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Abstract

The health catastrophe originated by COVID-19 pandemic construed profound impact on a global scale. However, a plethora
of research studies corroborated convincing evidence conferring severity of infection of SARS-CoV-2 with the aberrant gut
microbiome that strongly speculated its importance for development of novel therapeutic modalities. The intense exploration
of probiotics has been envisaged to promote the healthy growth of the host, and restore intestinal microecological balance
through various metabolic and physiological processes. The demystifying effect of probiotics cannot be defied, but there exists
a strong skepticism related to their safety and efficacy. Therefore, molecular signature of probiotics termed as “postbiotics”
are of paramount importance and there is continuous surge of utilizing postbiotics for enhancing health benefits, but little
is explicit about their antiviral effects. Therefore, it is worth considering their prospective role in post-COVID regime that
pave the way for exploring the pastoral vistas of postbiotics. Based on previous research investigations, the present article
advocates prospective role of postbiotics in alleviating the health burden of viral infections, especially SARS-CoV-2. The
article also posits current challenges and proposes a futuristic model describing the concept of “precision postbiotics™ for

effective therapeutic and preventive interventions that can be used for management of this deadly disease.
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Introduction

The world is facing the apocalypse of egregious pandemic
COVID-19 due to SARS-CoV-2 that confers cataclysmic
impact on social, economic, and public health at global level.
The various respiratory manifestations including sore throat,
fever, fatigue, cough, shortness of breath, headache, sputum
production, and acute respiratory distress syndrome (ARDS)
are an outcome of infection of SARS-CoV-2 [1]. The severity
of infection leads to various complications including renal,
gastrointestinal, cardiac, neurological symptoms, as well as
serving a palette for other chronic secondary fungal and bac-
terial infections culminating hospitalization and eventually in
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death [2]. However, these respiratory manifestations accen-
tuated scientific community for bolstering their research in
lungs for finding pharmacological and non-pharmacological
ailments and most importantly vaccines [3] for combat-
ing this problem but the severity of infection has been well
correlated with our most dynamic organ of the body, i.e.,
gastrointestinal tract [4]. The pioneering efforts of various
microbiologists present in nineteenth century conceptualize
the idea of the presence of microorganisms inside the human
body that interplays a constant struggle against each other;
however, the advent of next-generation sequencing trans-
formed our understanding towards these microorganisms.
Presently, we are living in the era of “rendezvous with our
microbes” emboldened the fact that the human body is colo-
nized by trillions of microorganisms and contains approxi-
mately 150 million genes that exists in negotiated “state of
détente” in symbiotic manner, severely impacting the health
and diseased status of humans. This dynamic consortium is
referred as “gut microbiome” and the year 2020 portrayed
quantum leap on various insights on correlation of gut micro-
biome with COVID-19 [5, 6]. Research findings evidenced
the presence of viral replication in infected human intestinal
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epithelial cells, high expression of ACE-2 receptors in intes-
tinal epithelium, presence of viral RNA in feces, depletion
of gut commensals, and enhancement of opportunistic patho-
gens that highlighted the pivotal role played by gut micro-
biome in COVID-19 [7-11]. Plenty of research articles have
emphasized the intervention of diet, prebiotics, probiotics,
and synbiotics that can be used as prophylactic measures for
modulation of the gut microbiome [12—-16]. Also, scientists
are trying to underpin the role of probiotics that can be envis-
aged in the form of several clinical trials that are still under
investigation. Table 1 summarizes the various clinical trials
utilizing probiotics for combating COVID-19. Despite the
marvelous credentials possessed by probiotics, certain stud-
ies indicated their adverse technological and clinical effects
including the presence of virulence factors in some probiotic
strains, strain-specific mechanisms, diverse patterns of colo-
nization, production of biogenic amines, short lived, ability
to cause opportunistic infections, bacteremia and sepsis in
immunocompromised individuals, niche-specific action of
probiotics (allochthonous or autochthonous), lacking long-
term clinical trials, and clear recommendations across the
globe [17]. Therefore, the postbiotics, functional bioactive
molecules released by probiotics have been thrust area of
research nowadays, and there is a growing continuum of stud-
ies highlighting the various health benefits that have been
reported in the past decade [18, 19]. However, there is dearth
of studies pertaining to the use of postbiotics for antiviral
effect especially combating SARS-CoV-2 infections but the
past research efforts highlighted the role of postbiotics in
ameliorating various viral infections. Thus, based on pre-
vious investigations, the article culminates the prospective
therapeutic opportunities of postbiotics for coping up the
imperil of COVID-19 as well as posits current challenges,
and proposes a futuristic roadmap of utilizing the postbiotics
in precise manner for overcoming such pandemic situations.

Conception of Postbiotics and Mechanism
of Action

The advancements in elucidating the structural and func-
tional dimensions of gut microbiome lead the world into
new era of biotic research. The word “biotics” is derived
from the Greek term “biotik6s” meaning “pertaining to life”
that signify the presence of living organisms in biologi-
cal ecosystem connected with their physical environment.
More comprehensively, the term biotics is more connected
towards the adoption of various nutritional strategies that
favors the modulation of gut microbiota attaining towards
the healthy status of the host [20]. The research has already
been directed towards various biotic components like prebi-
otics, probiotics, and synbiotics and their magnificent rami-
fications in the host physiology. However, in the quest for

interpreting their effects at molecular level in the host, the
research has progressed towards understanding the probiotic
effector molecules eliciting beneficial response known as
postbiotics, the relatively new member of “biotics” family.
Postbiotics are considered functional bioactive molecules
generated during microbial fermentation of food in gastroin-
testinal tract. The difference in their effects and composition
lies with the extent of microbial metabolization of diverse
food matrix; therefore, the term postbiotics is referred as
umbrella term for all microbial fermented products and
their synonyms [21, 22]. However, several researchers rec-
ommended different terminologies to describe probiotic
effector molecules like metabiotics, ghost probiotics, inac-
tivated probiotics, non-viable probiotics, paraprobiotics, and
pseudoprobiotics [23-25]. Though exact definition has not
been described yet, but hitherto postbiotics are defined as
non-viable bacterial products or metabolic products from
microorganisms that have biological activity in the host [26].
From conception to various applications of postbiotics along
with its timeline development is depicted in Fig. 1. The pre-
liminary research highlighted two major classes of postbiot-
ics known as paraprobiotics and fermented infant formulae
(FIFs). According to Food and Agriculture Organization/
World Health Organization (FAO/WHO), paraprobiotics is
defined as “non-viable microbial cells (either intact or bro-
ken) which when administered (either orally or topically) in
adequate amounts, confer a benefit on the human or animal
consumer” [27], and FIFs are infant or follow-on formula
mostly obtained with the fermentation of food by lactic
acid—producing microbes and devoid of any viable bacte-
rial cells [28]. Therefore, diversified metabolic products such
as short-chain fatty acids (SCFAs), microbial cell fractions,
functional proteins, extracellular polysaccharides (EPS), cell
lysates, teichoic acid, peptidoglycan-derived muropeptides,
and pili-type structures have been categorized as postbiotics.
The application of postbiotics alleviates various technical
and functional challenges like colonization efficiency, sta-
bility and viability in GIT and industrial processing, shelf
life, transfer of virulent, and antibiotic resistance genes that
are associated with utilization of living cells as probiotics.
The credentials of postbiotics such as safe profile, known
chemical structures, resistance to hydrolysis, nontoxic,
stable to digestive system conditions, and better shelf life
confer lucrative options for biotherapeutic utility. Therefore,
currently humongous efforts have been made to visualize
the application of postbiotics as biotherapeutic agents for
the elimination of various diseases. Table 2 summarizes
the various applications of postbiotics for maintaining the
health status of an individual [29-78]. The current catastro-
phe imparted due to COVID-19 motivates us to think the
prospective role of postbiotics for combating COVID-19
[79, 80]. However, it is an intriguing fact that there exists an
intricate complexity between invasive virus, gastrointestinal
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[81-84]. The secretory proteins p40 and p75 have been
reported to maintain the homeostasis of intestinal epithelial
cells by two known mechanisms [85, 86]. Firstly, these pro-
teins lead to the transactivation of epidermal growth factor
receptor (EGFR) followed by upregulation of proliferation-
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Table 1 (continued)
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19

NCT04420676 Synbiotic Therapy of

Recruiting

20

inducing ligand (APRIL) expression in intestinal epithelial
cells. The expression of APRIL induces the production of
IgA as well as impaired the cytokine-induced apoptosis that
helps in the clearance of the virus [87]. Secondly, these pro-
teins also actuate the production of heat shock proteins
Hsp72 and Hsp25 that has the ability to protect tight junction
proteins as well as stimulate the phosphatidylinositol
3-kinase (PIK3)—dependent Akt pathway for the prolifera-
tion of gut epithelial cells. In addition to that, a soluble
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Fig. 1 Conception, timeline development, and applications of postbiotics

protein HM0539 from novel LGG enhances mucus secretion
through mucin expression and protects intestinal integrity
by the expression of tight junction proteins. Similarly, extra-
cellular vesicles also known as outer membrane vesicles a
lipid bilayer structure secreted by probiotics and other intes-
tinal microbiota also impact the integrity of IECs. The extra-
cellular vesicles released by Akkermansia muciniphila
reduce the permeability of the intestine by upregulating the
expression of claudin-3 protein through activation of AMP-
activated protein kinase (AMPK) pathway [88]. The OMVs
released by E. coli Nissle and E. coli ECOR63 have the
ability to upregulate two tight junction proteins, i.e., ZO-1
and claudin-14 as well as expression of IL-22 that may pre-
vent the entry of the virus into systemic circulation [89].
Furthermore, short-chain fatty acids (SCFAs) constituting
acetate, propionate, and butyrate secreted by various probi-
otics by the fermentation of undigested dietary fibers (prebi-
otics) confer considerable role in intestinal integrity. Among
SCFAs, butyrate is the most preferentially utilized energy
source by IECs; thus, voluminous information has been
available elucidating its effect on intestinal epithelial barrier.
There are various mechanisms of SCFA by which it plays a
crucial role that helps in maintaining the homeostasis of
IECs. The binding of G-protein-coupled receptors, such as
GPR109A, GPR43, and GPR41in IECs, strengthens the
integrity of epithelial cells particularly the binding with
GPR109A induces IL-18 that promotes intestinal

homeostasis [90]. In addition to that, butyrate also induces
the binding of AP-1 with MUC2 promoter followed by
enhancement of expression of MUC2 mRNA level leading
to enhanced production of mucin. As butyrate is also con-
sidered good histone, deacetylase inhibitor thus promotes
acetylation of H3 and H4 histone proteins and methylation
of H3 protein on the MUC2 promoter that boost the safety
of mucosal barrier. The stability of hypoxia-inducible factor
(HIF) by enhancing the expression of HIF target genes
strengthening epithelial barriers is also linked with the
action of butyrate [91]. The production of LL-37 (cathelici-
din) confers antimicrobial property in IEC that maintains the
functionality of IECs in the presence of pathogens [59]. The
maintenance of TEER by binding of butyrate with various
receptors mentioned above may confer protective role in [EC
homeostasis. Apart from that, another secretory metabolite
indole produced by E. coli Nissle maintains the TEER by
downregulation of TNF-a-mediated NF-kB signaling path-
way facilitating the epithelial function [92]. The binding of
indole 3-propionic acid (IPA) with one of the gut epithelial
receptors, i.e., pregnane X receptor (PXR), facilitates the
upregulation of tight junction proteins coding mRNAs fol-
lowed by augmentation of production of claudins and occlu-
dins that is crucial for epithelial barrier integrity after viral
infection. In addition to that, indole secreted by Bifid. infan-
tis induces the activation of aryl hydrogen receptors (AhRs)
that facilitates the upregulation of the protein expression of

@ Springer
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CYPI1A1 followed by enhanced transcription of IL-22 [93].
This induction activates the secretion of antimicrobial pep-
tides that may help in clearance of the virus. In addition to
that, bacteriocins an important antimicrobial peptide is
secreted by probiotics and other gut microbes. They are
divided on the basis of mechanism of action, size, and inhib-
itory spectrum. The antiviral effect of various bacteriocins
has been reported for the treatment for viral disorders by
modulating the immune system. Research studies speculated
that the replication of viruses at early and late stages has
been inhibited by the application of enterocin AAR-74,
enterocin AAR-71, erwiniocin NA4 secreted from Entero-
coccus faecium CRL35 and other species, and bacteriocin
B1 from Lact. delbrueckii subsp bulgaricus. Apart from that,
labyrinthopeptin Al and A2 (LabyAl1), carbacyclic lantibiot-
ics, have also been shown to inhibit the virus entry into the
host [94]. In addition to that, various other bacteriocins such
as Nisin A and mutacin B-Ny266, microbisporicin, lacticin,
thuricin CD, and reuterin produced by various probiotic
strains also reported to have antimicrobial activity that can
be further warranted for reducing SARS-CoV-2 infection.
Moreover, other surface components such as lipoteichoic
acid, surface layer proteins (SLPs), capsular polysaccharide
(CPS), pili, flagella, and lipopolysaccharides have been des-
ignated as microbial-associated molecular patterns
(MAMPs) and credited with various bioactive properties.
The infection of SARS-CoV-2 can be reduced by implemen-
tation of these molecules as they possess the binding affinity
with various pattern recognition receptors (PRRs) such as
toll-like receptors (TLRs) and NOD-like receptors (NLRs)
that further regulate various signaling cascades including
mitogen-activated protein kinases (MAPK), nuclear factor
kappa B (NF-kB), peroxisome proliferator—activated recep-
tor gamma, and other protease-depending signaling path-
ways in IECs. The alteration in TEER and integrity caused
by viral entry into gut epithelium was maintained by surface
layer proteins produced by Lactiplantibacillus plantarum
and Lact. acidophilus. Micro integral membrane proteins
(MIMPs), a small domain of SLPs from Lactiplantibacillus
plantarum, have been shown to restore the integrity of IECs
by enhancing the mRNA expression of various tight junction
proteins claudin-1, occludin, and JAM-1 and F-actin [95,
96]. Furthermore, research studies depicted convincing evi-
dence that the attachment of flagellin produced by E. coli
Nissle 1917 (EcN) with TLRS receptor present in basolateral
membrane of IEC activates phosphatidylinositol-3-kinase
(PI3K)/AKT signaling pathway that reduce the expression
of proinflammatory genes that further reduce inflammation
[97]. Tt has also been reported that f-defensin, an antimicro-
bial peptide secreted by intestinal epithelial cells through
NF-xB and activating protein-1 (AP-1) signaling pathways,
has also been induced by EcN flagellin [98, 99]. Further-
more, pili, a filamentous accessory organ present in the
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surface of bacteria, have capability of maintaining the integ-
rity of intestinal epithelial cells. Tight adhesion (Tad) pili of
Bifid. breve UCC2003 have been reported to enhance the
proliferation of IECs and mucus secretion [100]. Apart from
that, SpaC pilin present in Lacticaseibacillus rhamnosus GG
(LGQG) activated the ERK phosphorylation pathway for the
protection of intestinal epithelial barrier [101]. Moreover,
F1C pili of EcN possess ability to bind with mannosylated
glycoproteins in the intestine through TLR4-mediated path-
way for strengthening the production of tight junction pro-
teins. Furthermore, the reinforcement of intestinal microen-
vironment is done by capsular polysaccharides secreted by
probiotics. CPS5 secreted by Bact. thetaiotaomicron reduced
the antibiotic stress in IECs and improves the colonization
of beneficial bacteria preventing the adhesion of pathogens
[102, 103]. In addition to that, the K5 capsular polysaccha-
ride induces the expression of chemokines by activation of
MAPK pathway by binding with TLRS in IECs that reduce
the inflammation in the gut [104]. The comprehensive mech-
anistic view of postbiotic action is represented in Fig. 2.
Thus, by stating above facts, the postbiotics impart disparate
effect on strengthening and maintaining the integrity of epi-
thelial cells. The IECs have primary line of contact of SARs-
CoV-2 entry and trigger severe immunological and biochem-
ical changes in the gut; thus, by highlighting the effects of
postbiotics, it is tangible to use these molecules for reducing
the viral load and its clearance for combating COVID-19 in
cutting-edge manner.

Prospective Role of Postbiotics in Innate
and Adaptive Immunity

The invasion of SARS-CoV-2 into the host cell is imme-
diately recognized by antigen-presenting cells (APCs) that
leads to the stimulation of innate immune system. The
various viral structural components such as glycoproteins,
dsRNA, or other intermediate metabolic products of the
virus collectively termed pathogen-associated molecular
patterns (PAMPs) recognized by pattern recognition recep-
tors (PRRs) conferred as primary viral sensors for mediat-
ing antiviral effector program by producing type I interferon
(Type 1 IFN) response. However, 10% of patients of COVID-
19 have been found to produce autoantibodies against type
1 IFN-y due to the mutations found in IFN genes that is
associated with lymphopenia. Thus, various innate immu-
nomodulatory molecules secreted by probiotics in the gut
lumen may confer protecting role against deadly virus. Vari-
ous postbiotic molecules stimulate the production of mucin
from goblet cells, antimicrobial peptide as defensins, tre-
foil factor by paneth cells and secretory IgA, heat shock
proteins, and various p-glycoproteins that are responsible
for maintaining innate immunity after the entry of the virus
in the intestinal system. It is well proven that ACE-2 is a
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Fig.2 Modulation of intestinal barrier integrity by various postbiot-
ics (schematic illustration depicting the action of various postbiotic
molecules affecting intestinal barrier functions) (red arrow repre-
senting the upregulation of various signaling pathways by various
postbiotic molecules while blue arrow representing the downregula-
tion of signaling pathways). AMPs, antimicrobial peptides; AP-1,
activating protein; CSP, capsular polysaccharide; IECs, intestinal
epithelial cells; HIF, hypoxia-inducible factor; GPCRs, G-protein-

viral receptor, and a type I cell surface glycoprotein is also
found in enterocytes apart from type I and type II alveolar
epithelial cells, the arterial smooth muscle tissues, arterial
and venous endothelial cells, and renal and cardiovascular
tissues. The basic function of ACE-2 is to perform amino
acid homeostasis in the intestine that helps in the alleviation
of intestinal inflammation, the expression of antimicrobial
peptides, and maintenance of healthy gut microbiota. After
the ACE2 receptor engagement, the processing of SARS-
CoV2 has been done by a type II transmembrane serine pro-
tease, TMPRSS2, present in intestinal epithelial cells and
other serine proteases such as TMPRSS4 [105, 106] and
ST14/matriptase are also expressed in mature enterocytes.
The severity of infection is accelerated by the action of
TMPRSS4. However, the expression of BOAT1 the sodium-
dependent neutral amino acid transporter and amino acid
(proline) SIT1 transporters on the luminal side of intestine
epithelial cells is also associated with ACE2 expression.
SARS-CoV-2 leads to the downregulation of ACE2 that fur-
ther leads to the impairment in one of essential amino acid
tryptophan, an essential modulator of kynurenine pathway
for the formation of serotonin and other bioactive molecules
by utilizing the indoleamine 2,3-dioxygenase (IDO) enzyme.

coupled receptors; AhRs, aryl hydrogen receptors; P75 and P40, cell
wall-associated hydrolase; EGFR, epidermal growth factor recep-
tor; PI3K, phosphatidylinositol-3-kinase; PXR, pregnane X recep-
tor; APRIL, a proliferation-inducing ligand; Hsp72 and Hsp25, heat
shock proteins; ZO-1, zona occludin,1; IPA, indole 3-propionic acid;
TEER, transepithelial electrical resistance; TJPs, tight junction pro-
teins; TLR, toll-like receptors

The various indole metabolites such as indole acetic acid,
indole propionic acid, and tryptamine are generated during
kynurenine pathway by metabolism of tryptophan that is
secreted by probiotics that confers potential role in the dif-
ferentiation of Treg cells and suppression of T effector cells
[107]. Apart from these, indole metabolites also activate
the production of IL-22 from natural killer T (NKT) cells,
innate lymphoid cells (ILCs), and CD** lymphocytes cells
by inducing the expression of IL-22 receptor on IECs by
triggering Stat3 pathway, mucin production, and release of
AMPs by paneth cells [108, 109]. The tryptophan impair-
ment also leads to the aberrant expression of serum IL-6
and mammalian target of rapamycin (mTOR) protein kinase,
p70S6kinase, that further impacts the production of vari-
ous antimicrobial peptides such as lysozyme, cysteine-rich
cationic peptides, Reglllg, and a-defensin HDS5 and HD6
and alerted microbial diversity that enhances the suscep-
tibility of intestine towards inflammation. Thus, the severe
diarrhea in COVID-19 is the outcome of such alterations;
therefore, supplementation of tryptophan in diet can be con-
sidered a preventive strategy for reducing the viral invasion
in GIT. Furthermore, the secretion of antimicrobial peptides
is also triggered by an effector molecule known as bacterial
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muramyl dipeptide (MDP) that is secreted by various Lac-
tobacillus probiotics. The molecule is recognized by nucle-
otide-binding oligomerization domain2 (NOD-2) receptor
that led to the activation of MAPK and NF-kB signaling
pathway for secretion of various above-mentioned antimi-
crobial peptides [110, 111]. Among all AMPs, the human
defensin-5 (HDS5) has highest affinity of 76.2 nM with ACE2
receptor; thus, it can be acting as competitor with SARS-
CoV-2 for binding. Moreover, the intestinal immune system
also embraced the IgA, a non-inflammatory immunoglobu-
lin acting as receptor for various pathogens. The secretion
of IgA is mediated by intestinal B cells that can bind with
polymeric Ig receptor (pIgR) which function as an antibody
transporter expressed on the surface of intestinal epithelium
facilitates the translocation of IgA dimmers in gut lumen and
converted to secretory IgA. It was reported that lipoteichoic
acids and peptidoglycan secreted by various probiotic spe-
cies have the ability to induce the secretion of IgA with the
help of TLR activation that has the ability to kill the virus
particle. Research studies also speculated some aspects of
antiviral defense through secretion of trefoil factors from
mucin-producing cells have been upregulated by postbiot-
ics. Furthermore, butyrate, an important type of SCFA, has
been found to be low after viral infection that facilitates the
upregulation of NRP-1 contributing towards the infectiv-
ity of SARS-CoV-2 through furin-mediated cleavage of
viral spike proteins [112]. To abrogate the infectivity rate
of the virus, butyrate as postbiotics can bind to the both
GPR41 and GPR43 receptors. The binding of butyrate with
GPGRA41 activates protein kinase A (PKA) pathway while
binding with GPR43 activates phospholipase C for the pro-
duction of diacyglycerol (DAG) that activates protein kinase
C (PKC) and inositol triphosphate which trigger the release
of intracellular Ca®" ions that plays significant role in reduc-
tion of binding of viral spike protein with ACE2 receptor on
IECs. The secretion of Vit D through probiotics or supple-
mented with diet triggers the attachment of vitamin D recep-
tor (VDR) and p65 subunit of NF-kB pathway followed by
its downregulation leads to the enhanced synthesis of tight
junction proteins such as claudin and occludin that maintains
the integrity of intestinal epithelium. Apart from that, the
binding of VDR also downregulates the JAK/STAT pathway
that leads to the enhanced synthesis of various antimicrobial
peptides like LL-37 and p-defensin.

The signaling cascades described above foster phago-
cytosis of viral antigens by host macrophages that orches-
trated the development of adaptive immune response [113].
In fact, the exaggerated immune response is manifested with
enormous release of cytokines better termed as “cytokine
storm” and secreted through various immune cells like
innate macrophages, dendritic cells, natural killer cells, and
the adaptive T and B lymphocytes. The colossal release of
TNF-a, IL-6, IL-1p, IL-2, IFNa, IFNf, and MCP-1 along
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with proinflammatory cytokines such as IL-1, IL-2, IL-7,
G-CSF, IP-10, and MIP-1A is likely to contribute multi-
organ failure and high mortality rate of people having
COVID-19 at global scale [114]. However, research studies
confirmed the application of heat-killed Lacticaseibacillus
casei IBS041 (LC) and Lact. acidophilus AD031 (LA) that
has been reported to decrease the expression of IL-6 and
TNF-a and diminish the inflammation in IECs but the link
with secreted components has not beet conclusively estab-
lished yet. Similarly, the upregulation of IL-10 by inducing
the expression of Treg cells has been reported for the rein-
forcement of intestinal homeostasis mediated through the
secretory components of Bifid. breve. Furthermore, the inter-
nalization of probiotics either through M cells or paracellu-
lar transport through epithelial cells into payer’s patch (PP)
and subsequent release of their components may promote
the secretion of IgA antibodies that is crucial for clearance
of viral components [115]. The detailed mechanistic view
of postbiotics is summarized in Fig. 3. Thus, these studies
strongly support that various postbiotics play pivotal role in
modulating the innate and adaptive immunity to reduce the
burden of SARS-CoV-2 infection and proliferation in the
gut. Thus, postbiotics could be a prospective armamentarium
for abrogating the enigma of COVID-19 [116, 117].

Prospective Role of Postbiotics in Mental Health

The pandemic COVID-19 decimated more than three mil-
lion deaths within a year despite the modern advancements
in medical field. Apart from the death toll, more than 150
million recovered people have suffered from physical, emo-
tional, and economic problems that leads to vicarious trau-
matization causing various mental health problems includ-
ing depression, anxiety, and posttraumatic stress disorder
(PTSD). Research studies defined the criteria for posttrau-
matic stress disorder (PTSD) varying from individuals who
themselves suffered from COVID-19 and also witnessed the
death of their family members, close relatives, and friends.
The stress also encompasses the individuals greatly exposed
to aversive information due to COVID-19. Recently, the peo-
ple who have suffered from COVID-19 also faced the prob-
lem of aberrant cognition, memory loss, severe depression,
and anxiety and thus considered emerging health concern at
post-COVID scenario is better known as “Brain Fog”[117].
Though the current modality for diagnosing the maladies of
the brain with MRI does not signify any damage or injury
yet due to COVID-19 but as the gut plays pivotal role in
COVID-19, there might be a chance that certain factors like
gut dysbiosis [118] lead to alteration in neurotransmitters,
adrenal gland secretion, and inflammation in nerve cells that
aggravate the mental problems. The bifacial communica-
tion between the brain and gut forms the basis of “gut-brain
axis” that affects the functionality of each other via immune,
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Fig. 3 Modulation of innate and adaptive immunity by various post-
biotics (schematic illustration depicting the action of various postbi-
otic molecules affecting innate and adaptive immunity) (red arrow
representing the upregulation of various signaling pathways by vari-
ous postbiotic molecules while blue arrow representing the downreg-
ulation of signaling pathways; green arrow representing the reduction
of postbiotic molecules after binding of SARS-CoV-2 with ACE-2
receptor) ACE2, angiotensin-converting enzyme; ByAT1, amino
acid transporter; NOD, nucleotide-binding oligomerization domain2

neural, and endocrine pathways. The normal regimens like
taking nutritious diet, maintaining healthy lifestyle and good
sleep, eliminating psychological distress, and exercise may
alleviate this problem at certain extent but not at full pace.
The routine pharmacological interventions are associated
with numerous side effects such as nausea, headaches, agita-
tion, and sedation. Thus, recently the research studies sug-
gested the ingestion of live microbes known as psychobiotics
in sufficient amount that has the ability to alleviate the suf-
fering from anxiety, depression, stress, and poor cognition.
The strain-specific effects and their vulnerability for natural
selection in the host have proven their dilemmatic role in
mental medicaments. Therefore, various bioactive molecules

(NOD-2); IDO, indoleamine 2,3-dioxygenase; NKT, natural killer T;
NRP-neuropilin; mTOR, mammalian target of rapamycin; PKA, pro-
tein kinase A; HD-5, human defensin-5; GPRs, G-protein receptors;
IL, interleukin; IFN, interferon; JAK/STAT, Janus kinase/signal
transducers and activators of transcription; MCP-1, monocyte chem-
oattractant protein,l; G-CSF, granulocyte colony-stimulating factor;
IP-10, interferon gamma-induced protein 10; MIP-1A, macrophage
inflammatory protein,1; VDR, vitamin D receptor

released by psychobiotics (as postbiotics) may provide
more viable option for treating and managing COVID-19
in futuristic scenario. Research studies have proven that
there exist three routes by which postbiotics may influence
the PTSD in COVID-19. There is convincing evidence that
various neurotransmitters such as acetylcholine, dopamine,
gamma-aminobutyric acid (GABA), catecholamines, and
serotonin have been secreted by probiotics that affect the
normal functioning of the brain. We also know that the brain
and gastrointestinal (GI) tract share a bifacial communica-
tion axis called “gut-brain axis” [119] that has the ability
to affect other functions through neural, immune, endo-
crine, or humoral links [120]. Furthermore, homeostasis of
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hypothalamic—pituitary—adrenal axis (HPA) during stress
conditions is also maintained by probiotic effector molecules
and thirdly, the anti-inflammatory molecules released by
probiotics have neuromodulatory effects. As COVID-19 is
manifested by vicious cycle of altered gut microbiota profile,
increased intestinal permeability and chronic inflammation
lead to changes in mental framework through imbalances in
neurotransmitter and hyperactive HPA axis which triggers
stress, anxiety, depression, and impaired cognition gradually.
The wide range of postbiotics secreted by probiotics may
act via distinct pathways for overcoming the PTSD due to
COVID-19 [121]. As it is evident, SARS-CoV-2 entry trig-
gers the production of inflammatory cytokines ILs, tumor
necrosis factor TNF-a, and IFN-y that affects the perme-
ability of intestinal cells leading to the movement of these
cytokines by humoral pathways (through blood brain bar-
rier), neural pathway (through vagus and spinal nerves),
and cellular pathway (through monocytes or macrophages).
These cytokines trigger the production of proinflammatory
signals in the brain by binding with microglial receptors,
disrupts the HPA homeostasis and impairment in regula-
tion of neurotransmitters. This is a major mechanism that
can be proposed for PTSD and brain fogging symptoms.
The growing evidence of anti-depressive effect of GABA
secreted by Lacticaseibacillus rhamnosus and Lacticasei-
bacillus casei enters through the neural route that modu-
lates the GABAergic system and HPA axis in the brain. The
alteration of mRNA expression of GABAA and GABAB
receptors leads to reduction in depressive behavior. GABA
secreted by Levilactobacillus brevis induces sound sleep and
results in the aversion of depressive effects [122]. Further-
more, the cognitive impairments like loss of concentration
and memory can be enhanced by secretion of serotonin and
norepinephrine (NE) by Lact. hevleticus through the modu-
lation of central 5-HT system, NE system, and HPA axis. In
addition to that, histamines secreted by Limosilactobacillus
reuteri in intestinal epithelial cells reduce the expression
of proinflammatory cytokines that prevent the reduction of
hippocampal brain-derived neurotrophic factor (BDNF), a
biomarker for mental health [123]. Moreover, SCFAs such
as butyrate play pivotal role in maintaining the gut barrier
integrity that further impacts the expression of BDNF and
modulation of 5-HT system in the central nervous system.
The regulation of SCFAs in the brain leads to reduction in
inflammation thus prevents anxiety and stress in the body.
Furthermore, miscellaneous postbiotic molecules released
by specific strains of probiotics also impart significant role
in neuromodulation activities. The serpins secreted by Bifid.
longum reach the brain through neural route that alter the
inflammation by reduction of proinflammatory signals.
In addition to that, gassericins secreted by Lact. gasseri
promote the sleep and strengthen the composition of gut
microbiome. Lactocepins secreted by Lacticaseibacillus
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paracasei facilitate the reduction of migration of inflamma-
tory cytokines released during viral attack by maintaining
the integrity of intestinal epithelium [124]. EPS secreted by
Lact. kefiranofaciens confer immunomodulatory property
that has potential to prevent the hyperactivity of HPA axis,
and similar kind of polysaccharides produced through Bifid.
infantis induces the production of NE neurotransmitter in
CNS [125]. Furthermore, the conversion of albiflorin into
BZA by Bifid. breve affects glutaminergic pathway via the
humoral route. Furthermore, H,0O, released by Limosilacto-
bacillus reuteri may prevent activation of IDO and circula-
tion of KYN by proinflammatory cytokines that has the abil-
ity to reduce stress and depression in the host body [126].
The functionality of postbiotics on mental health is depicted
in Fig. 4. Thus, based on the above discussion, it is conceiv-
able to envision that postbiotics may have prospective role in
abrogating various mental ailments during and post-COVID
scenario. However, complete unravelling of pathophysiology
must be required for completing the endeavor of postbiotic
use in this aspect.

Prospective Role of Postbiotics in the Management
of Secondary Invasive Fungal Infections

COVID-19 has been sweeping around the world and accentu-
ated exhaustive research on finding various treatment modali-
ties to overcome the high mortality rate has been visualized
in the second wave. The associated co-morbidities such as
immunocompromised conditions, diabetes, chronic obstruc-
tive pulmonary disease (COPD), and hematological malig-
nancies as well as overwhelming utilization of corticosteroids
and antibiotics, prolonged ventilation, and intensive care unit
stay provide the lucrative opportunity for various second-
ary invasive opportunistic infections [127]. These infec-
tions have been characterized as oropharyngeal candidiasis
(OPC), COVID-associated pulmonary aspergillosis (CAPA),
bloodstream candida infections, mucor mycosis (black fun-
gus and white fungus), and Mucor septicus (yellow fungus)
[128-131]. The strategic diagnostic embodiments are criti-
cally needed for identifying the invasiveness of fungus that
traverses the major parts of the body and require critical care
management. The significant decrease in lymphocyte count
and increment in neutrophil count together with aggressive
inflammatory response lead to severe immunosuppression
that is the major cause of developing these chronic infections.
In fact, recent research emphasized the dysbiosis of mycobi-
ota in COVID-19. The reduction in the population of Asper-
gillus and Penicillium and enhancement in the population of
Candida glabrata were observed in COVID-19 patients. Fur-
thermore, the gut mycobiota profile of COVID-19 patients
highlighted the positive correlation of Mucoromycota with
Fusicatenibacter and Aspergillus niger with diarrhea,
while presence of Penicillium citrinum depicted negative
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Fig.4 Postbiotics in balancing hypothalamic—pituitary—adrenal axis
and mental health during post-COVID regime (schematic illustration
depicting the action of various postbiotic molecules affecting mental
health) (red arrow representing the upregulation of various signaling
pathways by various postbiotic molecules while blue arrow represent-
ing the downregulation of signaling pathways) BDNF, brain-derived
neurotrophic factor; DA, dopamine; 5-HT, 5-hydroxytryptamine
or serotonin; BZA, benzoic acids; dgk, diacylglycerol kinase; EPS,

correlation with C-reactive protein (CRP) [132]. Till date,
the first line of treatment is done by intravenous application
of amphotericin B but several new generation triazoles like
posaconazole, isavuconazole, and voriconazole have been
used as salvage therapy for chronic patients who are refrac-
tory to amphotericin B. The empiric utilization of these med-
ications leads to severe side effects including major impact
on the kidney. Therefore, exploring the postbiotics can be an
important way to resolve the complicacy of fungal infections.
Various antimicrobial secreted by probiotics especially Lac-
tobacillus species such as lactic acid, acetic acid, hydrogen
peroxide, bacteriocins such as small heat-stable lantibiotics
(SHSL), larger heat-labile proteins (LHLP), non-lanthionine-
containing membrane-active peptides (MAP), and complex
bacteriocins can be sustainable alternative for eradicating
various fungal infections by blocking the growth and devel-
opment of biofilm. The inhibition of various Candida species

exopolysaccharide; GABA, gamma-Aminobutyric acid; GLP-1,
glucagon-like peptide,1; Glu, glutamate or glutaminergic; H,0,,
hydrogen peroxide; HPA, hypothalamic—pituitary—adrenal axis;
IECs, intestinal epithelial cells; IDO, indoleamine 2,3-dioxygenase;
IL-6, interleukin-6; KYN, kynurenine; NE, norepinephrine; ROS,
reactive oxygen species; SCFA, short-chain fatty acid; Tphl, trypto-
phan hydroxylase 1; TRP, tryptophan

such as C. albicans, C. glabrata, C. tropicalis, C. krusei, C.
kefyr, C. dubliniensis, and C. parapsilosis as well as A. flavus
and A. parasiticus has been done by the supplementation of
various probiotics majorly including Lactobacillus strains
[133]. Recently, cell-free supernatant (CFS) as postbiotic,
derived from Lacticaseibacillus paracasei 28.4, has depicted
potential inhibitory activity against C. auris [134]. In addi-
tion to that, capric acid as postbiotic component secreted by
Saccromyces boulardii has potential to reduce the expres-
sion of various virulence genes such as inol, cshi, and hwpl
in C. albicans [135]. Furthermore, it has been reported that
the infection of various Mucor species, like mucor myco-
sis and mucor sepsis, leads to alteration in the integrity of
intestinal epithelial cells and modulates the healthy gut
microbiome. These findings suggest that different postbi-
otic molecules that have potential to modify the integrity of
IECs (described in the “Prospective Role of Postbiotics in
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Modulating Intestinal Epithelial Barrier Integrity” section)
can be utilized for abrogating the deadly fungal infections.
Though prodigious research is required to reach a convincing
conclusion but rising data of resistant fungal strains and surge
in immunocompromised patients due to prolonged antifungal
treatments, the use of postbiotics is considered to be worthy
ally for managing post-COVID-19 complications.

Current Challenges and Future Perspectives

The severe convulsion and wide-spread mortality have been
seen across the globe due to the dreadful spread of COVID-
19. The virus carries forward the legacy of mutation pre-
cisely by generating more infectious strains within a year.
Currently, the exhaustive research has been pursued for the
development of various diagnostic platforms, vaccines, and
other pharmacological interventions for the effective control
of this pandemic. Parallelly, mounting evidence of correla-
tion of gut microbiome with severity of COVID-19 has also
been highlighted. There is a growing enthusiasm for utilizing
probiotics albeit their detailed mechanism of action is still
under investigation due to inherent complexity and cross talk
between host microbiome and invasive virus. Furthermore,
their discordant proof of efficacy in some individuals leads
to skepticism about their role as friends or foe. Thus, post-
biotics may confer significant advantage over probiotics in
reducing the severity of infection from deadly SARS-CoV-2.
However, certain key questions need to be answered that is
posing challenges for their massive utilization and accept-
ance both from therapeutic and regulatory perspective, such
as: Which probiotic species are well suited for the retrieval
of postbiotics? Which analytical method is best suited for
their extraction? What is their effective delivery method
inside the host, their stability, and shelf life? What are the
relevant methodologies that could be used for assessing their
biological and clinical effects? What are the bioprocessing
strategies for the commercialization of postbiotics?

Till date, extensive studies have been pursued in ani-
mal models and in vitro platforms therefore translating in
human body are quite challenging due to varied physiolog-
ical conditions as well as the complex cross talk of host
with their microbiome. The guidelines for recommending
the use of postbiotics should also be rigorously formed for
their safety and acceptance [136]. The pressing demand for
comprehensive studies should be required for assessing the
direct correlation between immunomodulatory activities of
postbiotics and their suppressing effects by onset of predis-
posing disease features. Thus, well-designed multicentric
clinical trials in humans using suitable postbiotic should
be conducted for adopting these remarkable molecules at
massive scale. However, diet, age, microbiome, and the
surrounding environment confer significant impact on the

@ Springer

outcome of postbiotics. Thus, there is a pressing need to
shift from the conventional top-down approach of identi-
fying efficient postbiotic molecules in healthy individuals
and elucidating their mechanism of action for development
of “precision postbiotics.” The advent of affordable next-
generation DNA and high-throughput sequencing and “mul-
tiomics” technologies (metagenomics, metatranscriptomics,
metaproteomics) enhances our knowledge of structural and
functional dynamism of gut microbiome that leads to the
analysis of voluminous data that require advanced compu-
tational tools. The growing continuum of the development
of computational intelligence methods like machine learning
metamorphosizes the microbiological research and paves the
way forward to digitalized microbiology [137]. The prolific
application of machine learning has been visualized in last
5 years in microbiome studies that has focus on clarifying
microbial taxonomy and their mutual interactions as well as
also evaluating microbiome biomarkers of diagnosis of mul-
tiple diseases [138]. More recently, the efficacy of probiotic
therapeutics has been evaluated by utilizing the ABIOME (A
Bioreactor Imitation of the Microbiota Environment) utiliz-
ing machine learning algorithms at metabolome level [139].
The same approach can be well applied for microbiome-
based diagnostic for COVID-19. The whole metagenomic
fecal data, i.e., microbiome, mycobiome, and virome, gives
longitudinal molecular and metabolite profiles of host and
microbes interaction. Furthermore, 16sRNA sequencing data
and other taxonomic markers can be used to study specific
microbial diversity of an individual. The unique microbiome
profile can be further modelled through various machine
learning methods and utilizing the ABIOME, an artificial
model of the human gastrointestinal tract that will give an
idea of efficient probiotics and its effector molecules. This
approach is better coined as bottom-up approach that can
be assessed at both cellular (phenotypic perspective) and
molecular level (genotypic perspective). An overview of pro-
posed model for utilizing precision postbiotics is depicted
in Fig. 5. The phenotypic perspective covers the screening
of postbiotic effects by utilizing in vitro and ex vivo cell
cultures as well as animal models comprising immune,
neuronal, metabolic, or microbial read-outs. The genotypic
perspective is based on selection of postbiotics through in
silico prediction of their effects governing microbial or host
pathways that impacts the severity of COVID-19. Based on
microbiome profile, precision postbiotics will be given for
the efficient management of this disease. However, the pro-
posed scheme will foresee major challenge in collection of
person-specific data with respect to their genetics, immune
profiling, microbiome data, and anthropometrics as well as
implementation of correct machine learning tools for opti-
mum outcome. The road for the execution of the proposed
framework seems to be overoptimistic and arduous in the
current scenario but it is likely to be seen that in the next
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Fig.5 Proposed model for the development of precision postbiotics to be used in the management of COVID-19 pandemic

few years every human has its own microbiome card that
facilitates the use of postbiotics as personalized therapeutics
depending on the prevalence of pathogen variants. Further-
more, recent studies reported the presence of bacterial genus
Veillonella in the gut that metabolizes lactic acid to propion-
ate and enables the enhancement of physical performance
[140]. This concept leads in the emergence of biological
doping where postbiotics can be used for modifying the
physical fitness and performance. This signifies their role
in enhancing or modulating the immunity of an individual
that can also be explored in reducing the susceptibility or
severity towards other viral infections.

Conclusion

The past decade has seen stupendous stride in underpin-
ning the molecular mechanism and bioactive metabolites
of probiotics. The continuous refurbishing of probiotic
effector molecules as postbiotics and their health benefits
has radically transformed the basic research to transla-
tional aspects. However, the scarcity of data on antiviral
effect of postbiotics warrants comprehensive investiga-
tions, but the existing research evidences prove that these
molecules possess magnificent properties from clinical,
technological, and economic perspectives for control-
ling the virus. As today, the entire world is scourged by

COVID-19 pandemic, and working hard to overcome and
control the current situation. Yet, its long-term effects need
to be precisely investigated. The overwhelming utilization
of repurposed drugs and antibiotics will be detrimental to
our gut microbiome and it may lurk another menace behind
COVID-19. Thus, it reminded us a very old adage of our
ancestors that “It’s all about gut feelings.” By keeping this
view in mind, the exploration of postbiotics as therapeutics
is “carte blanche” provided us by our “buddy bugs.” Look-
ing forward for exploring the human internal bioreactor
may be a ray of hope in dark clouds; thus, a vision of “pre-
cision postbiotics” will be certainly on horizon.
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