1 and took the total number of 

counts for each of the marker genes.

For the scRNAseq data, we used the mouse brain scRNAseq data from 12 and pulled an 

equal number of cells found from the Slide-seq data from the cluster representing the 

hippocampal CA1 neurons.

For the smFISH data we generated the data by using HCRV3.0 with probes sets against 

each of the genes chosen in 488nm, 594nm, and 647nm (Slc17a7, Ociad2, and Atp2b1 
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respectively). Following recommendations from the manufacturer we used the suggested 

number of probes per gene for HCRv3, namely 20 probe pairs per gene (40 probes total). 

Probe sequences were designed by Molecular Instruments. We stained the tissue with DAPI 

for segmentation purposes and for counting nuclei. We performed counting of smFISH data 

using a custom pipeline implemented using the Starfish package(https://github.com/spacetx/

starfish) in python.

Comparison of Slide-seqV2 to 10x Visium technology and HDST

To compare Slide-seqV2 to 10x Visium data (https://www.10xgenomics.com/solutions/

spatial-gene-expression/ ) we downloaded available coronal mouse hippocampus data and 

plotted the number of UMIs per spatial feature. We next binned Slide-seqV2 data from the 

same region to equivalent feature size (11 μm), merging the counts of Slide-seqV2 beads 

(10μm original) within each of the larger features generated (110μm).

To compare Slide-seqV2 to HDST we first obtained HDST data from supplementary data 

provided in the original HDST publication7. We used the data at 10 μm feature size (5x 

binned) and compared to Slide-seqV2 data collected from an equivalent region (mouse 

olfactory bulb). We then just plotted the number of counts per feature and took the mean to 

obtain the difference in average counts between Slide-seqV2 and HDST.

Spatial Comparison of Slide-seqV2 to OsmFISH

A spatial profile was taken along the length of the cortex for OsmFISH and Slide-seqV2 

data perpendicular to the expression of the layer marker Lamp5, i.e. going from Layer 6 to 

Layer 1 of the cortex. Each gene for both datasets was normalized along this profile. Genes 

in OsmFISH >50% coefficient of variation along the profile were selected for analysis (this 

enriches for cortical layer markers, other genes do not have stereotyped patterns along this 

spatial dimension and cannot be compared). Both datasets were downsampled to 50 μm, 

and aligned spatially along the profile by aligning the positions of Layer 1 and Layer 4. 

To analyze spatial correlation, the Pearson correlation of each gene’s spatial profile against 

all genes was calculated between Slide-seqV2 and OsmFISH, as well as OsmFISH and 

OsmFISH.

Hippocampal Slide-seqV2

Slide-seqV2 was performed on the mouse hippocampus (N=4 sections, 2 mice). A spline 

was fit along the pyramidal cells layer of CA1. Beads were averaged to a profile 

perpendicular to this spline ~100 μm into the Basal neuropil, and ~400 μm to the proximal 

neuropil to form a spatial profile of gene expression along the CA-1 neuropil axis.

Dendritic enrichment analysis

To test for dendritic enrichment, for each gene, the gene expression in the soma layer 

(defined as +/− 32.5 micron from the peak of the profile counts for all genes) was compared 

against the gene expression in the proximal dendrites (greater than 32.5 μm away from 

the peak of the CA1 layer). We leveraged existing scRNA-seq data12 to exclude marker 

genes from cell types outside of CA1 using differential expression. Specifically, all genes 

with 2-fold higher expression in cell-type clusters other than CA1 were excluded from the 
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analysis. For each gene, the gene expression in the Soma layer was normalized to the total 

number of UMI-counts in the Soma layer, and the gene expression in the proximal dendrite 

layer was normalized to the total number of UMI-counts in the proximal dendrite layer. A 

two sample t-test was performed to identify differentially expressed genes, and pFDR was 

calculated as described previously45.

Spatial clustering of dendritically enriched genes

For the 213 genes identified to be dendritically enriched, we clustered genes by their spatial 

profile along the CA1-neuropil axis via k-means clustering. The gap-statistic was used to 

determine the optimal number of clusters (K=4).

GO analysis

For each cluster identified by spatial profiling, GO analysis was performed using 

the clusterProfiler46 package in R. Cellular components from the org.Mm.eg.db (http://

bioconductor.org/packages/release/data/annotation/html/org.Mm.eg.db.html). Genome wide 

annotation for Mouse in Bioconductor was used for the ontology database. For Figure 3, GO 

analysis was performed using Biological processes from org.Mm.eg.db.

Cell type specificity of dendritic genes

To explore the relationship between cell type specificity of gene expression and dendritic 

localization (Figure 2g), we first computed differential expression between CA1 and other 

hippocampal principal cells from an existing single cell dataset12 using the FindMarkers() 

function in Seurat. Next, we compared the log2 fold-change of the genes in the dendritic and 

somatic gene sets (see Dendritic Enrichment Analysis) with a wilcoxon rank sum test, and 

visualized the comparison using a quantile-quantile plot. To calculate dendritic and soma 

expression in CA3, the same procedure as in CA1 was carried out (see Dendritic Enrichment 

Analysis). Soma fold change was calculated as the ratio of counts in CA3 soma to CA1 

soma after normalizing by the total number of UMIs in each compartment. Dendrite fold 

change was calculated as the ratio of counts in CA3 soma to CA1 soma after normalizing by 

the total number of UMIs in each compartment.

Embryo samples

Whole mount frozen embryos were obtained from a commercial source Zyagen (San Diego, 

CA). The pregnant mice (C57BL/6NCrl) were bred and maintained by Charles River 

Laboratories. The time-pregnant mice (day 10) were shipped to Zyagen (San Diego, CA) 

the same day. The mice were sacrificed on the day of arrival for embryo collection.

Trajectory analysis

Trajectory analysis was performed using the recently released method scVelo30. We first 

loaded intronic and exonic gene expression matrices, UMAP coordinates created in Seurat 

from the original clustering of the Slide-seqV2 data, cluster IDs, and spatial coordinates of 

each bead from Slide-seqV2 into a scanpy object using a custom python environment. We 

next applied the latent time method developed in scVelo to our Slide-seqV2 expression data 

and plotted each bead using the Slide-seqV2 coordinates with the shading defined by the 
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latent time ordering. Plots of individual expression of genes over latent time were generated 

using plotting functions in scVelo plotting the expression of each individual gene over the 

latent time axis with coloring of each bead by cluster identity to the original clustering of 

the data. Plots showing expression for each of the genes on the puck were performed using 

a custom python script. The gene lists for latent time were called as velocity loading genes 

from the scVelo pipeline using standard parameters and a likelihood cutoff of >0.1.

Monocle323,31 was run on the data by importing the UMAP and PCA coordinates from 

Seurat into a Single Cell Experiment object. The analysis was performed in accordance with 

the monocle tutorial found at. http://cole-trapnell-lab.github.io/monocle-release/monocle3/. 

The q-value cutoff for gene selection was q<0.005.

Fitting a spatial surface to latent time

Latent time data scores generated from scVelo and spatial coordinates were taken as a 3D set 

of points (x,y, latent time score) and a surface was fit over the set of points for a region of 

the cortex. A grid was created (80μm x 80μm for cortex) and the spatial derivative was taken 

over the grid using Matlab’s differentiate function. The fx, fy of the surface were extracted 

from Matlab and imported into python. The plot for Figure 3b was generated using a custom 

python script where the magnitude of the arrows represents the magnitude of the derivative 

at each of the points in the grid. The position of the underlying beads is from Slide-seqV2 

and the color scale is from scVelo’s latent time output.

Spatially non-random gene analysis:

Test for spatial non-randomness was performed as previously described1 with the following 

modifications:

Genes were identified as spatially non-random using a custom Matlab application. The set 

of pairwise Euclidean distances between all beads was calculated. Candidate genes for the 

statistical significance analysis were required to have at least one transcript on at least 10 

beads. To determine whether a transcript had a significantly non-random spatial distribution 

within a particular set of beads, we compared the distribution of pairwise distances between 

the beads expressing at least one count of that transcript to the distribution of pairwise 

distances between an identical number of beads, sampled randomly from all mapped beads 

on the puck with probability proportional to the total number of transcripts on the bead. 

Specifically, we generated 1000 such random samples, and for each sample calculated the 

distribution of pairwise distances. We then calculated the average distribution of pairwise 

distances, averages pairwise across all 1000 samples. Finally, we calculated the L1 norm 

between the distribution of pairwise distances for each of the 1000 random samples and the 

average distribution, and the L1 norm between the distribution of pairwise distances for the 

true sample of beads and the average distribution. We defined p to be the fraction of random 

samples having distributions closer to the average distribution (under the L1 norm) than the 

true sample, and considered any genes with values p<=0.005.
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Spatial correlation to latent time:

Spatially identified genes were binned along 20 spatial contours of the same latent time as 

fitted by the surface described above. Expression was normalized for each bin by the total 

number of counts observed. For each gene, the Pearson’s correlation coefficient and the 

p-value of the correlation between the binned expression in the spatial latent time axis was 

correlated with a linear function of slope 1. pFDR was calculated as described previously50.

Spatial clustering of DD genes

For the 74 genes identified to be involved in developmental disorders that load onto 

pseudotime, the spatial correlation between each gene was determined by convolving the 

spatial expression of each gene with an integralBoxFilter of size 70 microns, and then 

the 2-D cross-correlation for each gene against each other gene was calculated with the 

Matlab function corr2. The spatial cross-correlation matrix was clustered using k-means, the 

gap-statistic was used to determine the optimal number of clusters (k=6).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Highly improved mRNA detection sensitivity in Slide-seqV2.
A) Overview of the Slide-seq method. An example array of mouse hippocampus generated 

with Slide-seqV2, with each bead colored by the number of UMIs.

B) Histogram of number of UMIs per bead for Slide-seq (red) versus Slide-seqV2 (blue) on 

serial mouse embryo sections.

C) Images of marker genes of hippocampus in Slide-seqV2 (left column) versus HCR FISH 

images (right column, N=1 HCR experiment on serial section of Slide-seq data shown).
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D) Comparison of marker gene counts in mouse hippocampus CA1 across four modalities 

(N = 6 measurements per modality, mean ∓ sd reported in Supplementary Table 2). For 

smFISH, Slide-seqV2 and Slide-seq data, all transcript counts within a fixed area of CA1 

were summed together; for scRNA-seq, we summed the counts for the number of CA1 

pyramidal cells counted within this area.

(All scale bars 500 μm)
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Figure 2: Slide-seqV2 reveals spatial patterning of dendritically enriched mRNAs.
A) Spatial heatmap of number of UMIs for a hippocampal Slide-seqV2 dataset.

B) (top) Schematic of linear spatial profiling across CA1 soma and dendrites. (bottom) 

Spatial profiles of a CA1 marker (Hpca, red), and a classically dendritically localized gene 

(Camk2a, blue) are shown.

C) Differentially expressed genes in soma versus proximal dendrites. Highlighted are 

genes with FDR-corrected p-value <0.05 and fold change >2. Several classically known 

dendritically expressed genes are circled: (Camk2a, (FDR adjusted p = 2.8×10−3, Yellow), 
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Ef1a (FDR adjusted p = 5×10−4, Green), Prkcz (FDR adjusted p = .034, Red), Map2 (FDR 
adjusted p = 1.7×10−4, Teal) and Ddn (FDR adjusted p = 2.×10−5, Purple). Two tailed, two 

sample t-test (N=5 tissue sections).

D) Expression heatmap of 237 dendritically enriched RNAs across the neuronal profile axis. 

Genes are shown clustered by their spatial profile (k-means clustering, 4 clusters). Rows are 

normalized and sum to 1.

E) Average spatial expression profile of each of the four gene clusters identified in D across 

CA1.

F) Slide-seqV2 reconstruction images of one synaptic protein-encoding gene from each of 

the four clusters in D. Scale bars are 500 μm for all Slide-seqV2 reconstructions. Color bar 

represents the total number of UMIs detected for gene.

G) Quantile-quantile plot of the log2 fold-change (log2 FC) between CA1 and CA3/dentate 

pyramidal cell types (defined by scRNA-seq12) of dendritic (x-axis), compared with somatic 

(y-axis) gene sets defined by the analysis in C.

H) Ratio of expression between CA3 and CA1 regions in soma and dendrites for Slide

seqV2 data. Linear fit shown in red (slope = 0.22, R2 = 0.13).
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Figure 3: Slide-seqV2 of developing mouse cortex reconstructs spatial developmental trajectories
A) Left: Unsupervised cluster analysis of Slide-seqV2 data obtained from a section of E15 

mouse brain. Black box delineated the region used in the analysis. (Scale bar, 200 μm, 

ML: medial/lateral axis, DV: dorsal ventral axis). Right: Beads present within black-box 

inset from top, colored by their annotated cluster identities, subsetted by clusters of cortical 

identity. Red = Ventricular Zone (VZ), Blue/Purple = Subventricular Zone/ Intermediate 

Zone, Green/ Orange = Cortical Plate/ Layer 5 / 6, Pink = Cajal Retzius Cells (CR cells). 

These reflect the layers present in the mouse cortex at this time point.
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B) Beads within the anatomical region of developing cortex, colored by their assigned 

latent time metric from scVelo. Arrow size and direction correspond to the direction and 

magnitude of the spatial derivative of the latent time in physical space.

C) Expression profiles of sample genes jointly identified by Slide-seqV2, scVelo and 

Monocle3, across the Slide-seqV2-generated spatial latent time axis.

D) Two-dimensional density plot quantifying the relationship between a gene’s correlation 

with scVelo latent time (x-axis)and spatial significance (Permutation test, one-sided, y-axis), 

see Methods). Each square is colored by the number of genes found in that bin.

E) Stacked histogram of the number of genes associated to the developmental trajectory by 

Monocle3 (blue), scVelo (yellow), and spatial latent time (red), binned by expression level .

F) left: density plot of all spatial latent time genes (SV) compared to DD latent time genes 

(DD) across mean expressed latent time value; right: density plot of all spatial latent time 

genes (SV) compared to DD latent time genes (DD) for summed gene expression across 

array.

G) Slide-seqV2 reconstruction images of metagenes associated with each spatial cluster of 

DD genes (Methods).

H) Gene-ontology classifications using over-representation analysis (Methods) for biological 

process terms for each spatial cluster in G (Hypergeometric test, FDR-corrected p-value).
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