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Abstract

A limitation of spatial transcriptomics technologies is that individual measurements may contain 

contributions from multiple cells, hindering the discovery of cell type-specific spatial patterns 

of localization and expression. Here, we develop Robust Cell Type Decomposition (RCTD), 

a computational method that leverages cell type profiles learned from single-cell RNA-seq to 

decompose cell type mixtures, while correcting for differences across sequencing technologies. 

We demonstrate RCTD’s ability to detect mixtures and identify cell types on simulated datasets. 

Furthermore, RCTD accurately reproduces known cell type and subtype localization patterns 

in Slide-seq and Visium datasets of the mouse brain. Finally, we show how RCTD’s recovery 

of cell type localization enables the discovery of genes within a cell type whose expression 

depends on spatial environment. Spatial mapping of cell types with RCTD enables defining spatial 

components of cellular identity, uncovering new principles of cellular organization in biological 

tissue. RCTD is publicly available as an open source R package at https://github.com/dmcable/

RCTD.
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Cell-type mapping in spatial transcriptomics is enabled by accounting for compositional mixtures 

and differences in sequencing technologies.

Introduction

Tissues are composed of diverse cell types and states whose spatial organization governs 

interaction and function. Recent advances in spatial transcriptomics technologies [1–3] have 

enabled high throughput collection of RNA-sequencing coupled with spatial information in 

biological tissues. Using such technologies to spatially map cell types is fundamental to our 

understanding of tissue structure. In particular, knowledge of spatial localization of specific 

cellular subtypes remains incomplete and laborious to obtain [4,5].

Spatial transcriptomics technologies have the potential to elucidate interactions between 

cellular environment and gene expression, augmenting our knowledge of healthy functions 

and disease states of tissues. Spatial transcriptomics data is composed of gene expression 

counts for each of the spatial measurement locations, here referred to as pixels, that tile a 

two dimensional surface. A common task of interest is identifying genes with expression 

varying across space. Current computational methods search for spatial patterns in gene 

expression without stratifying by cell type [6–8]. However, much of the variation detected 

by these methods may be driven by varying cell type composition across the spatial 

landscape, since single-cell RNA sequencing (scRNA-seq) studies have revealed that cell 

type can explain a majority of the variation within a population of cells [9,10]. It is therefore 

necessary to consider cell type information when searching for spatial gene expression 

patterns.

Assignment of cell types is analytically challenging, even for high-resolution approaches 

such as Slide-seq, due to the fact that although pixel resolution can approach the size of 

mammalian cells (e.g. Slide-seq, 10 microns) [11], fixed pixel locations may overlap with 

multiple cells. As a result, gene expression measurements at a single pixel may be the result 

of a mixture of multiple cell types. Currently, the most widely used approach to identifying 

cell types relies on unsupervised clustering [12]; however, this approach does not allow for 

the possibility of cell type mixtures. A fundamental challenge is thus to correctly identify 

these mixture pixels as a combination of multiple cell types, permitting a more complete 

characterization of the spatial localization of cell types in spatial transcriptomics.

Several recent methods have used scRNA-seq references to predict cell types on spatial 

transcriptomics data [11,13]; however, some do not statistically model platform effects, 

Poisson sampling, and overdispersed counts [11], despite recent evidence that methods 

in scRNA-seq data analysis accounting for these aspects of gene expression count data 

outperform those assuming normality [14,15]. Others have not yet been demonstrated to 

scale to large datasets, such as those obtained by Slide-seq, and they perform cell type 

enrichment testing at the level of regions rather than individual pixels [13].

Here, we introduce Robust Cell Type Decomposition (RCTD), a supervised learning 

approach to decompose RNA sequencing mixtures into single cell types, enabling 

assignment of cell types to spatial transcriptomic pixels. Specifically, we leverage annotated 
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scRNA-seq data to define cell type-specific profiles for the cell types expected to be present 

in the spatial transcriptomics data. Several supervised cell type assignment methods have 

achieved high accuracy in scRNA-seq [12,16], but are not designed for mixtures of multiple 

cell types. RCTD fits a statistical model that estimates mixtures of cell types at each pixel.

A pertinent challenge for supervised cell type learning is what we term platform effects: the 

effects of technology-dependent library preparation on the capture rate of individual genes 

between sequencing platforms. We show that if these platform effects are not accounted for, 

supervised methods are unlikely to succeed since systematic technical variability dominates 

relevant biological signals [17]. These effects have been previously found in comparisons 

between single-cell and single-nucleus RNA-seq on the same biological sample [18], where 

it has been shown that e.g. nucleus-localized genes are enriched in single-nucleus RNA-

seq. Here, we demonstrate that platform effects between the scRNA-seq reference and 

spatial transcriptomics target present a challenge when transferring cell type knowledge to 

spatial transcriptomics. To enable cross-platform learning in RCTD, we have developed and 

validated a platform effect normalization procedure.

We demonstrate that RCTD can accurately discover localization of cell types in both 

simulated and real spatial transcriptomic data. Furthermore, we show that RCTD can detect 

subtle transcriptomic differences to spatially map cellular subtypes. Finally, we use RCTD 

to compute expected cell type-specific gene expression, which enables detection of changes 

in gene expression based on the spatial environment of a cell. Below, we demonstrate how 

RCTD learns mixtures of cell types in spatial transcriptomics data, facilitating quantification 

of the effect of spatial position and local cellular environment on gene expression within a 

cell type.

Results

Challenges in Spatial transcriptomics: cell type mixtures and platform effects

Spatial transcriptomics pixels source RNA from multiple, rather than single, cells creating 

a challenge for cell type learning. In Slide-seq cerebellum data, we found that the most 

widely used approach for scRNA-seq cell type identification, unsupervised clustering [12], 

incorrectly classifies cell types that colocalize spatially but are not similar transcriptionally. 

For example, Bergmann and Purkinje cells spatially colocalize to the same layer, resulting 

in a population of pixels that possess marker genes from both cell types (Figure 1a). The 

most likely explanation for this observation is that these pixels contain two or more cells 

of different types, but unsupervised clustering assigns these doublet pixels to just one cell 

type. Moreover, this approach predicts granule cells not exclusively in the granular layer, 

with many cells incorrectly predicted inside the molecular layer and oligodendrocyte layer 

and possessing low granule marker expression (Figure 1b–c, Supplementary Figure 1–2).

An additional challenge, platform effects, arises in applying supervised learning, in which 

scRNA-seq cell type profiles are leveraged to classify spatial transcriptomic cell types. For 

instance, a standard supervised learning approach trained on an assessment single-nucleus 

RNA-seq cerebellum dataset with known cell types obtained much higher accuracy in the 

training platform than the testing platform, a single-cell RNA-seq cerebellum dataset (Figure 
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1d–e). This difference is explained by the presence of platform effects, which can cause 

gene expression to change multiplicatively between single-nucleus and single-cell RNA-

seq (Figure 1f). NMFreg, a supervised cell-type mixture assignment algorithm previously 

developed for Slide-seq, also does not account for platform effects. Testing on the Slide-

seq cerebellum dataset, NMFreg assigned a minority (24.8% out of n = 11626) of pixels 

confidently to cell types and mislocalized broad cell type classes (Supplementary Figure 

3). Likewise, DWLS, a method designed for bulk RNA-seq deconvolution [19], does not 

account for platform effects and performed better at within-reference cell type classification 

than cross-platform cell type classification (Supplementary Figure 4).

Robust Cell Type Decomposition enables cross-platform detection of cell type mixtures

To address these challenges, RCTD accounts for platform effects while using a scRNA-seq 

reference to decompose each spatial transcriptomics pixel into a mixture of individual cell 

types. RCTD first calculates the mean gene expression profile of each cell type within 

the annotated scRNA-seq reference (Figure 2a). Next, RCTD creates a spatial map of cell 

types by fitting each spatial transcriptomics pixel as a linear combination of individual cell 

types. RCTD takes as input RNA-sequencing counts for each pixel and assumes an unknown 

mixture of multiple cells (Figure 2a). Each cell type contributes an unobserved proportion 

of counts to each gene. RCTD estimates the proportion of each cell type for each pixel by 

fitting a statistical model where, for each pixel i and gene j, the observed gene counts Yi,j 

are assumed to be Poisson-distributed. The rate parameter is determined by the pixel’s total 

transcript count, Ni, and λi,j, a mixture of K cell type expression profiles:

Yi, j λi, j Poisson Niλi, j .

To account for platform effects and other sources of natural variability, such as spatial 

variability, we assume λi,j is a random variable defined by

log λi, j = αi + log ∑
k = 1

K
βi, kμk, j + γj + εi, j,

with μk,j the mean gene expression profile for cell type k, αi a fixed pixel-specific effect, γj 

a gene-specific platform random effect and εi,j a random effect to account for gene-specific 

overdispersion.

We use maximum likelihood estimation to infer the cell type proportions, βi,k, indicating 

which cell types are present in each pixel (see Methods for details). RCTD may be used 

without constraining the number of cell types per pixel or with what we refer to as doublet 
mode, which searches for the best fitting one or two cell types per pixel (see Methods for 

details). In particular, we refer to pixels as singlets if they contain only one cell type and 

doublets if they contain two cell types. Doublet mode may mitigate overfitting if mixtures 

of three or more cell types are expected to be rare, as we found in Slide-seq (Supplementary 

Figure 5). We have also extended doublet mode to optionally fit more than two cell types per 

pixel (Methods).
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Because gene-specific platform effects are not observable from the raw data, we developed a 

procedure to estimate platform effects between sequencing platforms with RCTD (Methods, 

Supplementary Table 1). Training RCTD on the single-nucleus RNA-seq cerebellum 

reference and testing on the single-cell RNA-seq cerebellum dataset, we validated that our 

approach is able to reliably recover the platform effects (R2 = 0.90) (Figure 2b). After 

normalizing cell type profiles for platform effects, RCTD achieved high cross-platform 

single-cell classification accuracy (89.5% of n = 3960 cells) (Figure 2c). Transcriptomically 

similar cell types, e.g. oligodendrocytes/polydendrocytes, accounted for most of the 

remaining errors (91.8% of n = 415 errors).

Because ground-truth cell type identities are not known in spatial transcriptomics datasets, 

we benchmarked RCTD’s performance on single-nucleus and single-cell RNA-sequencing 

datasets with ground-truth cell types obtained from previous studies [20,21]. To evaluate 

RCTD’s ability to detect and decompose mixtures in spatial transcriptomics data in the 

presence of platform effects, we trained RCTD on the single-nucleus RNA-Seq (snRNA-

seq) cerebellum reference (Supplementary Figure 6), and tested on a dataset of doublets 

simulated as computational mixtures of single cells with known cell types in the scRNA-seq 

dataset (See Methods for details). By varying the true underlying cell type proportion, we 

observed that RCTD correctly classified singlets (89.2% ± 0.5% s.e.) and doublets (81.1% 

± 0.3% s.e.) with high accuracy (Figure 3a, Supplementary Figure 7). A large proportion 

of doublet misclassifications came from transcriptionally similar cell types appearing on 

the same doublet pixel, which RCTD often misclassified (87.0% ± 1.2% s.e.) as singlets 

(Supplementary Figure 7). Additionally, RCTD identified each cell class present on each 

doublet with 98.2% accuracy on confident calls (Methods, ± 2.8% s.d. across 66 cell type 

pairs) (Figure 3b, Supplementary Figure 8–9). Finally, RCTD accurately estimated the 

proportion of each cell type on the sample with 12.8% RMSE ( ± 6.9% s.d. across 66 cell 

type pairs) (Figure 3c–d). These technical validations show that RCTD can accurately learn 

cell type information in a dataset with mixtures of single cells.

Next, we extended our validation of RCTD on simulated data to additional contexts 

including varying unique molecular identifier (UMI) counts per pixel, more than two cell 

types per pixel, and missing cell types in the reference (Supplementary Figure 10–13). 

We found that additional UMIs per pixel led to an increased confidence rate, and RCTD 

achieved high classification accuracy on pixels containing ≥ 100 UMIs (Supplementary 

Figure 10). Moreover, we additionally found that RCTD was able to accurately predict cell 

class proportions on pixels containing three or four cell types, a typical regime in lower 

resolution spatial transcriptomics (e.g. Visium, Supplementary Figure 12–13). When cell 

types in the simulated spatial data were missing from the reference, RCTD classified pixels 

as the most transcriptionally similar cell type in the reference, if available (Supplementary 

Figure 10). When no closest cell type was available in the reference, RCTD predicted cell 

types with reduced confidence rates (Supplementary Figure 10), but often misclassified such 

pixels (Supplementary Figure 11).
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RCTD localizes cell types in spatial transcriptomics data

We next applied RCTD to assign and decompose cell types in spatial transcriptomics data. 

We first applied RCTD to localize cell types in the mouse cerebellum, using a single-nucleus 

RNA-seq (snRNA-Seq) reference for training, and a Slide-seqV2 dataset collected on the 

adult mouse cerebellum as the target. RCTD confidently classified a majority (86.9%, out 

of n = 11626) of pixels, and the resulting cell type calls are consistent with the spatial 

architecture of the cerebellum (Figure 4a) [22]. Since ground truth cell type labels do not 

exist for spatial transcriptomic data, to assess the accuracy of RCTD, we used multiple 

validation strategies including comparison to marker genes and prior knowledge of spatial 

organization. While presence of marker genes should be expected to roughly correspond 

to cell type presence, we do not expect a perfect relationship and consequently look for 

marker gene presence in conjunction with prior biological knowledge. We first considered 

Purkinje/Bergman cells, two cell types which are spatially co-localized in the cerebellum. 

We found that RCTD’s singlet pixels assigned to Purkinje or Bergmann cell types do not 

possess markers of the other cell type (Figure 4b). Moreover, pixels predicted as doublets 

contained marker genes of both Bergmann and Purkinje cells, with estimated cell type 

proportion correlating with marker gene ratio (Figure 4c). We next observed that RCTD 

correctly localized molecular layer interneurons to the molecular layer [20], granule cells to 

the granular layer, and oligodendrocytes to the white matter layer [22], predictions further 

supported by the spatial correspondence between RCTD’s assignments and the marker genes 

of each cell type (Figure 4d, Supplementary Figure 14). Next, to validate RCTD’s ability 

to correctly localize doublets, we leveraged the layered organization of the cerebellum 

(Figure 4e) [22]. RCTD finds doublets within a layer and between adjacent layers, but rarely 

between spatially separated layers (Figure 4f).

To test if RCTD achieved consistent results when trained on multiple datasets, we 

additionally trained RCTD on the single-cell RNA-seq cerebellum dataset and tested on 

Slide-seq cerebellum (Supplementary Figure 15). On confidently classified pixels, RCTD, 

trained on two different references, agreed on 95.7% of cell type predictions (Supplementary 

Figure 16). We additionally validated RCTD’s ability to reproduce the layered structure of 

cortical cell types in a Slide-seqV2 dataset of the mouse somatosensory cortex, training 

on a Smart-seq2 reference (Methods) (Supplementary Figure 17–18) [1,23]. We found 

that cortical neuron subtypes appeared in appropriate layers, with L2/3 intratelencephalic 

(IT), followed by L4, followed by L5 IT and L5 pyramidal tract (PT), followed by L6 

corticothalamic (CT) and L6 IT, followed by L6b, consistent with the results of additional 

studies [24].

RCTD discovers spatial localization of cellular subtypes

Next, we tested the ability of RCTD to profile the spatial localization of cellular subtypes, 

recently defined by large-scale transcriptomic analyses [21], for which there is limited 

knowledge of spatial position in their resident tissues. To this end, we validated RCTD’s 

ability to classify previously defined [21] subtypes of interneurons in the hippocampus 

(Methods). We first used RCTD to spatially annotate cell types in Slide-seq data of the 

mouse hippocampus (Figure 5a), training on a scRNA-seq hippocampus dataset [21]. We 

found that RCTD correctly localizes hippocampal cell types (Supplementary Figure 19–20). 
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We also validated RCTD’s ability to localize hippocampal cell types in a Visium spatial 

transcriptomics dataset (Supplementary Figure 20–21) [2] and found qualitative agreement 

between predicted cell type localization patterns on Slide-seq and Visium (Supplementary 

Figure 22). We then observed spatial clustering of pixels assigned to the broad class of 

interneurons (Figure 5b), which we inferred to be derived from large, single interneuron 

cells [4], an inference supported by histological examination [25] (Supplementary Figure 

23). Consequently, we tested RCTD’s performance in assigning pixels within a cluster to 

the same interneuron subclass and found high agreement (97.1% ± 0.09% s.e.) of coarse 

subclass classification between confident pixels within the same spatial cluster (Figure 5c, 

Methods). Additionally, we found that the spatial localization of the Basket/OLM subclass 

coincides with expression of Sst, a differentially expressed gene for this subclass (Figure 

5d). Finally, we used RCTD to assign each spatial cluster to one of 27 transcriptomically 

defined interneuron subtypes, confidently classifying the majority of interneuron pixels 

(Figure 5e, Supplementary Figure 24). Localizations of known subtypes, such as CA1-

Lacunosum, which appears in the stratum lacunosum-moleculare (SLM) layer of the CA1 

[26], and OLM, which appears primarily in the stratum oriens (SO) [27], agree with known 

anatomy. We conclude that RCTD enables the identification of spatial locations of cellular 

subtypes in spatial transcriptomics data.

RCTD enables detection of spatially variable genes within cell type

Previous computational methods search for spatially variable genes without incorporating 

cell type information [6–8]. However, because cell types are not evenly distributed in space, 

and different cell types have different expression profiles, this approach will likely lead 

to confusing cell type marker genes with spatially variable genes. For example, we found 

that the 20 genes with the highest spatial autocorrelation in the Slide-seq hippocampus 

(Methods) were primarily expressed in only a few cell types, indicating that their spatial 

variation is partially driven by cell type composition (Figure 6a). After conditioning on cell 

type, a majority of these genes exhibited small remaining spatial variation (Figure 6b). For 

example, Ptk2b is differentially expressed in excitatory neurons, but does not exhibit any 

spatial variation that is unexplained by cell type alone (Figure 6c).

Instead, RCTD enables estimation of spatial gene expression patterns within each cell type. 

After identifying cell types, we used RCTD to compute the expected cell type-specific 

gene expression for each cell type within each pixel (see Methods for details). Using this 

cell type-specific expected gene expression, we detected genes with large spatial variation 

within CA3 pyramidal neurons (Figure 6b, p ≤ 0.01, permutation F-test, Supplementary 

Table 2). For these genes, we recovered smooth patterns of gene expression over space with 

locally weighted regression (Figure 6d, see Methods for details). In addition to spatially 

variable genes, RCTD can be used to detect the effect of cellular environment on gene 

expression. In the hippocampus, RCTD detected astrocyte doublets with many cell types in 

distinct spatial regions (Figure 6e); we hypothesized that astrocytic transcriptomes could 

vary based on their cellular environment. We detected genes whose expression within 

astrocytes depended on co-localization with another cell type (Figure 6f–g, Methods, 

Supplementary Table 2). For instance, we found that Entpd2 was enriched in astrocytes 

colocalizing with dentate neurons (p = .025, two-tailed z-test). This is consistent with a prior 
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study that detected a population of astrocyte-like progenitor cells in the dentate expressing 

Entpd2 [28]. Moreover, Slc6a11, which enables uptake of the GABA neurotransmitter and 

likely modulates inhibitory synapses [29], was differentially expressed in astrocytes around 

excitatory neurons (p < 10−6, two-tailed z-test) [30]. Thus, RCTD enables measurement of 

the effect of the cellular environment and space on gene expression.

Discussion

Accurate spatial mapping of cell types and detection cell type-specific spatial patterns 

of gene expression is critical for understanding tissue organization and function. Here, 

we introduce RCTD, a computational method for accurate decomposition of spatial 

transcriptomic pixels into mixtures of cell types, using a single-cell RNA-seq reference 

normalized for platform effects. RCTD takes as input RNA sequencing counts at each pixel 

containing an unknown mixture of multiple cells, and predicts the proportion of each cell 

type on each pixel. RCTD accurately maps cell types, as demonstrated on both a dataset of 

simulated doublets as well as cerebellum and hippocampus spatial transcriptomics datasets. 

We additionally demonstrated RCTD’s ability to correctly localize subtypes in a Visium 

hippocampus spatial transcriptomics dataset, showing that RCTD can be applied broadly 

to different platforms. We further showed RCTD can spatially localize transcriptomically-

defined cellular subtypes of interneurons of the hippocampus. Lastly, we demonstrated 

that RCTD enables discovery of spatially varying gene expression within cell types in the 

hippocampus.

As the cost of sequencing diminishes, scRNA-seq datasets are becoming more prevalent 

and easier to generate [31]. Individual scRNA-seq methods can be more or less similar 

to a spatial transcriptomics dataset in their platform effects, which can be measured by 

RCTD. For example, relative to Slide-seq, we found a lower magnitude of platform effects 

for the single-cell hippocampus reference than for the single-nucleus cerebellum reference. 

While spatial platform effects are hard to measure a priori, we have demonstrated our 

platform effect normalization procedure to be robust to the choice of reference (scRNA-seq, 

snRNA-seq, SMART-seq). We thus anticipate it to be compatible with future scRNA-seq 

modalities. Furthermore, our method is flexible to the choice of target platform. For 

example, our procedure for estimating platform effects depends only on merging all pixels 

into one pseudo-bulk measurement. Our method can consequently be applied to estimate 

platform effects from a scRNA-seq reference to any other sequencing technology, including 

bulk RNA sequencing, providing a generally-applicable normalization procedure for RNA 

sequencing. Although motivated by spatial transcriptomics, we expect that RCTD can learn 

cell types on other non-spatial datasets with single cells or mixtures of multiple cell types 

[32].

A limitation of RCTD is that it relies on an assumption that platform effects are shared 

among cell types. This is a general problem with reference-based cell type learning, and 

it will be important to explore learning cell type-specific platform effects in future work. 

We additionally found that a challenging problem for RCTD is cell types missing from the 

reference but present in the spatial data. This issue may be mitigated by cropping the spatial 

data to exclude regions known a priori to primarily contain cell types not present in the 
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reference. Future work includes improving our method to identify pixels with cell types out 

of reference.

When fine spatial resolution causes localization of three or more cell types to one pixel to 

be uncommon (e.g. Slide-seq [11]), we recommend using doublet mode of RCTD, which 

constrains at most two cell types per pixel. Otherwise, RCTD can be used to decompose any 

number of cell types per pixel (e.g. Visium). Similar in principle to AIC model selection 

methods [33], doublet mode reduces overfitting by penalizing the number of cell types used, 

improving RCTD’s statistical power. This concept can be readily extended to triplets and 

beyond in future work.

A major goal of spatial transcriptomics is understanding the contributions of cell type 

and cellular environment on cell state. RCTD facilitates the discovery of these effects by 

computing expected cell type-specific gene expression for each spatial transcriptomics pixel. 

For instance, we analyzed gene expression within astrocytes to detect astrocytic genes 

influenced by local cellular environment. There are many drivers of a gene’s dependence 

on cellular environment: cell-to-cell interactions, regional signalling factors, or cellular 

history during development. The ability of RCTD to localize cell types uniquely enables 

high-throughput generation of biologically-relevant hypotheses concerning the effects of 

space and environment on gene expression. As more spatial transcriptomics datasets are 

generated, we expect that RCTD will facilitate the discovery of new principles of cellular 

organization in biological tissue.

Methods

Statistical model

Here, we describe the statistical model used to perform Robust Cell Type Decomposition 

(RCTD) to identify mixtures of cell types. For each pixel i = 1, …, I in the spatial 

transcriptomics dataset, we denote the observed gene expression counts as Yi,j for each 

gene j = 1, …, J. We model these counts with the following hierarchical model,

Y i, j |λi, j Poisson Niλi, j

log λi, j = αi + log ∑
k = 1

K
βi, kμk, j + γj + εi, j,

(1)

with Ni the total transcript count or number of unique molecular identifies (UMIs) for pixel 

i, K the number of cell types present in our dataset, αi a fixed pixel-specific effect, μk,j 

the mean gene expression profile for cell type k and gene j, βi,k the proportion of the 

contribution of cell type k to pixel i, γj a gene-specific platform random effect and εi,j a 

random effect to account for other sources of variation, such as spatial effects. By modeling 

Poisson noise, RCTD can account for sampling noise including when overall UMI counts 

are low (≈ 100 − 1000), such as in Slide-seq. Data exploration (Figure 1f) supported a 

Poisson-lognormal mixture, used previously for count data [34]. Thus, we assume γj and εi,j 

both follow normal distributions with mean 0 and standard deviation σγ and σε, respectively. 

We note that in practice we additionally modify the random effects distributions to include a 

heavier tail that is robust to outliers (using an approximation to a Cauchy-Gaussian mixture 
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distribution [35]; see supplementary methods for details). The main goal of our analysis is 

to estimate the βi,k’s, which represent the cell type or cell types present in each pixel i, 

constrained so that ∑k = 1
K βi, k = 1 and each βi,k ≥ 0.

Fitting the model

Model (1) is a complex model with thousands of parameters (many, K × J, of these 

parameters are introduced by the cell type-specific gene expression profiles). We overcome 

this challenge by fitting our model using a stepwise approach that includes a supervised 

learning step for estimating these expression profiles, μk,j. The steps of our estimation 

approach are as follows:

1. Supervised estimation of cell type profiles: We use a reference dataset, refered to 

as the training dataset, to obtain estimates for the mean gene expression profiles 

μk,j. We refer to these estimates as μk, j, which are then considered fixed in the 

next steps.

2. Gene filtering: We use the estimated cell type profiles μk, j to filter out genes 

that are unlikely to be informative. We do this by selecting genes that show 

differential expression across cell types.

3. Platform Effect Normalization: The random effects γj account for the unwanted 

technical variation resulting from gene expression profiles varying across 

different sequencing platforms. The next step is therefore to estimate σγ and 

predict γj for each gene j. We denote the prediction of the random effects as γ j, 

which are then considered fixed in the next step.

4. Robust Cell Type Decomposition: We use the plugin estimates μk, j and γ j
and assume they are fixed. Conditional on these estimates, for each sample i 
and treating εi,j as a random effects, we can compute the maximum likelihood 

estimate (MLE) for βi,k, αi, and σε.

Next we describe each of these steps in detail.

Supervised estimation of cell type profiles

First, we obtain a single-cell RNA-seq reference, which has been previously annotated with 

cell types. We estimate μk, j as the average normalized expression of gene j within all cells of 

cell type k.

Gene filtering

Using the estimated cell type expression profiles μk, j, we select differentially expressed 

genes that will be informative when estimating cell type proportions. For each cell type 

in the scRNA-seq reference, we select genes with minimum average expression above 

.0625 counts per 500 and at least 0.5 log-fold-change compared to the average expression 

across all cell types. Typically, this results in about 5,000 genes for the platform effect 

normalization step. These parameters are further increased for the Robust Cell Type 

Decomposition step, to reduce the set to about 3,000 genes for computational efficiency.
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Platform effect normalization

Estimating the βi,k in the presence of the unobserved platform effects γj is challenging. 

However, γj can be reliably predicted independently from the other parameters by 

summarizing the spatial transcriptomics data as a single pseudo-bulk measurement 

Sj ≡ ∑i = 1
I Y i, j. Notice that, conditioned on the rates λi,j, Sj is Poisson distributed with 

the average Y j = 1
I Sj having expectation:

log E Y j λ1, j, …, λI, j = log 1
I ∑

i = 1

I
Niλi, j

= γj + log N ∑
k = 1

K
μk, jBk, j

≈ γj + log N ∑
k = 1

K
μk, jβk + log β0

with

β0 a scaling factor constant, N = 1
I ∑

i = 1

I
Ni and Bk, j = 1

I ∑
i = 1

I Ni
N βk, i exp αi + εi, j

a random variable that is approximately proportional to βk = 1
I ∑i = 1

I Ni
N βi, kαi, the proportion 

of cell type k in our target dataset:

Bk, j ≈ βkβ0 .

This follows from the fact that E Bk, j = βkβ0, and Var(Bk,j) converges to 0 when I is large 

(see supplementary methods for details). By plugging in the μi, j obtained in the first step 

and treating them as known, we can then obtain the maximum likelihood estimator (MLE) 

for β0, the βk’s, and σγ and subsequently estimate the platform effects γj as γ j.

Robust Cell Type Decomposition

With μk, j and γ j in place, we plug them into equation (1) which we can rewrite as,

Y i, j | εi, j Poisson Ni exp αi + log ∑
k = 1

K
βi, kμk, j + γ j + εi, j (2)

εi, j Normal 0, σε2 , (3)

and we obtain the MLE αi, βi,k and σε. The algorithm implemented to find the MLE is in the 

supplementary methods, and we have validated its ability to find the MLE (Supplementary 

Figure 25).
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Cell type identification by model selection

Notice that in the procedure described above, β i, k > 0 for as many as K cell types, 

implying that pixel i is a mixture of several cell types. However, for many spatial 

transcriptomics technologies, we do not expect more than two cell types per pixel. We 

therefore implemented a version of our model and estimation procedure that constrains the 

number of k′s for which βi,k > 0 to two. We refer to this version of method as doublet 
mode. In doublet mode, cell type identification is accomplished using a model selection 

framework, where we compare likelihoods and penalize the inclusion of an additional 

features. In this version of our method, we refer to the two possible outcomes as singlet and 

doublet. The maximum number of cell types per pixel can be optionally increased (e.g. to 3 

or 4, Supplementary Methods), or RCTD can be run without constraining the number of cell 

types per pixel.

Specifically, for each cell type k, we compute ℒ(k) as the log-likelihood of the model fit 

with only cell type k, and ℒ(k, ℓ ) as the log-likelihood of the model fit with only cell types 

k and ℓ. For each pixel i we then define

k = arg maxk ℒ(k) and  ℓ = arg maxl ≠ k ℒ(k, ℓ ) .

Because we expect many pixels to represent only one cell type, we then used a penalized 

approach similar to AIC [33] to decide between the two models, using only one cell k or two 

k, ℓ. Specifically, we select the model ℳ maximizing,

AIC(ℳ) ≡ ℒ(ℳ) − V p(ℳ),

with p the number of parameters (cell types) and V a penalty weight. In the results presented 

here, we selected V = 25 based on simulation studies.

We then use an ad-hoc approach to classify our selections into either confident or 

unconfident in the following way:

1. Consider pairs of cell types (k, ℓ) such that ℒ(k, ℓ ) − ℒ(k, ℓ ) < δ. If there 

exists one such pair such that k ∉ k, ℓ  and another (possibly identical) pair 

where ℓ ∉ k, ℓ , then we assume that we do not have enough information to 

predict cell types and call this pixel unconfident. If this condition does not hold, 

then we will be confident of at least one cell type, k and/or ℓ, that appears in all 

such pairs.

2. If condition 1 does not hold, and we select the singlet model, then we call this a 

confident singlet.

3. If condition 1 does not hold, and we select the doublet model, then if there exists 

a cell type pair {k, ℓ} distinct from {k, ℓ} for which |ℒ(k, ℓ ) − ℒ(k, ℓ ) | < δ, we 

call this a unconfident doublet, otherwise we call this a confident doublet.
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For the work in this paper, we set δ = 10 based on simulation studies. Although this value of 

δ was used for RCTD’s accurate results across all datasets in this study, users can decide to 

increase δ from the default, which will reduce the number of confident pixels and potentially 

achieve more accurate results on fewer confident pixels.

Classification of cellular subtypes

We apply the RCTD procedure described above to detect major cell types. But, as mentioned 

in the results section, recently characterized cellular subtypes have been identified and 

defined by large-scale transcriptomic analyses [21]. After selecting pixels in which RCTD 

was confident of the presence of the cell type of interest, we re-ran RCTD on these pixels 

using a larger set of cellular subtype profiles defined by the reference. During the subtype 

step of RCTD, we constrained the major cell types appearing on each pixel so be the same as 

originally detected by RCTD.

For interneurons, we used 27 previously defined [21] interneuron subtypes and 

hierarchically clustered the log average expression vectors of these subtypes into 3 major 

subclasses (Supplementary Figure 26). In order to define spatial clusters of Slide-seq 

interneurons, we hierarchically clustered the points in space and manually split doublets. 

To classify a set of pixels presumed to comprise the same cell, we selected the subtype 

maximizing the joint density of these pixels by summing the log-likelihoods.

Expected cell type-specific gene expression

Once β has been estimated by RCTD, we can compute the expected cell type-specific gene 

expression at each pixel. Specifically, we compute the conditional expectation of Yi,k,j, the 

expression of gene j on pixel i from cell type k (see supplementary methods for derivation):

E Y i, k, j β, Y i, j = Y i, jβk, iμk, j
∑k′ = 1

K βk′, iμk′, j
(4)

Intuitively, the expected expression of a cell type is proportional to the proportion of the cell 

type on the pixel and the probability of observing the gene in each cell type. We note that we 

are only computing the conditional expectation E Y i, k, j β, Y i, j , but Yi,k,j | β, Yi,j may have 

large variance for a single pixel, due to sampling noise. Furthermore, this estimate is based 

on a strong assumption of the model that random effects of gene expression εi,j are shared 

across cell types.

Collection and processing of scRNA-seq and spatial transcriptomics data

We used publicly available single-cell RNA-seq datasets, which have previously been 

annotated by cell type using clustering. While clustering itself is an imperfect annotation 

of cellular identity, for the purposes of our study we assumed that these annotations were 

sufficiently accurate. For running RCTD on cerebellum, we trained on a single-nucleus 

RNA-seq dataset [20]. For training RCTD on hippocampus, and testing (cross-platform) 

RCTD in cerebellum, we used the DropViz single-cell RNA-seq dataset [21]. This single-

cell cerebellum dataset was also used as training data to predict on Slide-seq cerebellum 
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(Supplementary Figure 15). The DropViz hippocampus dataset also contained annotations 

for interneuron subtypes. Before training RCTD on Smart-seq2 (to predict on Slide-seq 

somatosensory cortex), we normalized read counts by gene length, following the approach 

of transcripts per million (TPM). For marker gene plots, we define a metagene for each 

cell type as the sum of genes that are over-expressed with a log-fold-change above 3. In 

Supplementary Figure 3 concerning the Slide-seq cerbellum, for the cell type MLI2, the 

log-fold-change threshold was increased to 4 to achieve additional specificity.

Slide-seq mouse cerebellum and somatosensory cortex data was collected using the Slide-

seqV2 protocol, developed and described recently (see supplementary methods for details) 

[1]. Slide-seqV2 hippocampus and Visium hippocampus data were used from previous 

studies [1,2]. Data pre-processing occurred using the Slide-seq tools pipeline [1]. The region 

of interest (ROI) was cropped prior to running RCTD, and spatial transcriptomic spots 

were filtered to have a minimum of 100 UMIs. We used prior anatomical knowledge to 

crop the ROI from an image of the total UMI counts per pixel across space, which in 

many cases allows one to observe overall anatomical features. For example, in Slide-seq 

hippocampus, the somatosensory cortex was cropped out prior to analysis. In Slide-seq 

cerebellum, the granule region was defined as pixels that are within 40 microns of at least 6 

pixels expressing granule markers at the level of 5 counts per 500.

Validation with simulated doublets dataset

We trained RCTD on the cerebellum single-nucleus RNA-seq reference, and tested the 

model on a dataset of doublets simulated from the single-cell RNA-seq cerebellum dataset. 

We restricted to 12 cell types that appeared both in the single-nucleus and single-cell 

reference. In order to simulate a doublet, we randomly chose a cell from each cell type, and 

sampled a predefined number of UMIs from each cell (total 1, 000). In order to assess the 

performance of RCTD on predicting more than 1 or 2 cell types, we developed simulated 

spatial transcriptomics datasets with either three or four cell types per pixel. Cell type 

proportions per pixel were determined by choosing three or four cell types at random, and 

drawing the true cell type proportion from the uniform distribution. To model the conditions 

of Visium, we sampled 10, 000 UMIs per pixel. If a single cell did not have enough UMIs 

for its cell type, we continued augmenting the pixel with additional cells from that cell type.

We defined a doublet as containing 25–75% of UMIs for each of the two cell types, 

whereas a singlet contained 0% or 100%. We defined doublet classification rate (Figure 3a) 

as the ratio of number of predicted doublets to total predicted singlets or doublets. Cell 

type proportion estimation (Figure 3b, 3c) was measured with RCTD fit using the two cell 

types present on the simulated doublet. We defined coarser classes of cell types (used for 

e.g. Figure 3d) based on a previously defined dendrogram [20]. This resulted in pairing 

of MLI1/MLI2, Astrocytes/Bergmann, Oligoden./Polyden., and Endothelial/Fibroblast. Cell 

class identification rate (Figure 3d, top) was calculated on the subset of confidently called 

cell types.
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Detection of cell type-specific gene expression patterns

After computing expected cell type-specific gene expression, we detected spatially variable 

genes within a cell type. Genes were filtered for minimum average expression within the 

scRNA-seq reference of the cell type of interest (.01 counts per 500, and at least 50% as 

large as average expression of other cell types). We applied 2D local regression to these 

genes, and calculated coefficient of variation (CV) of the estimated smooth function. We 

selected genes with CV ≥ 0.5 and tested the local regression variation with a permutation 

F-test (p ≤ 0.01, 99 permutations of spatial locations).

Next, we searched for genes that changed their expression within astrocytes based on 

co-localization with another cell type. We classified astrocytes as co-localizing with another 

particular cell type if at least 25% of their neighbors within a 40 micron radius were that 

cell type. If at least 80% of these neighbors were other astrocytes, the cell was classified 

as co-localizing with other astrocytes. We filtered for genes in the scRNA-seq reference 

with minimum average expression within astrocytes (0.01 counts per 500, and log-fold-

change of ≥ 1.6 vs. each other cell type). We looked for genes that were differentially 

expressed depending on the co-localized cell type, testing with a two-tailed z-test (p < 0.05). 

We pooled together excitatory neuron cell types, defined as CA1, CA3, and dentate cell 

types, for the analysis of several genes, including Kcnj16, Slc7a10, and Slc6a11, that were 

differentially expressed in astrocytes localized around each of CA1, CA3, and dentate cell 

types.

Implementation details

RCTD is publicly available as an R package (https://github.com/dmcable/RCTD). The 

quadratic program that arises in the RCTD optimization algorithm is solved using the 

quadprog package in R [36]. We used and modified code from the DWLS package 

to implement sequential quadratic programming for RCTD [19,37]. Non-negative least 

squares regression was also implemented as a quadratic program. Unsupervised clustering 

was performed using the Seurat package, following Seurat’s spatial transcriptomics 

vignette [38]. Clusters were assigned by their expression of marker genes and spatial 

localization. Additionally, detection of globally spatially variable genes was accomplished 

using Seurat’s implementation of Moran’s I. Local regression was accomplished with 

the loess function. The NMFreg python notebook was used with default parameters 

(factors = 30) for testing NMFreg. To test DWLS on cell type classification, we used the 

buildSignatureMatrixUsingSeurat function to build the cell type signature matrix and used 

the solveDampenedWLS function to predict cell type proportions for each pixel, which were 

scaled to units of UMI counts. RCTD was tested on a Macintosh laptop computer with a 2.4 

GHz Intel Core i9 processor, 8 cores, and 32GB of memory (we recommend at least 4GB of 

memory to run RCTD. For example, we timed RCTD on the Slide-seq cerebellum dataset, 

containing 11, 626 pixels, 19 cell types, and 3, 272 differentially expressed genes detected 

by RCTD. Under these conditions, RCTD ran in 14 minutes and 57 seconds.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Spatial transcriptomics data presents challenges for cell type learning.

a) Expression of Bergmann and Purkinje marker genes for pixels colored by unsupervised 

clustering cell type assignment within a Slide-seq cerebellum dataset. The e.g. Bergmann 

markers axis is the sum of the expression (counts per 500) of Bergmann differentially 

expressed genes.

b) Expression (counts per 500) of granule marker genes in Slide-seq. Scale bar: 250 

microns.
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c) Spatial plot of granule cells identified by unsupervised clustering. Pixels are colored by 

whether they spatially belong to the granule layer. Scale bar: 250 microns.

d) Confusion matrix of true vs predicted cell types within training dataset (single-nucleus 

RNA-seq) by non-negative least squares regression. Color represents the proportion of the 

cell type on the x-axis classified as the cell type on the y-axis. The diagonal representing 

ground truth is boxed in red.

e) Confusion matrix of cell type predictions across platforms using non-negative least 

squares regression trained on single-nucleus RNA-seq, tested on single-cell RNA-seq. Same 

color scale as (d).

f) Density plot, across genes, of measured platform effects between cerebellum single-cell 

RNA-seq and single-nucleus RNA-seq. The platform effect is defined as the log2 ratio of 

average gene expression between platforms.
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Figure 2: 
Robust Cell Type Decomposition enables cross-platform learning of cell types.

a) Left: RCTD inputs: a scRNA-seq dataset, annotated by cell type, and a spatial 

transcriptomics dataset with unknown cell types. Middle: RCTD uses a scRNA-seq 

reference-based probabilistic model to predict cell types on a single pixel containing a 

mixture of two cell types (e.g. Bergmann/Purkinje), with unknown cell type proportions. 

RCTD predicts the maximum likelihood cell type proportions. In doublet mode, RCTD 

constrains each pixel to contain at most two cell types; alternatively, RCTD can estimate the 

best fit at a pixel using all cell types. Right: RCTD outputs a spatial map of cell types, with 

opacity representing the inferred cell type proportion.

b) Scatter plot of measured vs predicted platform effect (by RCTD) for each gene between 

the single-cell and single-nucleus cerebellum datasets. Line is the identity line. Measured 

platform effect is calculated as the log2 ratio of average gene expression between platforms.

c) Confusion matrix for RCTD’s performance on cross-platform (trained on single-nucleus 

RNA-seq, tested on single-cell RNA-seq) cell type assignments for single cells. Color 
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represents the proportion of the cell type on the x-axis classified as the cell type on the 

y-axis. The diagonal representing ground truth is boxed in red.
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Figure 3: 
RCTD performs cross-platform detection and decomposition of doublets.

All: RCTD was trained on the single-nucleus RNA-seq cerebellum dataset and tested on a 

dataset of simulated mixtures of single cells from a single-cell RNA-seq cerebellum dataset.

a) Rate of doublet classification by RCTD on simulated mixtures of single cells, with 95% 

confidence intervals. The x-axis represents the true proportion of UMIs sampled from the 

minority cell type, ranging from 0% (true singlet) to 50% (equal proportion doublet) (1980 ≤ 

n ≤ 3860 simulations per condition).

b) On simulated doublets of cell class 1 and cell type 2, the percentage of confident calls 

by RCTD that correctly identify the cell class, where cell classes group four pairs of 

transcriptionally similar cell types based on a previous dendrogram [20] (polydendrocytes/

oligodendrocytes, MLI1/MLI2, Bergmann/astrocytes, endothelial/fibroblasts). Column 

represents cell class 1, and color represents cell type 2.

c) On simulated Bergmann-Purkinje doublets, predicted Bergmann proportions by RCTD. 

The x-axis represents the true proportion of UMIs sampled from the Bergmann cell. The 
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red line is the identity line, and the blue line is the average and standard deviation (n = 30 

simulations per condition) of RCTD’s prediction.

d) For each pair of cell types, root mean squared error (RMSE) of predicted vs true cell type 

proportion (as in (c)) by RCTD on simulated doublets (n = 390 simulations per cell type 

pair). Column represents cell type 1, and color represents cell type 2.
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Figure 4: 
RCTD applied to cell type learning in Slide-seq datasets.

a) RCTD’s spatial map of cell type assignments in the cerebellum. Out of 19 cell types, the 

seven most common appear in the legend (individual cell types displayed in Supplementary 

Figure 14).

b) Analogous to (1a), expression of Bergmann and Purkinje marker genes for RCTD’s 

predicted singlet pixels within a Slide-seq cerebellum dataset (colored by cell type 

assignment). The e.g. Bergmann markers axis is the sum of the expression (counts per 

500) of Bergmann differentially expressed genes.
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c) Expression of Bergmann and Purkinje marker genes for doublet pixels predicted by 

RCTD, colored by predicted cell type proportion.

d) Predicted spatial localization of cell types by RCTD for granule, oligodendrocytes, 

and molecular layer interneurons 1 (MLI1). Left: summed expression (counts per 500) 

(represented by color) of cell type-specific marker genes. Right: predicted spatial locations 

of each cell type, with color representing predicted cell type proportion.

e) (Top) Schematic of spatial cell type organization within the cerebellum [22]. (Bottom) 

Connectivity graph of cell types that are likely to spatially colocalize. Cell types are colored 

as in (a).

f) Frequency of doublets identified by RCTD between each pair of cell types. Color 

represents log2 scale counts. Dotted boxes represent communities anatomically expected to 

exhibit spatial co-localization. Diagonal represents prevalence of singlets. Color bar range: 2 

to 100 counts.

All scale bars 250 microns.
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Figure 5: 
RCTD maps cell types and subtypes in Slide-seq hippocampus.

a) RCTD’s spatial map of predicted cell types in the hippocampus. Out of 17 cell types, 

the 8 most common appear in the legend (individual cell types displayed in Supplementary 

Figure 19).

b) Predicted spatial localization of interneuron cell types by RCTD. Left: normalized 

expression (represented by color, counts per 500) of marker genes. Right: predicted spatial 

locations of interneurons, with color representing predicted cell type proportion.
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c) Predicted confident assignments of interneuron pixels by RCTD to 3 classes of 

interneuron subtypes, plotted in space. Color indicates predicted subclass.

d) Expression (counts per 500) of the Sst gene in interneurons identified by RCTD.

e) RCTD’s confident assignment of spatial clusters to 27 interneuron subtypes (25/27 

subtypes assigned).

All scale bars 250 microns. Grey circles represent location of CA1, CA3, and dentate gyrus 

excitatory neurons for reference.
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Figure 6: 
RCTD enables detection of cell type-specific spatial patterns of gene expression.

a) Boxplot of coefficient of variation of genes across cell types in the hippocampus 

single-cell RNA-seq reference. Spatially variable genes were selected for large spatial 

autocorrelation in the Slide-seq hippocampus, without considering cell type. For reference, 

50 randomly selected genes are shown.

b-g) Analysis on Slide-seq hippocampus data

b) Boxplot of the coefficient of variation in gene expression within CA3 cells identified 

by RCTD. (Left): Spatially variable genes selected for large spatial autocorrelation in 

the hippocampus, without considering cell type. (Right): Using RCTD’s expected cell 
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type-specific gene expression, genes determined to be spatially variable by applying local 

regression within the CA3 cell type (p ≤ 0.01, permutation F-test).

c) Bold pixels represent expression of Ptk2b, a gene selected to be spatially variable without 

considering cell type. Blue represents pixels with excitatory neurons (as detected by RCTD), 

whereas red represents pixels without excitatory neurons.

d) Smoothed spatial expression patterns (counts per 500), recovered by local regression, 

of two genes detected to have large spatial variation within RCTD’s CA3 cells. Individual 

pixels expressing the gene are colored in black.

e) Spatial localization of astrocyte doublets in the hippocampus, detected by RCTD. Color 

represents the other cell type on the doublet.

f) Mean and standard error of RCTD’s expected gene expression (counts per 500) within 

groups of astrocytes (129 ≤ n ≤ 956 cells per condition) classified by their cellular 

environment (color). (Scale on the right for Pantr1, scale on the left for other genes).

g) Spatial visualization of genes with environment-dependent expression within astrocytes. 

Red represents the astrocytes surrounded by other astrocytes, whereas blue represents 

astrocytes that are surrounded by excitatory neurons (left) or dentate gyrus cells (right). 

Bold points represent astrocytes expressing Slc6a11 (left) or Entpd2 (right).

All scale bars 250 microns. For boxplots, the median, 25th, and 75th percentile define the 

box, with whiskers extending the hinge by 1.5 times the inter-quartile range (IQR).
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